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ABSTRACT
Both forward and reverse mode automatic differentiation derive a

model function as used for gradient descent automatically. Reverse

mode calculates all derivatives in one run, whereas forward mode

requires rerunning the algorithm with respect to every variable for

which the derivative is needed. To allow for in-database machine

learning, we have integrated automatic differentiation as an SQL

operator inside the Umbra database system. To benchmark code-

generation to GPU, we implement forward as well as reverse mode

automatic differentiation. The inspection of the optimised LLVM

code shows that nearly the same machine code is executed after

the generated LLVM code has been optimised. Thus, both modes

yield similar runtimes but different compilation times.
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1 INTRODUCTION
In machine learning, optimisation methods such as gradient de-

scent [4, 6] require the derivative of a function to train a model [9,

16]. To derive a function, many machine learning frameworks rely

on automatic differentiation by stepwise applying the chain rule.

This calculates the derivatives precisely in contrast to numerical

differentiation, which only approximates the derivatives as the dif-

ference quotient of adjacent points. For automatic differentiation,

two modes are possible: Reverse mode (see Figure 1) evaluates

the expression first before recursively calculating all derivatives.

Whereas forward mode (see Figure 2) calculates a derivative to-

gether with the function evaluation in the same pass, but requires

one pass per variable for which the derivative is needed. Automatic

differentiation is as precise as symbolic differentiation as it com-

putes the derivatives as the product of the partial ones. Laue [12]
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Figure 1: Reverse mode automatic differentiation ( 𝜕𝑓𝜕𝑥 ,
𝜕𝑓
𝜕𝑦 ).
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Figure 2: Forward mode automatic differentiation ( 𝜕𝑓𝜕𝑥 ).

has proven that caching reduces the “expression swell” of symbolic

differentiation, as it calculates the same partial derivatives as for-

ward mode automatic differentiation. In this study, we even show

that reverse and forward modes—when optimised—show similar

performance due to common subexpressions.

Automatic differentiation has been available in systems devel-

oped for machine learning [1–3, 7, 13, 27]. But to train models in

SQL [5, 8, 11, 14, 17, 28–31] without the need for manual deriva-

tion, we have created a derivation operator in the Umbra database

system [10, 15, 18], which generates the derivatives during compile

time (Listing 1), and a gradient descent operator, which in addition

offloads training to GPU [19–26]. In this study, we benchmark the

GPU implementation by comparing forward as well as reverse mode

automatic differentiation. This paper first introduces both forward

and reverse mode automatic differentiation (Section 2), before it

proceeds with the characteristics for generating and optimising

LLVM code for GPU (Section 3). We then evaluate the optimised

code with regard to compilation and execution time (Section 4).

1 create table data (x float , y float); insert into data ...
2 with recursive gd (id, a, b) as (select 1,1::float ,1:: float UNION ALL
3 select id+1, a -0.05* avg (2*x*(a*x+b-y)), b -0.05* avg (2*(a*x+b-y))
4 from gd, data where id <5 group by id,a,b) select * from gd order by id;
5 with recursive gd (id, a, b) as (select 1,1::float ,1:: float UNION ALL
6 select id+1, a -0.05* avg(d_a), b -0.05* avg(d_b)
7 from umbra.derivation(TABLE (select id,a,b,x,y from gd,data where id <5),
8 lambda (x) ((x.a * x.x + x.b - x.y)^2)) group by id,a,b)
9 select * from gd order by id;

Listing 1: Gradient descent using recursive tables: manually
derived (line 3) and using automatic differentiation (l. 6-8).
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2 AUTOMATIC DIFFERENTIATION
Both reverse and forward mode automatic differentiation compute

the derivative by applying the chain rule
𝜕𝑓 (𝑔)
𝜕𝑥 =

𝜕𝑓 (𝑔)
𝜕𝑔 ·

𝜕𝑔
𝜕𝑥 . As both

modes calculate the partial derivatives, their values can be reused to

compute all needed derivatives. Also, the evaluated subexpressions

can be cached, as they are needed as input to derive a function

partially. In both algorithms, major characters for variable names

represent tokens of the SQL grammar parsed during the semantic

analysis for code generation. Minor ones represent their actual

scalar value evaluated during runtime.

Reverse mode first evaluates the function, before it calculates

each partial derivative recursively in reverse order (Algorithm 1).

The uppermost derivation (
𝜕𝑓

𝜕𝑓
) is 1, which serves as a seed value 𝑧′

for backpropagation. All the remaining derivatives are the product

of the seed value 𝑧′ and the partial derivative with the original

arguments as input. The algorithm returns void but stores the

derivatives in a hash table with the variable name as the key.

Algorithm 1 Reverse Mode

1: function derive(𝑍, 𝑧′)
2: if 𝑍 = 𝑋 + 𝑌 then derive(𝑋 ,𝑧′); derive(𝑌 ,𝑧′)
3: else if 𝑍 = 𝑋 − 𝑌 then derive(𝑋 ,𝑧′); derive(𝑌 ,−𝑧′)
4: else if 𝑍 = 𝑋 · 𝑌 then derive(𝑋 ,𝑧′ · 𝑦); derive(𝑌 ,𝑧′ · 𝑥 )
5: else if 𝑍 = 𝑋

𝑌
then derive(𝑋 ,

𝑧′
𝑦 ); derive(𝑌 ,

−𝑧′ ·𝑥
𝑦2 )

6: else if 𝑍 = 𝑋𝑌 then
7: derive(𝑋 ,𝑧′ · 𝑦 · 𝑥𝑦−1); derive(𝑌 ,𝑧′ · 𝑥𝑦𝑙𝑛(𝑥))
8: else if 𝑍 = 𝑙𝑜𝑔𝑌 (𝑋 ) then
9: derive(𝑋 ,

𝑧′

𝑥 ·𝑙𝑛 (𝑦) ); derive(𝑌 ,
−𝑧′ ·𝑙𝑛 (𝑥)
𝑦 ·𝑙𝑛2 (𝑦) )

10: else if 𝑖𝑠𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 (𝑍 ) then 𝜕
𝜕𝑧 ←

𝜕
𝜕𝑧 + 𝑧

′

Forward mode calculates the derivative with respect to one vari-

able while evaluating the function in one pass (Algorithm 2). While

evaluating the expression, the algorithm returns for every subex-

pression a pair of the evaluated value and the derivative. Both values

serve as input to calculate the partial derivative for each partial

function according to the chain rule. The bottommost arguments

are the variables, the derivative with respect to a certain variable is

one, for all other variables it is zero.

Algorithm 2 Forward Mode

1: function eval(𝑍,𝑉 )

2: if 𝑖𝑠𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 (𝑍 ) then
3: if 𝑍 = 𝑉 then return {𝑧, 1}
4: elsereturn {𝑧, 0}
5: else{𝑥, 𝑥 ′} ← eval(𝑋 ,𝑉 ); {𝑦,𝑦′} ← eval(𝑌 ,𝑉 )

6: if 𝑍 = 𝑋 + 𝑌 then return {𝑥 + 𝑦, 𝑥 ′ + 𝑦′}
7: else if 𝑍 = 𝑋 − 𝑌 then return {𝑥 − 𝑦, 𝑥 ′ − 𝑦′}
8: else if 𝑍 = 𝑋 · 𝑌 then return {𝑥 · 𝑦, 𝑥 ′ · 𝑦 + 𝑥 · 𝑦′}
9: else if 𝑍 = 𝑋

𝑌
then return { 𝑥𝑦 ,

𝑥 ′ ·𝑦−𝑥 ·𝑦′
𝑦′2 }

10: else if 𝑍 = 𝑋𝑌
(w.r.t. 𝑥 ) then return {𝑥𝑦, 𝑦 ·𝑥𝑦−1 ·𝑥 ′}

3 USING LLVMWITH PTX
We want to compare the performance of both forward and reverse

mode automatic differentiation when generating LLVM code to

run as a GPU kernel. While using forward or reverse mode with

multiple kernels boils down to getting the derived expression in

two different ways, there are more considerations when using them

in LLVM.

Both modes show a difference in their code generation, which

has an impact on the performance depending on the specific expres-

sion. We, therefore, want to compare the behaviour via a simple

example. In this simple example, we have one kernel that computes

the derivatives of a linear model. To get a meaningful difference

concerning reusing subexpressions of both methods, we use a linear

model with three weights and two inputs:𝑤0 · 𝑥0 + 𝑥1 ·𝑤1 + 𝑏.
As a loss function, we use mean squared error, so the complete

expression we want to minimise is (𝑦 is the label):

𝐿 = (𝑤0 · 𝑥0 + 𝑥1 ·𝑤1 + 𝑏 − 𝑦)2 .

We now test this expression with our two automatic differentia-

tion methods. For now, we focus on what code both generate, but

we will compare the performance in Section 4. Deriving by hand

we get the following for two derivatives:

𝜕𝐿

𝜕𝑤0
= 2 · (𝑤0 · 𝑥0 + 𝑥1 ·𝑤1 + 𝑏 − 𝑦) · 𝑥0,

𝜕𝐿

𝜕𝑤1
= 2 · (𝑤0 · 𝑥0 + 𝑥1 ·𝑤1 + 𝑏 − 𝑦) · 𝑥1 .

Figure 3 shows the LLVM IR of the kernel calculating the deriva-

tives of 𝐿 with regard to𝑤0 and𝑤1 using forward mode automatic

differentiation.We can see that the load instructions—meaning load-

ing data frommemory that is necessary to evaluate the derivatives—

have to be repeated after the first store instruction. As we have to

load the same memory positions again, we have to redo the floating-

point instructions even when the term 2 · (𝑤0 · 𝑥0 +𝑥1 ·𝑤1 +𝑏 −𝑦)
could be reused for

𝜕𝐿
𝜕𝑤0

and
𝜕𝐿
𝜕𝑤1

.

The reason for the repeated load instructions is that the store

might influence the result of the loads. At compile time, the op-

timiser cannot be sure whether the pointers do or do not corre-

spond to separate memory locations, as the kernel can be called

with arbitrary pointers. In the C standard, there is the restrict
keyword for pointer declarations indicating that memory region ac-

cesses through restrict-annotated pointers do not interfere with

each other. LLVM IR comes with a similar feature called noalias.
Function parameters that have this attribute also allow the var-

ious backends to optimise memory accesses assuming that they

do not interfere. This has drastic consequences for the generated,

optimised LLVM IR.

In Figure 4 we see that the LLVM IR does not have the problems

we identified in Figure 3. We see that the loads do not have to be

repeated. When checking the floating-point instructions we can

also see that the result of 2 · (𝑤0 · 𝑥0 + 𝑥1 ·𝑤1 + 𝑏 − 𝑦) is reused.
Between the two stores, we only have one necessary multiplication

as a floating-point operation.

However, this is only possible because of the order of the opera-

tions as translated by automatic differentiation. Floating-point oper-

ations are normally not associative and the compiler cannot change

their order. But in our case the execution order of floating-point

operations is set:
𝜕𝐿
𝜕𝑤0

= 𝑥0 · (2 · ((((𝑤0 · 𝑥0) + (𝑥1 ·𝑤1)) +𝑏) −𝑦)).
To compare the generated LLVM IR from forward mode to re-

verse mode, Figure 5 shows the generated code of reverse mode



LLVM Code Optimisation for Automatic Differentiation DEEM’22, June 12, 2022, Philadelphia, PA, USA

%4 = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x(), !range !8
%5 = tail call i32 @llvm.nvvm.read.ptx.sreg.ntid.x(), !range !9
%6 = tail call i32 @llvm.nvvm.read.ptx.sreg.ctaid.x(), !range !10
%CUDABuiltin_cpp_97_ = mul i32 %6, %5
%CUDABuiltin_cpp_97_0 = add i32 %CUDABuiltin_cpp_97_, %4
%CodeGen_cpp_1539_ = zext i32 %CUDABuiltin_cpp_97_0 to i64
%Autodiff_cpp_700_ = getelementptr double, double* %arg4, i64 %CodeGen_cpp_1539_
%Autodiff_cpp_700_2 = getelementptr double, double* %arg5, i64 %CodeGen_cpp_1539_
%Autodiff_cpp_700_4 = getelementptr double, double* %3, i64 %CodeGen_cpp_1539_
%Autodiff_cpp_700_6 = getelementptr double, double* %2, i64 %CodeGen_cpp_1539_
%Autodiff_cpp_700_8 = getelementptr double, double* %0, i64 %CodeGen_cpp_1539_
%Autodiff_cpp_700_10 = getelementptr double, double* %1, i64 %CodeGen_cpp_1539_
%Autodiff_cpp_519_ = load double, double* %Autodiff_cpp_700_, align 8
%Autodiff_cpp_519_11 = load double, double* %Autodiff_cpp_700_4, align 8
%Autodiff_cpp_519_12 = load double, double* %Autodiff_cpp_700_6, align 8
%Autodiff_cpp_501_ = fmul double %Autodiff_cpp_519_11, %Autodiff_cpp_519_12
%Autodiff_cpp_519_13 = load double, double* %Autodiff_cpp_700_10, align 8
%Autodiff_cpp_519_14 = load double, double* %Autodiff_cpp_700_8, align 8
%Autodiff_cpp_501_15 = fmul double %Autodiff_cpp_519_13, %Autodiff_cpp_519_14
%Autodiff_cpp_493_ = fadd double %Autodiff_cpp_501_, %Autodiff_cpp_501_15
%Autodiff_cpp_493_16 = fadd double %Autodiff_cpp_519_, %Autodiff_cpp_493_
%Autodiff_cpp_519_17 = load double, double* %Autodiff_cpp_700_2, align 8
%Autodiff_cpp_497_ = fsub double %Autodiff_cpp_493_16, %Autodiff_cpp_519_17
%Autodiff_cpp_501_18 = fmul double %Autodiff_cpp_497_, 2.000000e+00
%Autodiff_cpp_501_20 = fmul double %Autodiff_cpp_519_13, %Autodiff_cpp_501_18
%7 = getelementptr inbounds double, double* %result, i64 %CodeGen_cpp_1539_
store double %Autodiff_cpp_501_20, double* %7, align 8
%Autodiff_cpp_519_21 = load double, double* %Autodiff_cpp_700_, align 8
%Autodiff_cpp_519_22 = load double, double* %Autodiff_cpp_700_4, align 8
%Autodiff_cpp_519_23 = load double, double* %Autodiff_cpp_700_6, align 8
%Autodiff_cpp_501_24 = fmul double %Autodiff_cpp_519_22, %Autodiff_cpp_519_23
%Autodiff_cpp_519_25 = load double, double* %Autodiff_cpp_700_10, align 8
%Autodiff_cpp_519_26 = load double, double* %Autodiff_cpp_700_8, align 8
%Autodiff_cpp_501_27 = fmul double %Autodiff_cpp_519_25, %Autodiff_cpp_519_26
%Autodiff_cpp_493_28 = fadd double %Autodiff_cpp_501_24, %Autodiff_cpp_501_27
%Autodiff_cpp_493_29 = fadd double %Autodiff_cpp_519_21, %Autodiff_cpp_493_28
%Autodiff_cpp_519_30 = load double, double* %Autodiff_cpp_700_2, align 8
%Autodiff_cpp_497_31 = fsub double %Autodiff_cpp_493_29, %Autodiff_cpp_519_30
%Autodiff_cpp_501_32 = fmul double %Autodiff_cpp_497_31, 2.000000e+00
%Autodiff_cpp_501_34 = fmul double %Autodiff_cpp_519_22, %Autodiff_cpp_501_32
%Autodiff_cpp_704_ = add i32 %CUDABuiltin_cpp_97_0, 32768
%CodeGen_cpp_1599_35 = zext i32 %Autodiff_cpp_704_ to i64
%8 = getelementptr inbounds double, double* %result, i64 %CodeGen_cpp_1599_35
store double %Autodiff_cpp_501_34, double* %8, align 8
ret void

Figure 3: LLVM IR: forward mode automatic differentiation.
GPU-specific operations to determine memory positions
(red); loading operations (blue); storing operations (brown).
The remaining lines are floating-point instructions.

%3 = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x(), !range !8
%4 = tail call i32 @llvm.nvvm.read.ptx.sreg.ntid.x(), !range !9
%5 = tail call i32 @llvm.nvvm.read.ptx.sreg.ctaid.x(), !range !10
%CUDABuiltin_cpp_97_ = mul i32 %5, %4
%CUDABuiltin_cpp_97_0 = add i32 %CUDABuiltin_cpp_97_, %3
%CodeGen_cpp_1539_ = zext i32 %CUDABuiltin_cpp_97_0 to i64
%Autodiff_cpp_700_ = getelementptr double, double* %arg4, i64 %CodeGen_cpp_1539_
%Autodiff_cpp_700_2 = getelementptr double, double* %arg5, i64 %CodeGen_cpp_1539_
%Autodiff_cpp_700_4 = getelementptr double, double* %2, i64 %CodeGen_cpp_1539_
%Autodiff_cpp_700_6 = getelementptr double, double* %1, i64 %CodeGen_cpp_1539_
%Autodiff_cpp_700_8 = getelementptr double, double* %0, i64 %CodeGen_cpp_1539_
%Autodiff_cpp_700_10 = getelementptr double, double* %"01", i64 %CodeGen_cpp_1539_
%Autodiff_cpp_519_ = load double, double* %Autodiff_cpp_700_, align 8
%Autodiff_cpp_519_11 = load double, double* %Autodiff_cpp_700_4, align 8
%Autodiff_cpp_519_12 = load double, double* %Autodiff_cpp_700_6, align 8
%Autodiff_cpp_501_ = fmul double %Autodiff_cpp_519_11, %Autodiff_cpp_519_12
%Autodiff_cpp_519_13 = load double, double* %Autodiff_cpp_700_10, align 8
%Autodiff_cpp_519_14 = load double, double* %Autodiff_cpp_700_8, align 8
%Autodiff_cpp_501_15 = fmul double %Autodiff_cpp_519_13, %Autodiff_cpp_519_14
%Autodiff_cpp_493_ = fadd double %Autodiff_cpp_501_, %Autodiff_cpp_501_15
%Autodiff_cpp_493_16 = fadd double %Autodiff_cpp_519_, %Autodiff_cpp_493_
%Autodiff_cpp_519_17 = load double, double* %Autodiff_cpp_700_2, align 8
%Autodiff_cpp_497_ = fsub double %Autodiff_cpp_493_16, %Autodiff_cpp_519_17
%Autodiff_cpp_501_18 = fmul double %Autodiff_cpp_497_, 2.000000e+00
%Autodiff_cpp_501_20 = fmul double %Autodiff_cpp_519_13, %Autodiff_cpp_501_18
%6 = getelementptr inbounds double, double* %result, i64 %CodeGen_cpp_1539_
store double %Autodiff_cpp_501_20, double* %6, align 8
%Autodiff_cpp_501_34 = fmul double %Autodiff_cpp_519_11, %Autodiff_cpp_501_18
%Autodiff_cpp_704_ = add i32 %CUDABuiltin_cpp_97_0, 32768
%CodeGen_cpp_1599_35 = zext i32 %Autodiff_cpp_704_ to i64
%7 = getelementptr inbounds double, double* %result, i64 %CodeGen_cpp_1599_35
store double %Autodiff_cpp_501_34, double* %7, align 8
ret void

Figure 4: Optimised LLVM IR of forward mode automatic
differentiation with noaliasmarking pointers.

automatic differentiation, which almost matches the one from Fig-

ure 4. Only the last multiply does not happen after the first store.

Previously, we only looked at optimisations that happen on an

LLVM IR level. In a second step, we can additionally consider how

to optimise the parallel thread execution (PTX) code that is gen-

erated from our LLVM IR. PTX is the instruction set for CUDA

%4 = tail call i32 @llvm.nvvm.read.ptx.sreg.tid.x(), !range !8
%5 = tail call i32 @llvm.nvvm.read.ptx.sreg.ntid.x(), !range !9
%6 = tail call i32 @llvm.nvvm.read.ptx.sreg.ctaid.x(), !range !10
%CUDABuiltin_cpp_97_ = mul i32 %6, %5
%CUDABuiltin_cpp_97_1 = add i32 %CUDABuiltin_cpp_97_, %4
%CodeGen_cpp_1539_ = zext i32 %CUDABuiltin_cpp_97_1 to i64
%Autodiff_cpp_616_ = getelementptr double, double* %arg0, i64 %CodeGen_cpp_1539_
%Autodiff_cpp_616_3 = getelementptr double, double* %arg00, i64 %CodeGen_cpp_1539_
%Autodiff_cpp_616_5 = getelementptr double, double* %3, i64 %CodeGen_cpp_1539_
%Autodiff_cpp_616_7 = getelementptr double, double* %2, i64 %CodeGen_cpp_1539_
%Autodiff_cpp_616_9 = getelementptr double, double* %0, i64 %CodeGen_cpp_1539_
%Autodiff_cpp_616_11 = getelementptr double, double* %1, i64 %CodeGen_cpp_1539_
%Autodiff_cpp_519_ = load double, double* %Autodiff_cpp_616_, align 8
%Autodiff_cpp_519_12 = load double, double* %Autodiff_cpp_616_5, align 8
%Autodiff_cpp_519_13 = load double, double* %Autodiff_cpp_616_7, align 8
%Autodiff_cpp_501_ = fmul double %Autodiff_cpp_519_12, %Autodiff_cpp_519_13
%Autodiff_cpp_519_14 = load double, double* %Autodiff_cpp_616_11, align 8
%Autodiff_cpp_519_15 = load double, double* %Autodiff_cpp_616_9, align 8
%Autodiff_cpp_501_16 = fmul double %Autodiff_cpp_519_14, %Autodiff_cpp_519_15
%Autodiff_cpp_493_ = fadd double %Autodiff_cpp_501_, %Autodiff_cpp_501_16
%Autodiff_cpp_493_17 = fadd double %Autodiff_cpp_519_, %Autodiff_cpp_493_
%Autodiff_cpp_519_18 = load double, double* %Autodiff_cpp_616_3, align 8
%Autodiff_cpp_497_ = fsub double %Autodiff_cpp_493_17, %Autodiff_cpp_519_18
%Autodiff_cpp_317_19 = fmul double %Autodiff_cpp_497_, 2.000000e+00
%Autodiff_cpp_302_ = fmul double %Autodiff_cpp_519_14, %Autodiff_cpp_317_19
%Autodiff_cpp_302_23 = fmul double %Autodiff_cpp_519_12, %Autodiff_cpp_317_19
%7 = getelementptr inbounds double, double* %result, i64 %CodeGen_cpp_1539_
store double %Autodiff_cpp_302_, double* %7, align 8
%Autodiff_cpp_623_ = add i32 %CUDABuiltin_cpp_97_1, 32768
%CodeGen_cpp_1599_26 = zext i32 %Autodiff_cpp_623_ to i64
%8 = getelementptr inbounds double, double* %result, i64 %CodeGen_cpp_1599_26
store double %Autodiff_cpp_302_23, double* %8, align 8
ret void

Figure 5: LLVM IR: reverse mode automatic differentiation.

programming, which the graphics driver compiles into binary code

for GPUs. As explained before, code optimisation normally can nei-

ther combine or change the order of the floating-point operations.

However, we can relax these rules and thus allow the optimiser to

reorder and replace floating-point operations.

To allow this relaxation, LLVM IR provides fast math flags to
specify how the optimiser is allowed to modify floating-point opera-

tions. The two flags of interest are reassoc and contract. reassoc
allows the optimiser to treat floating-point operations as associative.

This is part of LLVM IR already because there the operations are

reordered by the optimiser. contract allows the combination of

multiple floating-point operations. There are no combined floating-

point operations in LLVM IR, so setting this flag is just information

for the specific backend behind LLVM (in our case NVPTX) to allow

for this optimisation.

Figure 6a shows the PTX code generated from the LLVM IR code

we showed in Figure 5. Here we do not have any fast math flags

enabled. Highlighted in blue are all the floating-point calculations

that match their LLVM IR equivalents roughly. For comparison, Fig-

ure 6b shows the resulting PTX when the contract fast math flag

is set. Four floating-point operations, two multiplies (mul.rn.f64)
and two adds (add.rn.f64) have been fused together to two fused

multiply-add (fma.rn.f64) operations.

4 EVALUATION
System: NVIDIA GeForce RTX 3050 Ti Laptop, Intel Core i7-11800H.

We want to evaluate the impact of optimisation on the generated

code of forward and reverse mode automatic differentiation. First,

we investigate the impact of setting noalias on pointer parameters

of the kernel. We compare the execution and compilation time using

a linear model of four weights and one bias with mean squared

error as the loss function. The batch size refers to the number of

tuples.

As noalias optimises the generated code, this improves the

runtime for evaluating derivations generated by forward mode

automatic differentiation (see Figure 7a). Additionally, we can see
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ld.param.u64 %rd1, [param_0];
ld.param.u64 %rd2, [param_1];
mov.u32 %r1, %tid.x;
ld.param.u64 %rd3, [param_2];
mov.u32 %r2, %ntid.x;
ld.param.u64 %rd4, [param_3];
mov.u32 %r3, %ctaid.x;
ld.param.u64 %rd5, [param_4];
mad.lo.s32 %r4, %r3, %r2, %r1;
ld.param.u64 %rd6, [param_5];
ld.param.u64 %rd7, [param_6];
mul.wide.u32 %rd8, %r4, 8;
add.s64 %rd9, %rd5, %rd8;
add.s64 %rd10, %rd6, %rd8;
add.s64 %rd11, %rd4, %rd8;
add.s64 %rd12, %rd3, %rd8;
add.s64 %rd13, %rd1, %rd8;
add.s64 %rd14, %rd2, %rd8;
ld.f64 %fd1, [%rd9];
ld.f64 %fd2, [%rd11];
ld.f64 %fd3, [%rd12];
mul.rn.f64 %fd4, %fd2, %fd3;
ld.f64 %fd5, [%rd14];
ld.f64 %fd6, [%rd13];
mul.rn.f64 %fd7, %fd5, %fd6;
add.rn.f64 %fd8, %fd4, %fd7;
add.rn.f64 %fd9, %fd1, %fd8;
ld.f64 %fd10, [%rd10];
sub.rn.f64 %fd11, %fd9, %fd10;
add.rn.f64 %fd12, %fd11, %fd11;
mul.rn.f64 %fd13, %fd5, %fd12;
mul.rn.f64 %fd14, %fd2, %fd12;
add.s64 %rd15, %rd7, %rd8;
st.f64 [%rd15], %fd13;
add.s32 %r5, %r4, 32768;
mul.wide.u32 %rd16, %r5, 8;
add.s64 %rd17, %rd7, %rd16;
st.f64 [%rd17], %fd14;
ret;

(a) without fast math flags.

ld.param.u64 %rd1, [param_0];
ld.param.u64 %rd2, [param_1];
mov.u32 %r1, %tid.x;
ld.param.u64 %rd3, [param_2];
mov.u32 %r2, %ntid.x;
ld.param.u64 %rd4, [param_3];
mov.u32 %r3, %ctaid.x;
ld.param.u64 %rd5, [param_4];
mad.lo.s32 %r4, %r3, %r2, %r1;
ld.param.u64 %rd6, [param_5];
ld.param.u64 %rd7, [param_6];
mul.wide.u32 %rd8, %r4, 8;
add.s64 %rd9, %rd6, %rd8;
add.s64 %rd10, %rd4, %rd8;
add.s64 %rd11, %rd5, %rd8;
add.s64 %rd12, %rd3, %rd8;
add.s64 %rd13, %rd1, %rd8;
add.s64 %rd14, %rd2, %rd8;
ld.f64 %fd1, [%rd11];
ld.f64 %fd2, [%rd10];
ld.f64 %fd3, [%rd12];
ld.f64 %fd4, [%rd14];
ld.f64 %fd5, [%rd13];
fma.rn.f64 %fd6, %fd4, %fd5, %fd1;
fma.rn.f64 %fd7, %fd2, %fd3, %fd6;
ld.f64 %fd8, [%rd9];
sub.rn.f64 %fd9, %fd7, %fd8;
add.rn.f64 %fd10, %fd9, %fd9;
mul.rn.f64 %fd11, %fd4, %fd10;
mul.rn.f64 %fd12, %fd2, %fd10;
add.s64 %rd15, %rd7, %rd8;
st.f64 [%rd15], %fd11;
add.s32 %r5, %r4, 32768;
mul.wide.u32 %rd16, %r5, 8;
add.s64 %rd17, %rd7, %rd16;
st.f64 [%rd17], %fd12;
ret;

(b) with fast math contract flag.
Figure 6: Optimised PTX generated by the LLVM IR.
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Figure 7: Comparison of forward mode with and without
noalias as well as reverse mode without noalias.

that forward and reverse mode indeed lead to the same performance

if forward mode employs noalias in its generated code.

Figure 7b shows the difference in compilation time with forward

and reverse mode. The heuristic that for more inputs than outputs,

reverse mode performs better than forward mode holds true. And

while this could be optimised by executing the automatic differenti-

ation and compilation for each of the weights in parallel in forward

mode, the performance difference is still quite drastic.

Regarding the optimised PTX code, there was no difference be-

tween enabling or disabling fast math flags, including contract
and reassoc. Especially for the reassoc flag, it is highly dependent
on the model and its formulation, whether relaxing floating-point

operation constraints have an effect.

5 CONCLUSION
This paper has highlighted automatic differentiation as implemented

in Umbra to allow for in-database machine learning. In detail, we

have discussed forward and reverse mode automatic differentiation

for code-generation to GPU. Which mode to use depends on the

operator implementation. For example, a flag in the SQL derivation

operator interface indicates when to use forward instead of reverse

mode, which is set as default. We showed that the noalias feature
optimises the produced LLVM code in forward mode. The evalua-

tion has proven that the reduced number of expressions in forward

mode leads to a similar runtime as for reverse mode. Although we

considered code generation to LLVM with PTX as the target, other

target architectures are possible as well, as the compiler optimisa-

tions also apply to non-virtual assembly languages.
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