
ArrayQL for Linear Algebra within Umbra
Maximilian E. Schüle, Tobias Götz, Alfons Kemper, and Thomas Neumann

Technical University of Munich
Germany

{m.schuele,tobias.goetz}@tum.de,{kemper,neumann}@in.tum.de

ABSTRACT
Array database systems offer a declarative language for array-based
access onmultidimensional data. This study explains the integration
of ArrayQL inside a relational database system, either addressable
through a separate query interface or integrated into SQL as user-
defined functions. With a relational database system as the target,
we inherit the benefits such as query optimisation andmulti-version
concurrency control by design. Apart from SQL, having another
query language allows processing the data without extraction or
transformation out of its relational form. This is possible as we
work on a relational array representation, for which we translate
each ArrayQL operator into relational algebra. In our evaluation,
ArrayQL within Umbra computes matrix operations faster than
state of the art database extensions.
ACM Reference Format:
Maximilian E. Schüle, Tobias Götz, Alfons Kemper, and Thomas Neumann.
2021. ArrayQL for Linear Algebra within Umbra. In 33rd International Con-
ference on Scientific and Statistical Database Management (SSDBM 2021),
July 6–7, 2021, Tampa, FL, USA. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3468791.3468838

1 INTRODUCTION
Array database systems are developed for geo-temporal data and
therefore specialised for multidimensional discrete data (MDD) [1].
In contrast to relational database systems, array database systems
are designed for index-based array access [3, 6, 14, 19] and excel in
computing aggregations on numerical data. Popular array database
systems are RasDaMan [2], MonetDB SciQL [22] and SciDB [4, 10].
As each one is shipped with its own query language, ArrayQL [11]
is an attempt to standardise them as presented at XLDB 2012. Al-
though the corresponding algebra [12] has been published, it is not
fully covered by the corresponding draft of a grammar specifica-
tion [11] needed in order to implement ArrayQL.

Even though array database systems are often based on relational
ones, an interface for querying both does not exist. For example,
RasDaMan supports relational database systems such as PostgreSQL
as an underlying key-value store but archives the data as binary
large objects (BLOB) only. SciQL is implemented within MonetDB
and stores arrays along with tables in the same memory layout but
does not enable cross-querying. However a uniform representation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SSDBM 2021, July 6–7, 2021, Tampa, FL, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8413-1/21/07. . . $15.00
https://doi.org/10.1145/3468791.3468838

©«
𝑎1,1 · · · 𝑎1,𝑛

.

.

.
.
.
.

.

.

.
𝑎𝑚,1 · · · 𝑎𝑚,𝑛

ª®®®¬
x y value
1 1 𝑎1,1
.
1 n 𝑎1,𝑛
.
m 1 𝑎𝑚,1
.
m n 𝑎𝑚,𝑛

rowno. col1 . . . coln
1 𝑎1,1 . . . 𝑎1,𝑛
.
m 𝑎𝑚,1 . . . 𝑎𝑚,𝑛

Relational
Representation

Tabular
Representation

Figure 1: Tabular representation (left) with the attributes as
columns and a relational representation (right) with the ar-
ray as coordinate list.

is needed to allow access from SQL and an array query language.
Arrays have to be either stored as a coordinate list (relational repre-
sentation) or tables have to carry an additional attribute that defines
the row order (tabular representation, see Figure 1). A relational
representation saves memory on sparse arrays as no entry is needed
for values equal to zero. As the dimensions and the content are
mapped to one attribute each, primitive data types are sufficient
even for more than two dimensions. A tabular representation would
require a nested array datatype to represent the third dimension.

Another use case for array-oriented data processing arises by
the need of matrix operations for data mining and machine learn-
ing. The corresponding data is often stored and collected inside
relational database systems [15, 21], but its analysis depends on
linear algebra, which database systems do not provide. Thus, the
data gets extracted into separate tools such as R and Python, so
analysis happens on past data, ignoring incoming tuples. We argue
that array database systems are ideally suited for machine learn-
ing algorithms [8, 16, 20], which essentially depend on data stored
in tensors and their transformations [17, 18], making ArrayQL a
worthwhile extension.

We claim that relational database systems will highly benefit
from ArrayQL as a further query language, either embedded in SQL
as user-defined functions or as a separate query interface.

We integrate ArrayQL within our code-generating database sys-
tem Umbra [9, 13]. We decided in favour of a relational array rep-
resentation allowing a direct mapping onto relational algebra at
compile time. This requires an extension of the semantic analysis
only, rather than a change to the underlying query engine. The
extension accepts ArrayQL statements as part of SQL either as
user-defined functions or via a separate interface. As an advantage,
ArrayQL can work on SQL tables, and SQL has access to ArrayQL
arrays. The extension does neither affect runtime nor the com-
pile time of SQL queries. This study provides a translation of the
afore-mentioned ArrayQL operators into relational algebra and a
corresponding grammar. This study’s specific contributions are:

1

https://doi.org/10.1145/3468791.3468838
https://doi.org/10.1145/3468791.3468838
https://doi.org/10.1145/3468791.3468838

SSDBM 2021, July 6–7, 2021, Tampa, FL, USA M. Schüle, T. Götz, A. Kemper, T. Neumann

• a relational array representation including bounding boxes
and validity maps for ArrayQL within database systems

• the translation of corresponding operators into relational
algebra,

• the integration of ArrayQL into a code-generating database
system with Umbra as target and

• an experimental evaluation using micro-benchmarks for lin-
ear algebra.

This study comprises the following sections: Section 2 presents
the architecture when integrating ArrayQLwithin the beyondmain-
memory database system Umbra as the target. Section 3 introduces
the ArrayQL algebra and its translation into relational algebra. Sec-
tion 4 evaluates the proposed extension using micro-benchmarks
for basic matrix algebra.

2 IN-DATABASE INTEGRATION
Only the schema is known during compile-time, whereas the tuples
can only be accessed during run-time. This interferes with a tabular
array representation, as only the columns are part of the schema,
and leads us to the relational representation. We store every 𝑛-
dimensional array with 𝑚 values per cell as a table with 𝑛 + 𝑚

attributes. Stored as a coordinate list, the attributes for the indices
are unique and form the primary key. This allows their indexing
and fast retrieval later on.

ArrayQL differentiates between attributes and dimensions, which
becomes obsolete in a relational representation as dimensions are
mapped to attributes internally. This leads to more flexibility, since
arbitrary attributes can be used as dimensions.

According to the ArrayQL algebra, an array consists of a bound-
ing box, a validity map and the content. The bounding box defines
the bounds for each dimension, whereas the validity map defines
the visible cells within the bounds and the attributes per cell de-
fine the content. To define the bounding box, we simply insert a
tuple for the lower as well as the upper bound upon array creation
(see Figure 2). Within the bounding box, we consider an entry as
valid if it exists and at least one attribute is not declared as NULL.

CREATE ARRAY m (
i INTEGER DIMENSION [1:2],
j INTEGER DIMENSION [3:4],
v INTEGER);

x y v
1 3 𝑁𝑈𝐿𝐿

2 4 𝑁𝑈𝐿𝐿

Figure 2: Array creation.

Depending on its signature, ArrayQL expressions, when used
as part of a user-defined function, return either a table, e.g., TABLE
(x INT, y INT, v INT), or a single array attribute, e.g., INT[][]
(see Listing 1). As a table function, it returns the relational array
representation, that can be further processed in SQL. Otherwise,
when the function is declared to return a single attribute, the result
is cast to Umbra’s array datatype.
CREATE FUNCTION exampletable () RETURNS TABLE (x INT , y INT , v INT)

LANGUAGE 'arrayql ' AS 'SELECT␣[x],␣[y],␣v␣FROM␣m';
CREATE FUNCTION exampleattribute () RETURNS INT [][] LANGUAGE '

arrayql ' AS 'SELECT␣[x],␣[y],␣v␣FROM␣m';

Listing 1: ArrayQL as part of a user-defined function returns
either an SQL table or an SQL array.

3 ARRAYQL ALGEBRA
ArrayQL offers an algebra [12] that is similar to relational alge-
bra and allows a mapping to SQL operators considering the un-
derlying schema. The algebra offers nine operators (see Table 1),
for which it defines content, validity maps and bounding box.
In our relational form, one relation 𝑎 ⊆ I𝑛 × R𝑚 with schema
𝑠𝑐ℎ(𝑎) = {𝑖1, . . . , 𝑖𝑛, 𝑟1, . . . , 𝑟𝑚} represents one 𝑛-dimensional ar-
ray 𝔞 ∈ (R𝑚) |𝑖1 |×...×|𝑖𝑛 | with𝑚 attributes of domain R as content.
Its coordinates (𝑖1, . . . , 𝑖𝑛) ⊆ I𝑛 form the primary key and delimit
the bounding box. We formulate the validity map of an array 𝔞

as set of indices 𝑑𝑎 ⊆ I𝑛 of valid entries. Transferred to SQL, all
entries are valid, for which a tuple exists with not-null attributes.
This section introduces the ArrayQL operators, the corresponding
syntax and the translation into SQL operators.

3.1 Rename
The rename operator assigns a new name to either a dimension,
attribute or a whole array. Similar to the rename operator 𝜌 in SQL,
it is introduced by a keyword (AS) behind expressions or tables.
SELECT [i] AS s, [j] AS t, v AS c FROM m[s,t];

Listing 2: Rename operator.

3.2 Function Application
The apply operator applies a function 𝑓 ∈ R𝑚 → R𝑜 on certain
attributes of each valid entry. This is translated to an arithmetic
expression as part of an SQL projection 𝜋𝑖1,...,𝑖𝑛,𝑓 (𝑟1,...,𝑟𝑚) (𝑎). As
function application does not affect the validity map, no further
adjustments are needed.
SELECT [i], [j], v+2 FROM m;

Listing 3: Function application: addition.

3.3 Filter
The filter operator invalidates cells for which a condition does not
hold. This is called implicitly when accessing an array via indices
or explicitly when checking the cell’s value as part of the WHERE-
clause. Both ways are translated into selections of relational algebra
𝜎𝑝 (𝑣) (𝑎), as both dimensions and attributes are represented in SQL
as attributes.
SELECT [i], [j], v FROM m WHERE v = 0.0;
SELECT [i] as i, [j] as j, * FROM m[i/2, j];

Listing 4: Explicit and implicit filter operator.

3.4 Index Manipulation: Shift and Rebox
Shift moves the indices, whereas rebox redefines the bounding
boxes by enlarging or shrinking the array size. In our relational
schema, shift is translated into an arithmetic expression as part of
a projection, as it modifies each index by adding or subtracting the
difference 𝑖 ′1, . . . , 𝑖

′
𝑛 ∈ I:

𝜋𝑖1+𝑖′1,...,𝑖𝑛+𝑖′𝑛,𝑟1,...,𝑟𝑚 (𝑎) .

2

ArrayQL for Linear Algebra within Umbra SSDBM 2021, July 6–7, 2021, Tampa, FL, USA

Operator Input Output Validity Map Relational Algebra
apply 𝔞 ∈ R|𝑖1 |×···×|𝑖𝑛 |, 𝑓 ∈ (R→ R) R|𝑖1 |×···×|𝑖𝑛 | 𝑑𝑎 = 𝑑𝑜𝑢𝑡 ⊆ |𝑖1 | × · · · × |𝑖𝑛 | 𝜋𝑖1,...𝑖𝑛,𝑓 (𝑣) (𝑎)

combine 𝔞, 𝔟 ∈ R|𝑖1 |×···×|𝑖𝑛 | R|𝑖1 |×···×|𝑖𝑛 | 𝑑𝑎 ⊎ 𝑑𝑏 = 𝑑𝑜𝑢𝑡 ⊆ |𝑖1 | × · · · × |𝑖𝑛 | 𝑎d|><|d𝑎.𝑖1=𝑏.𝑖1∧···∧𝑎.𝑖𝑛=𝑏.𝑖𝑛 (𝑏)
i. dim. join 𝔞, 𝔟 ∈ R|𝑖1 |×···×|𝑖𝑛 | (R,R) |𝑖1 |×···×|𝑖𝑛 | 𝑑𝑎 ∩ 𝑑𝑏 = 𝑑𝑜𝑢𝑡 ⊆ |𝑖1 | × · · · × |𝑖𝑛 | 𝑎 ⊲⊳𝑎.𝑖1=𝑏.𝑖1∧···∧𝑎.𝑖𝑛=𝑏.𝑖𝑛 (𝑏)

fill 𝔞 ∈ R|𝑖1 |×···×|𝑖𝑛 | R|𝑖1 |×···×|𝑖𝑛 | 𝑑𝑎 ⊆ 𝑑𝑜𝑢𝑡 = |𝑖1 | × · · · × |𝑖𝑛 | . . . 0|𝑎.𝑖1 |,...,|𝑎.𝑖𝑛 | . . .
filter 𝔞 ∈ R|𝑖1 |×···×|𝑖𝑛 |, 𝑝 ∈ (R→ B) R|𝑖1 |×···×|𝑖𝑛 | 𝑑𝑜𝑢𝑡 ⊆ 𝑑𝑎 ⊆ |𝑖1 | × · · · × |𝑖𝑛 | 𝜎𝑝 (𝑣) (𝑎)
rebox 𝔞 ∈ R|𝑖1 |×···×|𝑖𝑛 |, 𝑖𝑙1, 𝑖

𝑢
1 , . . . , 𝑖

𝑙
𝑛, 𝑖

𝑢
𝑛 ∈ I R𝑖

𝑢
1−𝑖𝑙1×···×𝑖

𝑢
𝑛−𝑖𝑙𝑛 𝑑𝑎 ⊆ |𝑖1 | × · · · × |𝑖𝑛 |, 𝑑𝑜𝑢𝑡 ⊆ 𝑖𝑢1 − 𝑖𝑙1 × · · · × 𝑖𝑢𝑛 − 𝑖𝑙𝑛 𝜎

𝑖𝑙
1
≤𝑖1≤𝑖𝑢

1
∧···∧𝑖𝑙𝑛≤𝑖𝑛≤𝑖𝑢𝑛

(𝑎)
reduce 𝔞 ∈ R|𝑖1 |×···×|𝑖𝑛 |, 𝑓 ∈ (R|𝑖𝑛 | → R) R|𝑖1 |×···×|𝑖𝑛−1 | 𝑑𝑎 ⊆ |𝑖1 | × · · · × |𝑖𝑛 |, 𝑑𝑜𝑢𝑡 ⊆ |𝑖1 | × · · · × |𝑖𝑛−1 | 𝛾𝑖1,...,𝑖𝑛,𝑓 (𝑣) (𝑎)
rename 𝔞 ∈ R|𝑖1 |×···×|𝑖𝑛 | R|𝑖1 |×···×|𝑖𝑛 | 𝑑𝑎 = 𝑑𝑜𝑢𝑡 ⊆ |𝑖1 | × · · · × |𝑖𝑛 | 𝜌 (𝑎)
shift 𝔞 ∈ R|𝑖1 |×···×|𝑖𝑛 |, 𝑖′1, . . . , 𝑖

′
𝑛 ∈ I R|𝑖1 |×···×|𝑖𝑛 | 𝑑𝑎 = 𝑑𝑜𝑢𝑡 ⊆ |𝑖1 | × · · · × |𝑖𝑛 | 𝜋𝑖1+𝑖′𝑚,...,𝑖𝑛+𝑖′𝑛,𝑣 (𝑎)

Table 1: Operators of the ArrayQL algebra: the first column names the operator, the second column specifies the input argu-
ments, the third column the output array, the fourth column defines the set of valid indices and the latter one the translation
of ArrayQL operators into relational algebra. 𝑖1...𝑛 represents the attribute for the dimension in relational form, |𝑖1...𝑛 | denotes
the size of a dimension. We assume arrays having a single attribute 𝑣 ∈ R only.

SELECT [i] as i, [j] as j, b FROM m[i+1,j-1];

Listing 5: Shift operator.

For rebox, if the array size is shrunk, a conditional statement (se-
lection) filters out each index, which is outside the new bounding
box given as lower and upper bounds 𝑖𝑙1, 𝑖

𝑢
1 , . . . , 𝑖

𝑙
𝑛, 𝑖

𝑢
𝑛 ∈ I:

𝜎
𝑖𝑙1≤𝑖1≤𝑖𝑢1∧···∧𝑖𝑙𝑛≤𝑖𝑛≤𝑖𝑢𝑛

(𝑎).

In any case, new array bounds have to be added afterwards (with a
union operator).
SELECT [1:5] as i, [1:5] as j, * FROM m[i,j];

Listing 6: Rebox operator.

3.5 Fill
The fill operator creates an entry with the default value (0 for nu-
merics) for the attributes of every invalid cell within the bounding
box. This is useful for linear algebra with arrays as input matrices
and has to be called by a keyword. Internally, it is translated to a
call to generate_series, an outer join and a projection:

𝜋𝐶𝑂𝐴𝐿𝐸𝑆𝐶𝐸 (𝑎.𝑟1,0),... (𝑎d|><|d𝑎.𝑖1=𝑏.𝑖1∧···∧𝑎.𝑖𝑛=𝑏.𝑖𝑛 (𝜌𝑏 (0 |𝑎.𝑖1 |,..., |𝑎.𝑖𝑛 |))) .

SELECT FILLED [i], [j], * FROM m;

Listing 7: The keyword FILLED enables the fill operator.

3.6 Combining and Joining
ArrayQL defines three operators for joining arrays, namely combine,
the inner dimension join and—its generalisation to attributes—the
inner extended join.

3.6.1 Combine. Combine merges two arrays of the same dimen-
sionality but distinct valid cells, so it concatenates arrays. All cells
are valid that are at least valid in one input: 𝑑𝑎 ⊎ 𝑑𝑏 = 𝑑𝑜𝑢𝑡 ⊆
|𝑖1 | × · · · × |𝑖𝑛 |. NULL is assumed for the attributes of a missing join
partner. Combine acts like a full outer join, to which it is translated
in relational algebra:

𝑎d|><|d𝑎.𝑖1=𝑏.𝑖1∧···∧𝑎.𝑖𝑛=𝑏.𝑖𝑛 (𝑏).

CREATE ARRAY m2(x INTEGER DIMENSION [3:4], y INTEGER DIMENSION
[1:2], v2 INTEGER);

SELECT [i] as i, [j] as j, v, v2 FROM m[i,j], m2[i,j];

Listing 8: Combine operator.

3.6.2 Inner Join. The inner dimension/extended join corresponds
to the inner join:

𝑎 ⊲⊳𝑎.𝑖1=𝑏.𝑖1∧···∧𝑎.𝑖𝑛=𝑏.𝑖𝑛 (𝑏).

All cells are valid, that are valid in both join partners: 𝑑𝑎 ∩ 𝑑𝑏 =

𝑑𝑜𝑢𝑡 ⊆ |𝑖1 | × · · · × |𝑖𝑛 |. They differ, as the inner dimension join
only allows dimensions as indices, whereas the inner extended
join generalises the join predicate, so that attributes can be used
to determine the index as well. As the usage of either combine or
join is data-dependent and not known during compile-time, we add
the keyword JOIN to explicitly perform an inner join. This differs
from the original ArrayQL proposal where it shares the syntax with
combine (which is called when an inner join cannot be applied).

SELECT [i] as i, [j] as j, v, v2 FROM m[i+2,j+2] JOIN m2[i-2,j-2];

Listing 9: Inner dimension Join.

3.7 Reduce for Aggregations
Reduce performs an aggregation over at least one dimension as
needed by roll-up queries of analytical workloads. Reduce is intro-
duced by the keywords GROUP BY, as known from SQL, followed
by the preserved dimensions after reduction. Similarly, one ag-
gregation function 𝑓 ∈ ((R𝑚) |𝑖𝑛 | → R𝑚) must be applied to all
remaining attributes. These similarities allow a direct mapping to
aggregations in relational algebra:

𝛾𝑖1,...,𝑖𝑛,𝑓 (𝑣) (𝑎) .

SELECT [i], sum(v) FROM m GROUP BY i;

Listing 10: Reduce operator for aggregation: summation

3

SSDBM 2021, July 6–7, 2021, Tampa, FL, USA M. Schüle, T. Götz, A. Kemper, T. Neumann

1 · 105 5 · 105 1 · 106
10−1

101

103

105

Entries of resulting matrix

Ru
nt
im

e
(se

c)

RMA Optimiser RMA Runtime Umbra Madlib Matrices

0 0.2 0.4 0.6 0.8
10−1

101

103

105

Sparsity

Figure 4: Evaluation of gram matrix computation: varying
the number of elements in a dense array and the sparsity on
a resulting matrix with 90000 entries.

4 EVALUATION
System: All measurements have been conducted on a machine run-
ning Ubuntu 20.04 LTS, equipped with six Intel Core i7-3930K CPUs
running at 3.20GHz, and offering 62 GB of main-memory.

Competitors: To benchmark linear algebra, we pick RMA [5]
as MonetDB’s extension for linear algebra and MADlib (1.17.0 re-
lease) [7] as an extension on top of PostgreSQL version 12.2.

RMA’s tabular representation depends on the database schema
(the first dimension corresponds to the attributes, the second to the
number of tuples). For benchmarking purposes, RMA provides a
Python script, that creates the schema, inserts as many tuples as the
specified size for the second dimension and creates SQL statements
for matrix addition and gram matrix computation. For comparison,
we add support to create statements for MADlib and ArrayQL and
fill the relations with the same data.

5 · 106 1 · 107
0

10

20

30

40

Number of Elements

Ru
nt
im

e
(se

c)

RMA Optimiser RMA Runtime Umbra
Madlib Matrices Madlib Arrays

0.1 0.5 0.9

0

10

20

30

40

Sparsity

Figure 3: Evaluation ofmatrix addition: varying the number
of elements in a dense array or the sparsity on an array with
106 elements.

Figure 3 shows the runtime needed for matrix addition (𝑋 + 𝑋),
when varying the sparsity, and on dense arrays, when varying the
input size. With increasing size, ArrayQL computes the matrix sum
faster than RMA. RMA’s compute time consists of optimisation and
runtime, both increase with the size of a matrix. When varying the
sparsity, MADlib matrices and Umbra benefit from sparse matrices,
since zero values simply do not exist. RMA needs constant runtime
with increasing sparsity as sparse and dense matrices consume the
same space in a tabular representation.

Matrix addition onMADlibmatrices performs theworst, whereas
the same operation on MADlib arrays performs the best. This is

reasonable, as the aggregation time needed to create arrays out of
its relational form is not considered.

Gram matrix computation (𝑋 ·𝑋𝑇 , see Figure 4) yields similar re-
sults: the higher the sparsity, the lower the runtime when handling
MADlib matrices as well as within ArrayQL in Umbra. MADlib
does not allow to transpose arrays, so gram matrix computation
is not possible. Again, RMA needs constant compute time and, as
the transposition is more expensive in a tabular representation, it
is slower than Umbra.

When varying the input size, multiplication on MADlib matri-
ces takes the most time. Multiplication in ArrayQL results in the
shortest execution time as it is based on Umbra’s relational algebra.

In summary, ArrayQL in Umbra benefits from sparse matrices as
well as the performance of an in-memory database system. There-
fore, our relational representation shows comparable performance
to existing database extensions for linear algebra.

5 CONCLUSION
In this paper, we have integrated ArrayQL into a code-generating
database system as another query interface and addressable inside
SQL as user-defined functions. As this standardised array query
language has not yet been integrated into a productive system, we
completed its grammar specification and extended Umbra’s query
engine to accept ArrayQL statements. For that reason, we defined
a relational array model and translated ArrayQL operators to re-
lational algebra. For basic matrix operations, ArrayQL statements
performed better than state-of-the-art linear algebra extensions for
database systems, whereas materialising table-functions as needed
for inversion slowed down the runtime.

REFERENCES
[1] Peter Baumann. 1993. Database Support for Multidimensional Discrete Data. In

SSD (LNCS, Vol. 692). Springer, 191–206.
[2] Peter Baumann, Andreas Dehmel, Paula Furtado, et al. 1998. The Multidimen-

sional Database System RasDaMan. In SIGMOD. ACM Press, 575–577.
[3] Joe B. Buck, NoahWatkins, Jeff LeFevre, Kleoni Ioannidou, et al. 2011. SciHadoop:

array-based query processing in Hadoop. In SC. ACM, 66:1–66:11.
[4] Philippe Cudré-Mauroux, Hideaki Kimura, Kian-Tat Lim, et al. 2009. A Demon-

stration of SciDB: A Science-Oriented DBMS. VLDB 2, 2 (2009), 1534–1537.
[5] Oksana Dolmatova, Nikolaus Augsten, et al. 2020. A Relational Matrix Algebra

and its Implementation in a Column Store. In SIGMOD. ACM, 2573–2587.
[6] Tingjian Ge and Stanley B. Zdonik. 2010. A*-tree: A Structure for Storage and

Modeling of Uncertain Multidimensional Arrays. VLDB 3, 1 (2010), 964–974.
[7] Joseph M. Hellerstein, Christopher Ré, et al. 2012. The MADlib Analytics Library

or MAD Skills, the SQL. PVLDB 5, 12 (2012), 1700–1711.
[8] Nina Hubig, Linnea Passing, et al. 2017. HyPerInsight. In CIKM. ACM, 2467–2470.
[9] Lukas Karnowski et al. 2021. Umbra as a Time Machine. In BTW (LNI). GI.
[10] Sangchul Kim et al. 2016. Selective Scan for Filter Operator of SciDB. In SSDBM.
[11] Kian-Tat Lim, David Maier, J. Becla, et al. 2012. ArrayQL syntax. In XLDB.

http://www.xldb.org/wp-content/uploads/2012/09/ArrayQL-Draft-4.pdf
[12] David Maier, Peter Baumann, et al. 2012. ArrayQL algebra: version 3. In XLDB.

http://www.xldb.org/wp-content/uploads/2012/09/ArrayQL_Algebra_v3+.pdf
[13] Thomas Neumann and Michael J. Freitag. 2020. Umbra. In CIDR.
[14] Josef Schmeißer et al. 2021. B2-Tree. In BTW (LNI). GI.
[15] Maximilian E. Schüle et al. 2017. Monopedia. VLDB 10, 12 (2017), 1921–1924.
[16] Maximilian E. Schüle et al. 2019. In-DatabaseMachine Learning: Gradient Descent

and Tensor Algebra for MMDBS. In BTW (LNI). GI.
[17] Maximilian E. Schüle et al. 2019. ML2SQL. In EDBT. 562–565.
[18] Maximilian E. Schüle et al. 2019. MLearn. In DEEM@SIGMOD. ACM, 7:1–7:4.
[19] Maximilian E. Schüle et al. 2020. ARTful Skyline Computation for In-Memory

Database Systems. In ADBIS (CCIS, Vol. 1259). Springer, 3–12.
[20] Maximilian E. Schüle et al. 2021. In-Database Machine Learning with SQL on

GPUs. In SSDBM. ACM.
[21] Maximilian E. Schüle et al. 2021. TardisDB. In SIGMOD. ACM.
[22] Ying Zhang, Martin L. Kersten, and Stefan Manegold. 2013. SciQL: array data

processing inside an RDBMS. In SIGMOD. ACM, 1049–1052.

4

http://www.xldb.org/wp-content/uploads/2012/09/ArrayQL-Draft-4.pdf
http://www.xldb.org/wp-content/uploads/2012/09/ArrayQL_Algebra_v3+.pdf

	Abstract
	1 Introduction
	2 In-Database Integration
	3 ArrayQL Algebra
	3.1 Rename
	3.2 Function Application
	3.3 Filter
	3.4 Index Manipulation: Shift and Rebox
	3.5 Fill
	3.6 Combining and Joining
	3.7 Reduce for Aggregations

	4 Evaluation
	5 Conclusion
	References

