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Abstract

Nowadays, analytical database systems use highly sophisticated data processing tech-
niques like query compilation or vectorization to evaluate queries on millions of tuples.
In such systems, query runtimes depend on multiple factors like the query execution
plan, the underlying hardware platform, and the operator implementation. Anticipating
all these factors during query optimization is difficult, and finding the optimal imple-
mentation for a query is almost impossible and requires highly accurate cost models
and estimations.

Adaptive Query Processing overcomes these limitations by interleaving query opti-
mization and query execution phases: An initial exploration phase explores different
variations for a query and then chooses the best-performing one to process most of
the data. Numerous optimizations are possible, like reordering joins and predicates or
switching the operators’ implementations while executing them. However, the number
of variations grows with the dynamic optimizations, and compiling all implementations
is prohibitively expensive. We, therefore, propose a different approach that avoids
recompilations entirely. Our Dynamic Blocks technique compiles the query once and
embeds code fragments for all variants into the generated code. When a different
variation is needed, we extract the relevant blocks from the original executable and
assemble a new executable.

Internally our Adaptive Query Processing technique consists of three components:
a code generation framework to provide different variations for a query, an optimized
compiler for lowering the variants to machine code, and a dynamic execution strategy
that chooses the optimal implementation while executing the query. We integrate
these three components into the research database system Umbra and implement three
dynamic optimizations on top that adapt the query plan. Our results show that Adaptive
Query Processing improves execution times in a compiling database system like Umbra
by up to 2x.
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1. Introduction

Over the last decades, the field of database systems has seen some groundbreaking
changes. Hardware trends like the increase of main-memory sizes and the ever-growing
number of execution threads per machine paved the way for the evolution of new data
processing techniques. Nowadays, machines with more than 1 TB of memory and some
hundred execution threads are available and require optimized systems to exploit all
resources. Especially the rise of columnar in-memory database systems has set new
standards for the processing speed of OLAP queries. Highly parallel query execution
engines based on vectorization or just-in-time query compilation process millions of
rows in only a few milliseconds. The disk-based database system Umbra recently
demonstrated that this performance can also be achieved on SSDs in combination with
large in-memory buffers [44].

Yet, from a high-level point of view, the evaluation of queries in relational database
systems has not changed much, and the performed steps date back to System R [52]:

1. The database system first parses the query statement and converts it to an expres-
sion in relational algebra.

2. Then, the query optimizer simplifies and optimizes the algebraic expression using
techniques like predicate pushdown and query unnesting [46]. An essential part
of this step is finding a good join order to avoid sub-optimal query execution
plans [37]. Once the logical query plan is found, the optimizer chooses a physical
implementation for every relational operator in the plan.

3. In the third step, the code generator converts the physical execution plan to
machine code.

4. Finally, the query execution engine evaluates the generated code and returns the
computed result.

Query engines with the interpreter model do not generate code and instead directly
evaluate the physical plan [18].

Modern compiling database systems like Hyper [29], Umbra [44], or NoisePage [2]
use the LLVM compiler [1] for code generation. After optimizing the query, they lower
the physical plan to LLVM’s intermediate representation and compile it. Compared
to interpretation-based systems, compilation increases the query execution speed sig-
nificantly. The generated programs keep data in CPU registers, avoid virtual function
calls, and inline code where possible. Nevertheless, this performance boost has a
prize: compiling database systems need sophisticated code generation frameworks, and
implementing the physical operators becomes more difficult [32].
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1. Introduction

Usually, database systems do not change the query execution plan after the opti-
mization step. However, the plan or the chosen operator implementations might not
be optimal due to optimization mistakes and coarse cost models. Cardinality mis-
estimations, for example, are a well-known problem in query optimization and can
lead to sub-optimal join orders [37]. Different hardware platforms can exhibit diverse
performance characteristics; hence, finding the optimal implementation is challeng-
ing [51]. Therefore, query optimizers apply heuristics to find robust plans that achieve
near-optimal performance for most of the queries.

Adaptive Query Processing can mitigate these problems. The basic idea is to postpone
some of the query optimizer’s decisions and make them at run-time when accurate
statistics and cost information are available. For instance, while executing a query,
it is possible to choose a different implementation for evaluating relational operators
or expressions and change the execution order of filter predicates and joins. Besides
the potential performance improvements, adaptive processing allows the execution
engine to react to the underlying hardware platform and changing characteristics in
the workload. Adaptive Query Processing relaxes the boundary between steps 2 to 4
from the System R model and interleaves the query optimization and query execution
steps. However, especially for compiling query engines, this optimization technique is
challenging as changes to the query execution plan or the operators’ implementation
require recompilations of the generated code.

This thesis proposes a novel query compilation technique that allows to exchange
operator implementations and reorder code fragments without recompilation. Using
this technique, we can generate variations, i.e., different implementations for a query
that compute the same result, at run-time with almost no overhead and with only
minor performance penalties. During execution, these variations are evaluated, and the
best-performing implementation is determined. To demonstrate the practicality of our
technique, we integrated it into the research database system Umbra and developed the
Dynamic Blocks code generation framework for writing adaptive operator implementa-
tions. Furthermore, we implemented three dynamic optimizations and evaluate their
impact on the TPC-H, TPC-DS, star schema (SSB), and join order (JOB) benchmarks.
Our experiments show that Adaptive Query Processing can improve execution time by
up to 2x, although Umbra already achieves class-leading performance.

The rest of the thesis is structured as follows: In Chapters 2 and 3, we explore existing
work on Adaptive Query Processing in database systems and derive the main challenges
for Umbra. Chapter 4 introduces our Dynamic Blocks framework and describes the
implementation of the adaptive operators. We then explain in Chapter 5 how the code
is compiled and the different variations are generated. Chapter 6 shows the changes to
Umbra’s runtime system to execute queries dynamically. In Chapter 7, we evaluate the
benefits of Adaptive Query Processing on the four benchmarks and provide detailed
results. Finally, after discussing some of the design decisions and future work in
Chapter 8, we draw a conclusion in Chapter 9.

2



2. Related Work

Adaptive Query Processing has been around for quite some time and dates back to
the Ingres database system [59]. Its one-variable query processor uses a decomposition
algorithm for evaluating queries. This approach omits the query execution plan entirely
and decides for each tuple individually how to process it. Ingres uses intra-query and
intra-operator adaptivity as it modifies the execution from tuple to tuple in the currently
running query [23]. The terms intra-query and intra-operator adaptivity denote the
frequency a system adapts its execution. While systems with intra-operator adaptivity
re-optimize the execution of an individual operator, intra-query systems use statistics
collected by previous operators to improve the evaluation of subsequent operators.

Inter-query adaptivity uses measurements from previous query executions to optimize
future queries. DB2’s learning optimizer LEO, for example, records the number of
produced tuples per operator to improve cardinality estimations [53]. Similar techniques
were proposed in [3, 9, 10]. For this thesis, we focus on techniques that introduce
adaptivity on an intra-query and intra-operator basis to adapt queries to the data they
process.

Besides the distinction based on the system’s adaption frequency, Babu and Bizarro [5]
differentiate between three different families of systems (a similar taxonomy can be
found in [13]):

1. Plan-based systems re-optimize the query execution plan if the observed behavior
deviates from the estimations. We further distinguish two styles: (a) Mid-query
Re-optimization uses the query optimizer to generate a new (better) plan during
query execution, and (b) Parametric Query Optimization initially builds multiple
optimal plans for different situations and chooses the best plan at run time.

2. Routing-based systems decide for every tuple or batch independently how to
evaluate it and choose different operator implementations or orderings. This
approach avoids re-invocations of the query optimizer, and adaptivity is limited to
a single operator or pipeline.

3. Adaptive processing in continuous query-based systems is similar to plan-based
systems. However, this approach reacts to changing statistics and stream charac-
teristics since the data arrives after optimizing the query.

Although Umbra supports stream processing in the form of continuous views [58], we
focus on Adaptive Query Processing for non-continuous queries and explore only the

3



2. Related Work

first two approaches in more detail. Nevertheless, Grulich et al. showed that many con-
cepts from standard query engines are also applicable in stream processing engines [20].
Their compilation-based engine Grizzly collects fine-grained data characteristics through
instrumentalization and then uses this information to perform data-specific optimiza-
tions.

Plan-based Adaption Graefe and Ward use Parametric Query Optimization to adapt
prepared statements to user variables that affect parameters like selectivities or memory
usage [19]. The optimal plan for such queries depends on the values provided by the
user. Hence, a parametric query is compiled with multiple candidate plans optimal for
different points in the parameter space. The authors use a special choose-plan operator to
embed the different plans into one query execution plan. At run-time, this operator then
selects the best candidate and executes it. Cole and Graefe later refined this method
with dynamic programming to efficiently construct the candidate plans during query
optimization [11]. Hulgeri and Sudarshan developed several algorithms for finding the
parametric optimal set of plans, i.e., a set of candidate plans that are optimal for all
points in the parameter space [24, 25].

Plan Bouquets adopt this idea and use parametric queries for “Query Processing
without Selectivity Estimation” [15]. The selectivities of the base table predicates are
used as parameter space, and a small “bouquet” of candidate plans is identified from
the set of optimal plans. This bouquet is then iteratively executed until a robust plan is
found. A major drawback of this optimization technique is the expensive analysis for
constructing the optimal set of plans as the search space grows exponentially with the
number of parameters (curse of dimensionality) [14].

Progressive Parametric Query Optimization reduces the optimization costs by progres-
sively identifying the candidate plans in multiple executions of the same query [7]. The
candidate plans are cached, and the optimizer is only called if no good plan for the
given parameters exists. As a result, progressive optimization amortizes the costs for
constructing the parametric optimal set of plans and considers only the relevant part of
the parameter space.

Mid-query Re-optimization follows a different approach. Instead of preparing or caching
multiple plans for the same query, this technique adapts the query execution plan at
run-time. Kabra and DeWitt proposed re-optimization in [27]. They add artificial
statistics-collectors operators to the query execution plan that gather data distribution
and intermediate result sizes. During query execution, these operators compute new
estimates for the query optimizer that re-optimizes the remaining plan. The optimizer is
only called again if the initial estimates differ significantly from the gathered statistics to
minimize the overhead of re-optimization. Furthermore, statistics-collectors are inserted
at key points in the query execution plan with high inaccuracy potential and substantial
impact on execution time.

4



Ng et al. apply re-optimization to a distributed query processing engine [47]. Besides
query characteristics, they also capture statistics on the execution environment, like
machine load or resource availability, and consider both factors for finding the optimal
query execution plan and machine assignment. Similarly, the Tukwila system generates
a partial query execution plan and, after executing it, continues optimizing the query
with precise statistics from the intermediate results [26]. Hence, this approach fully
interleaves the planning and execution phases. In addition, Tukwila also incorporates
techniques from routing-based systems to achieve intra-operator adaptivity.

Markl et al. introduced the concept of Progressive Query Optimization [40]. They insert
checkpoint operators into the query execution plan that count the number of tuples
produced by the previous operator and compare it to precomputed validity ranges. If the
number of tuples is outside of this range, the plan is re-optimized. The validity ranges are
chosen such that a re-optimization will produce a different plan, and re-optimization is
only triggered if beneficial. Unlike mid-query re-optimization, progressive optimization
can interrupt the execution of an operator, and partial intermediate results must be
discarded. Proactive Re-optimization avoids the loss of intermediate results and minimizes
the number of re-optimizations using switchable and robust plans [6]. A robust plan
is near to optimal most of the time, and a switchable plan contains a set of candidate
plans that are interchangeable without losing incomplete intermediate results.

In the last decade, the effectiveness of Mid-Query Re-optimization has been demon-
strated in several systems. For instance, Neumann and Galindo-Legaria implemented
an incremental execution framework in SQL Server [45]. Their approach identifies
sub-plans with the potential to change the query execution plan in case of misesti-
mations. At run-time, the sub-plans with the highest uncertainty are executed first,
and if the cardinality estimation changes, the plan is re-optimized. Recently, Perron
et al. implemented mid-query re-optimization on top of PostgreSQL [48]. They extract
sub-queries with high estimations errors into temporary tables and materialize the result
before re-optimizing and executing the remainder of the query.

Routing-based Adaption Tuple-routing systems insert special, adaptive operators into
the query execution plan to perform Adaptive Query Processing. This technique avoids
multiple invocations of the query optimizer and delegates the decision of how to process
the tuples to the runtime system. Additionally, tuple-routing supports full intra-operator
adaptivity, where each tuple can be executed differently (cf. the decomposition algorithm
in Ingres [59]).

Avnur and Hellerstein proposed the adaptive eddy operator to change the execution
order of operators [4]. It discovers the optimal order in which to evaluate the operators
while executing them and adaptively re-routes the tuples. As the routing decision is
made on a per-tuple basis, the eddy operator can correct misestimation and react to
changing data distributions. This approach works well for database operators that can
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be pipelined, but it is not suited for blocking operators like aggregating or sorting data.
The eddy operator was successfully adopted in several systems and has been the

center of further research for routing-based systems [14]. Tian and DeWitt implemented
and evaluated the operator in a distributed stream processing engine [56]. State Modules
(SteMs) allow to choose access methods and join algorithms at run-time and increase
the adaptivity for joins in combination with the eddy operator [49]. The STAIR operator
“lifts the burden of history” [12] from the eddy operator by mitigating the effects of
routing mistakes. Li et al. follow a similar approach as the eddy operator and reorder
index nested-loop joins in a pipelined query execution plan [39].

In the last two decades, the execution model of modern high-performance database
systems has shifted from Volcano-style iteration [18] with tuple-at-a-time processing
to vectorized execution or compilation-based query engines [31]. This paradigm shift
has made it more difficult to hide the performance overhead of routing-based adaption.
Nevertheless, Răducanu et al. and Menon et al. demonstrated the practicability of
tuple-routing in combination with vectorization by reducing the adaption frequency
from a per-tuple basis to vectors or blocks with thousands of tuples [51, 42]. Zeuch
et al. investigated the possibility of using the CPU’s performance monitoring unit for
low-overhead statistics collection in a compiling database system [60]. Their prototype
records hardware counters like the number of cache misses and branch mispredictions
to find the optimal execution order for base table predicates. However, their approach
does not consider the compilation overhead, which can be a significant bottleneck in a
compiling database system, as shown by Kersten [30].
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3. Adaptive Query Processing

The goal of this thesis is the implementation of a generic and adaptive tuple-routing
framework in the compiling database system Umbra [44]. Before looking into our solu-
tion, we briefly investigate how other state-of-the-art OLAP systems have implemented
adaptivity. We consider the three systems Vectorwise [61], HyPer [29], and NoisePage [2],
which all use the routing-based approach with intra-query and intra-operator adaption
frequency. Based on this analysis, we then derive three challenges that need to be solved
to efficiently implement Adaptive Query Processing in a compiling database system
with tuple-oriented query execution.

3.1. Micro Adaptivity in Vectorwise

Vectorwise is a columnar relational database management system with block-oriented
query processing [61]. It is based on MonetDB’s X100 query engine that performs
vector-at-a-time processing in Volcano-like execution pipelines. Relational operators
process vectors with hundreds of tuples instead of a single tuple and parallelize the
execution using SIMD instructions. Complex operations, like hash table lookups or
evaluating expressions, are broken down into low-level computations, so-called primitive
functions, that perform basic computational actions. Each primitive consumes one or
more vectors and produces a new vector with the result. The database system has
hundreds of such primitive functions to perform various operations on different data
types [8].

Răducanu et al. [51] noted that Vectorwise spends more than 90 % of the time pro-
cessing a query in primitive functions. Therefore, the primitives offer the potential for
further performance improvements. For example, a primitive that filters tuples can
either be implemented in a branch-free or branching way. While the branch-free version
provides stable performance independent of the selectivity of the filter predicate, the
cost of the branching version varies. If the predicate has a very high or low selectivity,
branching is almost twice as fast as the branch-free version; otherwise, it is significantly
slower due to branch mispredictions.

Ideally, a query optimizer would decide which version to use, but in reality, this is
not possible due to several reasons. First of all, there is a fine line between speedup and
slowdown for this optimization, and even small misestimations can cause performance
degradations. Secondly, the best-performing implementation for a filter primitive can
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change over time: for the first half of the processed data, the branch-free version might
perform better, while for the second half, branching is optimal. Lastly, the effects of the
underlying hardware platform on the performance are difficult to predict and depend
on various CPU characteristics like the microarchitecture, cache sizes, branch predictor,
and hardware prefetcher. All these factors make it impossible to develop a universal
cost model that reliably chooses the best implementation.

The authors, therefore, propose a different approach: Micro Adaptivity chooses the
optimal implementation for a primitive function dynamically while executing it. For
each primitive function, Vectorwise compiles multiple different versions and regularly
evaluates these variations. Once the best-performing version is found, it is executed
for a thousand vectors, and after that, exploration begins again. Vectorwise measures
the performance of a variation through the number of cycles spent in the primitive.
Since the primitives are called once for every vector, the function call overhead can be
neglected. The entire problem of finding the optimal version of a primitive function
can be modeled as a multi-armed bandit problem. For this problem, several solutions
exist, like the ε-greedy strategy [57] or Thompson sampling [55]. However, the authors
preferred their solution over existing algorithms as it reacts better to changing data
distributions and performed best in their benchmarks.

Besides the filter predicate improvement, Răducanu et al. implemented additional
optimizations for the Micro Adaptivity framework. They compile the primitives with
different compilers (gcc, icc, and clang) and use optimization techniques like loop fission
and loop unrolling. Although all compilers generate machine code that performs the
same computation, the actual implementations differ widely and can have a significant
impact on the overall performance. They saw no clear winner and therefore decided
to adaptively switch between different compilers. Loop fission and loop unrolling can
reduce the data dependencies in the CPU’s execution pipeline, but the benefits of this
optimization once again are highly unpredictable.

Although Micro Adaptivity does not adapt execution on a per-tuple basis, it can be
classified as tuple-routing adaptivity with intra-operator frequency. Unlike previous
approaches, Vectorwise implements Adaptive Query Processing deep inside the runtime
system and invisible to the query optimizer. This design decision limits the possible
optimizations to the low-level primitive functions and their implementation. In particular,
join or predicate reordering, as we have seen with the eddy operator [4], is not possible.
Nevertheless, Micro Adaptivity improves query performance for the TPC-H benchmark
by almost 10 % and makes query processing more robust to data skew.

3.2. Adaptive Execution in HyPer

HyPer uses a different approach than Vectorwise; instead of vector-at-a-time processing,
it compiles the query plan to machine code and executes the generated instructions
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on the data in a tuple-at-a-time fashion [29]. Unlike other compiling database systems
such as Amazon Redshift [21] or Apache Spark [16], HyPer uses the LLVM compilation
framework [1] for generating optimized machine code. Neumann proposed data-centric
query compilation and compiles query plans to LLVM’s intermediate representation [43].

While LLVM generates highly optimized machine code, it has one major drawback:
compilation usually takes between 10 ms and 1 s. Especially for queries that touch only
a few thousand tuples, long compilation times are problematic. Compiling the query
will dominate the overall runtime as query processing finishes after a few milliseconds.
This kind of query is not uncommon for administrative tasks that only read small
metadata tables. Additionally, compilation happens single-threaded, and in a system
with dozens or even hundreds of threads, only one thread is busy while the others are
idle. Hence, upfront compilation became a bottleneck in HyPer, and a solution was
needed to improve query latencies.

Kohn et al. [33] propose Adaptive Execution to solve this problem. They generate
machine code only for long-running queries where the compilation pays off. For short
queries, a bytecode interpreter for LLVM IR executes the query immediately. Of course,
interpretation is significantly slower than executing machine code, but long compilation
times that dominate the runtime are avoided. The interpreter also solves the problem of
idle threads during the upfront compilation. While the query is compiled with LLVM,
HyPer starts processing the first tuples with the bytecode interpreter, and once the
compilation finishes, it switches to the faster, generated code.

Furthermore, Adaptive Execution supports two different compilation modes for LLVM.
Unoptimized compilation uses fast instruction selection, and no optimization passes to
compile the code as fast as possible. Optimized compilation applies multiple LLVM
optimization passes, and compiling is roughly one order of magnitude slower than
with the unoptimized configuration. HyPer adaptively chooses the compilation mode
depending on the estimated runtime and thereby reacts to the size of the processed data.
Overall, Adaptive Execution improves end-to-end runtimes for TPC-H at scale factor
0.01 by almost two orders of magnitude and reduces query latencies significantly in
HyPer.

Adaptive Execution in Hyper solves a unique problem to compiling database systems.
Nevertheless, this technique shares the characteristics of Adaptive Query Processing.
As for Vectorwise, we classify this approach as intra-operator adaptivity using tuple-
routing, but as before, adaption happens not on a per-tuple basis but for blocks with a
few thousand tuples. However, Adaptive Execution is even more limited than Micro
Adaptivity. HyPer always executes the same operations but in different optimization
stages, and changes to the query execution plan like reordering joins or predicates are
not possible. In addition, the Adaptive Execution framework decides at run-time only
whether the query should be compiled or not. Once this decision is made, HyPer waits
for LLVM to finish compiling and immediately switches to generated machine code.
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3.3. Permutable Compiled Queries in NoisePage

Recently, Menon et al. [42] implemented Adaptive Query Processing in the in-memory
research database system NoisePage [2]. Their approach provides comparable function-
ality as the eddy operator [4]. NoisePage combines vectorized execution and compilation
using Relaxed Operator Fusion [41]: Long execution pipelines are split into smaller frag-
ments that materialize their results in tuple buffers. NoisePage also uses the LLVM
compilation framework for compiling the query plans and enables the compiler’s auto-
vectorization optimizations to generate vectorized code. Like Vectorwise, NoisePage’s
operators process batches of tuples (unlike HyPer, which evaluates operators for one
tuple at a time).

Adaptive Query Processing in a compiling database system faces a new problem:
compiling a function multiple times is just too expensive. For example, when changing
the execution order of three filter predicates, the query must be compiled six times.
Menon et al. introduced Permutable Compiled Queries to solve this problem. Instead
of inlining the three predicates, NoisePage generates one function per predicate that
is called from the query. The order in which the functions are called is not fixed but
determined during execution: NoisePage stores pointers to the predicate functions
in an array and rearranges them before executing the generated code for a batch of
tuples. Reordering the function pointers avoids recompiling the code, and batch-oriented
processing hides the function call overhead as an entire batch of tuples is passed to the
function.

Besides predicate reordering, NoisePage can also change the order in which the hash
tables are probed in a right-deep query plan. This optimization allows adapting the
join order between consecutive hash joins at run-time and reacting to join selectivity
misestimations. Furthermore, Menon et al. implemented a “hot set” for aggregations
that stores a few heavy-hitter group-by keys. When processing a tuple, NoisePage
first checks the set for the key. If the key is in the set, the aggregation is performed
in-place; otherwise, a larger hash table that contains all group-by keys is used. Adaptive
Query Processing decides whether to use the hot set and which keys to store in it at
run-time. NoisePage uses its Permutable Compiled Query technique with arrays of
function pointers for adaptive joins and aggregations to avoid recompilations.

Menon et al. profile the generated code in constant intervals and choose the optimal
execution strategy based on the collected statistics. NoisePage collects both the selectivity
and the cost of evaluating each join or predicate. The optimal execution order is
computed based on the rank of the predicates/joins. For the adaptive aggregation,
NoisePage tracks the number of distinct keys using HyperLogLog counters. If there are
only a few distinct keys, the hot set is used.

The Permutable Compiled Query technique provides full support for routing-based
Adaptive Query Processing. It is extensible and allows to express query plan changes
and low-level optimizations. The results reported by Menon et al. are also promising.
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For TPC-H and the star schema benchmark, they observe up to 71 % speedup.

3.4. Challenges for Compiling Database Systems

Like its predecessor HyPer, Umbra is a compiling database system with tuple-at-a-time
query processing. It also supports Adaptive Execution to reduce query latencies [32],
but full routing-based adaptivity as in Vectorwise or NoisePage is missing. Since Umbra
does not use batch-based execution, neither Micro Adaptivity nor the Permutable
Compiled Queries technique work out of the box, and a new solution is needed. For
Umbra, we identified the following three challenges that need to be solved to implement
Adaptive Query Processing efficiently.

1. As for NoisePage, compiling a query multiple times in Umbra is too expensive.
Ideally, we compile the query only once and generate different variations. However,
Umbra processes one tuple at a time; hence, hiding the function call overhead is
not possible, and the Permutable Compiled Queries approach cannot be used.

2. Umbra’s Adaptive Query Processing framework must be expressive enough to per-
form high-level plan changes, and low-level optimizations like switching between
branch-free and branching filter implementations and reordering joins.

3. Furthermore, Umbra already achieves unprecedented performance on standard
benchmarks due to its highly optimized execution engine and state-of-the-art
query optimizer [44]. Adaptive Query Processing should not reduce the quality
of the generated code, and the runtime overhead of exploring different variations
must be minimized.

To solve these challenges, we propose three extensions to Umbra’s code generation and
query execution framework. Our Dynamic Blocks code generation framework is generic
and flexible while avoiding recompilations and code duplications. In combination with
an optimized compiler and a Dynamic Execution strategy, Adaptive Query Processing
is also possible in Umbra. We demonstrate the effectiveness of these three components
and their performance throughout this thesis using several benchmarks.
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In order to implement Adaptive Query Processing in the compiling database system
Umbra, we, first of all, need a way to provide different implementations for relational
operators during code generation. Using our Dynamic Blocks code generation frame-
work, which we present in this chapter, developers can adapt pipelines by reordering or
exchanging the generated code. Furthermore, we discuss the limitations of our frame-
work and its integration into Umbra’s intermediate representation. Finally, we explore
the application of dynamic blocks in Umbra to adaptively optimize the evaluation of
predicates, joins, and aggregations. Throughout this chapter, we use the queries Q2 (cf.
Figure 4.1) and Q12 (cf. Figure 4.2) from the TPC-H benchmark for illustration.

4.1. Recap: Query Compilation in Umbra

Before looking into our new Dynamic Blocks framework, we briefly revisit Umbra’s
existing Tidy Tuples code generation framework [32]. Like its predecessor HyPer [29],
Umbra uses the produce/consume paradigm proposed by Neumann [43] for data-centric
compilation. The model produces highly efficient code by generating tight loops and
minimizing the materialization points. Unlike the iterator model [18] or the vectorization
model [8], where each operator recursively pulls the next tuple or vector of tuples from
its input, in Umbra, each operator pushes the tuples into its parent.

The produce/consume model pushes tuples up the query tree until the next pipeline
breaker. An operator breaks the pipeline if it materializes the incoming tuples in memory,
e.g., when sorting the tuples, building a hashtable for a join, or aggregating values. In
Umbra, a pipeline consists of an initial scan over the incoming tuples (either a base
table or another pipeline breaker), the non-breaking operators in between, and the final
pipeline breaker. Figure 4.2b shows the query plans and pipelines for TPC-H Q12. The
query has three pipeline breakers that materialize tuples: the build side of the hash join
to construct the hash table, the group by operator that aggregates all incoming tuples,
and the final sort operation. Naturally, this results in four pipelines that are executed
sequentially. First, we scan the lineitem table and build the hash table for the join
(green pipeline). The blue pipeline then iterates over the orders table and probes the
hash table. Tuples with a join partner are inserted into a second table for the aggregation.
In the last two pipelines, Umbra sorts the remaining values and returns them to the
user.
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1 with eurosupp as (
2 select s.*
3 from supplier s, nation, region
4 where s.s_nationkey = n_nationkey
5 and n_regionkey = r_regionkey
6 and r_name = ’EUROPE’)
7 select s_acctbal, s_name, n_name,
8 p_partkey, p_mfgr, s_address,
9 s_phone, s_comment
10 from part, eurosupp, partsupp,
11 where p_partkey = ps_partkey
12 and s_suppkey = ps_suppkey
13 and p_size = 15
14 and p_type like ’%BRASS’
15 and ps_supplycost = (
16 select min(ps_supplycost)
17 from partsupp, eurosupp
18 where p_partkey = ps_partkey
19 and s_suppkey = ps_suppkey)
20 order by s_acctbal desc, n_name,
21 s_name, p_partkey
22 limit 100;

(a) SQL code for the query

sort

HJ

eurosupp INLJ

partsuppΓ

HJ

HJ

eurosupp partsupp

σ

part

Pipeline 1

Pipeline 2 Pipeline 3

Pipeline 4 Pipeline 5

Pipeline 6

(b) Umbra’s query execution plan

Figure 4.1.: TPC-H Q2 (we extracted the common subtree expression eurosupp)

1 select l_shipmode,
2 sum(...) as high_line_count,
3 sum(...) as low_line_count
4 from orders, lineitem
5 where o_orderkey = l_orderkey
6 and l_shipmode in (’MAIL’, ’SHIP’)
7 and l_commitdate < l_receiptdate
8 and l_shipdate < l_commitdate
9 and l_receiptdate between ’1994-01-01’
10 and ’1995-01-01’
11 group by l_shipmode
12 order by l_shipmode;

(a) SQL code for the query

sort

Γ

HJ

ordersσ

lineitem

Pipeline 1 Pipeline 2

Pipeline 3

Pipeline 4

(b) Umbra’s query execution plan

Figure 4.2.: TPC-H Q12
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4.1. Recap: Query Compilation in Umbra

For every pipeline, Umbra generates a function in its custom intermediate representa-
tion (IR) and later compiles them to machine code. Umbra’s IR is strongly influenced
by LLVM’s intermediate representation [35] and can be described as a subset with
database-specific extensions. Several aspects are identical, including the use of the static
single assignment (SSA) form [50] and dividing the program into basic blocks based on
terminating instructions (e.g., branches or returns). In the SSA form, every value in the
IR program is assigned a value at its definition, and changing a value after creation is not
possible; instead, a new value must be defined. The φ nodes allow expressing complex
data flow in the program. When placed at the beginning of a basic block, a φ instruction
can select a value depending on the last executed basic block. We need this instruction
to implement control-flow statements like for loops in the SSA form. Especially the
SSA form and φ nodes simplify lifetime analysis and facilitate optimizations such as
constant propagation or dead code elimination.

Umbra generates instructions according to the produce/consume paradigm. The Tidy
Tuples framework provides a translator for every physical operator that implements
the consume function. The compilation starts at the bottom of a pipeline (the scan
of the base table/pipeline breaker), generates code for iterating the incoming tuples,
and passes a virtual representation of the produced tuple to the translator of the next
operator. This representation contains all necessary information to access the tuple’s
columns and allows the translator to compile the next operation. Umbra recursively
compiles the pipeline up to the breaking operator, which instead of pushing the tuples
to the next operator, materializes them. Figure 4.3a illustrates this: the table scan on
lineitem generates the for loop and if statements in lines 1 to 10 and 13. The hash
join translator then produces the code for building the hash table (line 12). Depending
on the side of the incoming tuple, the translator provides different implementations for
consuming the tuples.

After compiling the query plan to the intermediate representation, Umbra lowers
the generated pipelines to machine code using one of its backends. Each pipeline
compiles to a function that is later called during query execution. On x86-64 machines,
Umbra usually employs two backends: the Flying Start compiler directly emits assembly
instructions, and an LLVM-based backend translates Umbra IR to LLVM IR and then
compiles it using LLVM [32]. While the first backend achieves very low compilation
times at the cost of less optimized code, the LLVM-based approach uses multiple
optimization passes to produce fast programs. These two backends are combined using
Adaptive Execution [33, 34], which first compiles all functions using the Flying Start
compiler and while processing the first tuples employs LLVM to generate optimized
code for the long-running pipelines.

Morsel-driven execution [36] is used to parallelize the evaluation of pipelines. Besides
the code for the pipelines, Umbra also generates functions for initializing, merging, and
cleaning up each pipeline. However, since these auxiliary functions are called only a few
times and have only a minor impact on the overall performance, we focus on optimizing
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1 for l in lineitem:
2 if not l_receiptdate between
3 ’1994-01-01’ and ’1995-01-01’:
4 continue
5 if not l_shipmode in (’MAIL’, ’SHIP’):
6 continue
7 if not l_commitdate < l_receiptdate:
8 continue
9 if not l_shipdate < l_commitdate:
10 continue
11

12 hashtable.put(l)
13 done

TableScan Translator

HashJoin Translator

TableScan Translator

(a) Variation produced by Umbra

1 for l in lineitem:
2 if not l_receiptdate between
3 ’1994-01-01’ and ’1995-01-01’:
4 continue
5 if not l_commitdate < l_receiptdate:
6 continue
7 if not l_shipdate < l_commitdate:
8 continue
9 if not l_shipmode in (’MAIL’, ’SHIP’):
10 continue
11

12 hashtable.put(l)
13 done

(b) Variation with optimal predicate ordering

1 for l in lineitem:
2 if not (
3 l_shipmode in (’MAIL’, ’SHIP’)
4 and l_commitdate < l_receiptdate
5 and l_shipdate < l_commitdate
6 and l_receiptdate between
7 ’1994-01-01’ and ’1995-01-01’):
8 continue
9

10 hashtable.put(l)
11 done

(c) Variation with predication

Figure 4.3.: Different variations for evaluating pipeline 1 of TPC-H Q12 (cf. Figure 4.2).

1 for ps in partsupp:
2 for es in eurosupp[ps_suppkey]:
3 for p in part[ps_partkey]:
4 aggregate(ps ◦ es ◦ p)
5 done
6 done
7 done

(a) Variation produced by Umbra

1 for ps in partsupp:
2 for p in part[ps_partkey]:
3 for es in eurosupp[ps_suppkey]:
4 aggregate(ps ◦ es ◦ p)
5 done
6 done
7 done

(b) Variation with optimal join ordering

Figure 4.4.: Different variations for evaluating pipeline 3 of TPC-H Q2 (cf. Figure 4.1).
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the pipelines’ primary functions.

4.2. Dynamic Blocks Framework

We now extend Umbra’s Tidy Tuple framework with our Dynamic Blocks framework for
Adaptive Query Processing. Each dynamic block consists of code fragments/variants
that can be reordered or exchanged. Doing so produces several different variations
of the same pipeline. We demonstrate the dynamic blocks’ functionality using two
examples:

1. For TPC-H Q2, we change the execution order of the two hash joins in the third
pipeline (cf. Figure 4.1b). Figure 4.4 shows the possible implementations for the
pipeline.

2. For TPC-H Q12, we provide two different variants for evaluating the restrictions
on the lineitem table: a single-branch implementation that first evaluates the
entire condition and then branches, and a multi-branch variant, that evaluates
each predicate individually and immediately branches. For the multi-branch
implementation, we also adapt the order in which the four predicates are tested.

Especially for Q12, several variations of the original pipeline are possible. One
variation with a single branch (cf. Figure 4.3c) and 24 combinations for ordering the
four predicates (for instance, Figures 4.3a and 4.3b). However, generating code for all
25 variations is expensive and incurs a substantial overhead during query compilation.
Furthermore, the variations share identical code fragments for iterating the lineitem

table and building the hash table. So instead of generating multiple versions of the same
pipeline, we place the code fragments that are exchanged or reordered in dynamic blocks
and embed them into a single function generated for the pipeline. Hence, our Dynamic
Blocks framework avoids duplication and recompilation during code generation.

We provide three different dynamic block types with different semantics that deter-
mine how to construct the pipeline’s variations from the contained fragments. We will
later use the Flying Start compiler to generate optimized machine code for the dynamic
blocks. Figure 4.5 illustrates the semantics of the available block types.

Alternative Blocks The first dynamic block type (cf. Figure 4.5a) chooses between
several alternative implementations. For n variants in the alternative block, it is possible
to generate n variations of the function. We use this block in Figure 4.6a for Q12 to
represent the single-branch variant (green box) and the multi-branch variants (orange
box) in the same function.
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Alternative

Variant 1 Variant 2 Variant 3

(a) Alternative block

Optional

Variant 1

(b) Optional block

Reorder

Variant 1
Variant 2

(c) Reorder block

Figure 4.5.: Illustration of the dynamic blocks’ effect on the control flow.

Optional Blocks The optional blocks can be used to enable/disable code fragments
adaptively. Although it is possible to represent the block as an alternative block with an
empty variant, we introduced a new block type that later allows for more optimizations.

Reorder Blocks For changing the evaluation order of joins or predicates, we provide
the reorder blocks. As shown in Figure 4.5c, this block type can execute its variants in
arbitrary order, resulting in n! variations of the function. Both queries, Q2 and Q12, use
the block for changing the code’s evaluation order. For Q2, we use the reorder block to
swap the two inner for loops in Figure 4.6b. Q12 places each predicate into a variant
and, thereby, captures all 24 combinations.

The code in Figure 4.6a shows another important feature of our framework: dynamic
blocks can be nested arbitrarily deep. In the case of Q12, we reorder the predicates
only if the alternative block chooses the second variant. Hence, the combination of the
alternative and reorder block produces the 25 variations mentioned above. Furthermore,
it is possible to place multiple dynamic blocks in a pipeline that are independent of each
other.

For Q2, we need two reorder blocks to change the evaluation order of the join (cf.
Figure 4.6b). The first dynamic block swaps the headers of the two inner for loops, and
the second block reorders the loop tails in lines 5 and 6. However, this implementation
can produce incorrect programs. If we reorder only one of the two dynamic blocks,
the loop headers and tails do not match anymore. Therefore, we need a mechanism
to link dynamic blocks together and allow only valid combinations. When reordering
the two loops in our example, we have to move the two code fragments containing the
loop header and tail for the first variant inside the second variant. So both the two for

loops and the done statements switch places resulting in Figure 4.6c. In Section 4.4, we
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1 for l in lineitem:

2 if not (
3 l_shipmode in (’MAIL’, ’SHIP’)
4 and l_commitdate < l_receiptdate
5 and l_shipdate < l_commitdate
6 and l_receiptdate between
7 ’1994-01-01’ and ’1995-01-01’):
8 continue

9 if not l_receiptdate between
10 ’1994-01-01’ and ’1995-01-01’:
11 continue

12 if not l_shipmode in (’MAIL’, ’SHIP’):
13 continue

14 if not l_commitdate < l_receiptdate:
15 continue

16 if not l_shipdate < l_commitdate:
17 continue
18
19 hashtable.put(l)
20 done

Alternative Block Variant 1

Variant 2

Reorder Block Variant 1

Variant 2

Variant 3

Variant 4

(a) Pipeline 1 from Q12 with dynamic blocks

1 for ps in partsupp:

2 for es in eurosupp[ps_suppkey]:

3 for p in part[ps_partkey]:
4 aggregate(ps ◦ es ◦ p)

5 done
6 done
7 done

Reorder Block Variant 1

Variant 2

Reorder Block Variant 2

Variant 1

(b) Pipeline 3 from Q2 with dynamic
blocks

1 for ps in partsupp:

3 for p in part[ps_partkey]:

2 for es in eurosupp[ps_suppkey]:
4 aggregate(ps ◦ es ◦ p)

6 done
5 done
7 done

Reorder Block Variant 2

Variant 1

Reorder Block Variant 1

Variant 2

(c) Pipeline 3 from Q2 with dynamic
blocks (reordered)

Figure 4.6.: Pipeline implementations for TPC-H Q2 and Q12 (cf. Figures 4.3 and 4.3)
in the Dynamic Blocks framework, unifying different variations in one
representation.

describe the integration of our Dynamic Blocks framework and explain how to link
dynamic blocks together.

4.3. Semantics and Limitations

After introducing the three dynamics block types, we now have a closer look at their
semantics and some limitations when using them. Especially two operations are of
interest: reading values assigned in dynamic blocks and how to enter/leave them.

First, we clarify how dynamic blocks are placed in a function. We introduce dynamic
blocks while generating the intermediate representation using our code generation
framework. Apart from appending new instructions to the current function, we offer the
functionality to start a new dynamic block, switch to another variant in this block and
close it again. When starting a new dynamic block or variant, all following instructions
are inserted into the current variant of this block. At this point, we either 1) start another
dynamic block and place it into the current variant, 2) add a new variant to the current
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dynamic block, or 3) close the current dynamic block. When leaving the dynamic block,
we return to the variant in which the block was placed and append new instructions
there.

In general, it is possible to read any value in the program as long as the value is
assigned before reading it according to the control flow. Our dynamic blocks framework
does not change this. It is still possible to read all values even if they were defined in
a dynamic block. However, there is one exception: the control flow between variants
of a dynamic block is not deterministic. Hence, values defined in another variant of
the same dynamic block cannot be read. For instance, in Figure 4.6a, the statements in
the second variant of the alternative block (lines 9 - 17) cannot access values from the
first variant since the two variants are mutually exclusive. Similarly, the variants in the
reorder block cannot read from each other as the execution order can change, and there
is no guarantee that a value is defined before its use. We can only access values when
we know for sure that they have been calculated before according to the control flow.

Outside the alternative block, it is possible to access all values defined before. So
after line 18 in the example, we can read the values from the alternative and reorder
block. Accessing values from alternative or optional blocks requires some caution as it
is unknown at compile-time which variant will be used. Hence, we need a mechanism
to choose values from the currently executed variant of a dynamic block. In Section 4.4,
we propose a simple solution for this problem using the existing φ node mechanism.

Umbra’s IR provides conditional and unconditional branch instructions to jump
between the basic blocks. Usually, these control flow instructions can target any basic
block in the function. However, with dynamic blocks, it is not possible to jump between
variants of the same dynamic block. Furthermore, jumps into a dynamic block are also
not supported to avoid the problem of accessing a code fragment that is not available at
run-time in case of an alternative or optional block. But, jumps from a dynamic block
into the surrounding variant are still possible.

We have not answered how to enter a dynamic block and switch between its variants
yet. In fact, the limitations we just introduced prohibit any control flow into a dynamic
block and between the variants. We, therefore, allow the following exception to this rule:
it is possible to enter a dynamic block or variant via an unconditional branch to the
first basic block. In addition, the source and destination basic blocks must be adjacent
to replace the branch later by a no-op. Similarly, we leave the dynamic block using an
unconditional branch from the last variant to the first basic block after the dynamic
block.

4.4. Integration into Umbra’s IR

The next step is to integrate the dynamic blocks into Umbra’s IR. For this, we solve the
following two problems: first, how to represent the dynamic blocks in the intermediate
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1 ...
2 .11 {type: standard, level: 0, variant: 0, id: 0}:
3 %localTid = phi int64 [%2605, .9 %4380, .13]
4 %2732 = getelementptr int8 %2569, int64 3932160
5 %2754 = load int32 %2732, %localTid
6 %2790 = getelementptr int8 %2569, int64 4194304
7 %2812 = load int32 %2790, %localTid
8 dynbr .16 .15
9

10 .16 {type: alternative, level: 1, variant: 0, id: 0}:
11 %2862 = cmpule int32 2449354, %2812
12 %2886 = cmpule int32 %2812, 2449718
13 %2900 = and bool %2862, %2886
14 %2928 = getelementptr int8 %2569, int64 5505024
15 %2950 = getelementptr data128 %2928, %localTid
16 %2972 = load int64 %2950
17 %2990 = load int64 %2950, int32 1
18 %3012 = trunc int32 %2972
19 %3032 = cmpult int32 12, %3012
20 %3046 = add int64 %2990, %2358
21 %3060 = select int64 %3032, %3046, %2990
22 %3078 = builddata128 data128 %2972 %3060
23 %3120 = call bool probeInTable (%3078, global %0)
24 %3142 = and bool %2900, %3120
25 %3156 = cmpult int32 %2754, %2812
26 %3170 = and bool %3142, %3156
27 %3198 = getelementptr int8 %2569, int64 3670016
28 %3220 = load int32 %3198, %localTid
29 %3242 = cmpult int32 %3220, %2754
30 %3256 = and bool %3170, %3242
31 condbr %3256 .17 .13
32
33 .17 {type: alternative, level: 1, variant: 0, id: 0}:
34 dynbr .18 .15
35

36 .18 {type: alternative, level: 1, variant: 1, id: 0}:
37 dynbr .20 .19
38

39 .20 {type: reorder, level: 2, variant: 0, id: 1}:
40 %3328 = cmpule int32 2449354, %2812
41 %3342 = cmpule int32 %2812, 2449718
42 %3356 = and bool %3328, %3342
43 condbr %3356 .21 .13

Alternative Block Variant 1

Variant 2

Reorder Block Variant 1

44 .21 {type: reorder, level: 2, variant: 0, id: 1}:
45 dynbr .22 .19
46

47 .22 {type: reorder, level: 2, variant: 1, id: 1}:
48 %3410 = getelementptr int8 %2569, int64 5505024
49 %3432 = getelementptr data128 %3410, %localTid
50 %3454 = load int64 %3432
51 %3472 = load int64 %3432, int32 1
52 %3494 = trunc int32 %3454
53 %3504 = cmpult int32 12, %3494
54 %3518 = add int64 %3472, %2358
55 %3532 = select int64 %3504, %3518, %3472
56 %3550 = builddata128 data128 %3454 %3532
57 %3564 = call bool probeInTable (%3550, global %0)
58 condbr %3564 .23 .13
59
60 .23 {type: reorder, level: 2, variant: 1, id: 1}:
61 dynbr .24 .19
62

63 .24 {type: reorder, level: 2, variant: 2, id: 1}:
64 %3626 = cmpult int32 %2754, %2812
65 condbr %3626 .25 .13
66
67 .25 {type: reorder, level: 2, variant: 2, id: 1}:
68 dynbr .26 .19
69

70 .26 {type: reorder, level: 2, variant: 3, id: 1}:
71 %3680 = getelementptr int8 %2569, int64 3670016
72 %3702 = load int32 %3680, %localTid
73 %3724 = cmpult int32 %3702, %2754
74 condbr %3724 .27 .13
75
76 .27 {type: reorder, level: 2, variant: 3, id: 1}:
77 dynbr .19 .19
78
79 .19 {type: alternative, level: 1, variant: 1, id: 0}:
80 dynbr .15 .15
81
82 .15 {type: standard, level: 0, variant: 0, id: 0}:
83 ...

Variant 2

Variant 3

Variant 4

Figure 4.7.: Umbra IR with dynamic blocks for the first pipeline from TPC-H Q12 (cf.
Figure 4.6a).

representation, and second, how to pass values between the blocks. Umbra represents
the generated functions as a list of basic blocks. Each basic block consists of a list of
low-level instructions.

Representation of Dynamic Blocks As for the pseudocode before, we have to assign
the instructions to variants of the dynamic blocks. In our intermediate representation,
however, all instructions in a basic block are executed together. We, therefore, do not
assign single instructions to variants but instead entire basic blocks. With the Dynamic
Blocks framework, a function now consists of blocks where each block is either a basic
block or a dynamic block. Dynamic blocks contain several variants that are again
composed of blocks. This composite pattern results in a tree-like structure when nesting
dynamic blocks.
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4. Variant-Aware Code Generation

Internally, we maintain three lists for the basic blocks, the variants, and the dynamic
blocks. Each basic block has a pointer to the variant it belongs to. This pointer is null if
the block is on the top level, i.e., not inside a dynamic block. The variants also have a
pointer to their parent dynamic block and the first basic block. Besides the pointers, we
give each variant also a number that identifies its position within the dynamic block.
For dynamic blocks, we store the type, the nesting level, the number of variants in the
block, and a pointer to the first variant. Figure 4.7 shows the Umbra IR for evaluating
filter condition in Q12 from Figure 4.6a. We annotate the basic blocks with some of
the internal information for illustration: the dynamic block’s type (type), the dynamic
block’s nesting level (level), the variant number (variant), and the id of the dynamic
block (id).

We provide five helper functions for entering/leaving dynamic blocks and switching
between variants.

• Variant enterDynamicBlock(DynamicBlockType)

• Variant leaveDynamicBlock()

• void restartDynamicBlock(Variant)

• void nextVariant()

• void previousVariant()

These functions automatically start a new basic block, annotate it with the correct
values, and take care of the bookkeeping. The first function also generates a new
variant and dynamic block and sets the pointers. Both the enter and leave functions
return a reference to the first/last variant of the dynamic block, which can later be
used to restart it using restartDynamicBlock and link variants together. This feature
is needed for reordering the joins from TPC-H Q2 in Figure 4.6b. The nextVariant

function increments the variant number to add a new one, and the previousVariant

function decrements the number. If the return value from leaveDynamicBlock is used
for restarting the dynamic block, the variant number is set to the last variant in the
dynamic block. The five helper functions make our Dynamic Blocks framework a very
lightweight extension of the existing Tidy Tuples framework.

Passing Values between Dynamic Blocks As we already noted in Section 4.3, reading
values defined in a variant requires some caution. For alternative and optional blocks, it
is unknown at compile-time which variant will be used. Hence, we need a mechanism
that reads only values from the executed variant. Luckily Umbra’s IR already solves
this problem: φ nodes select a value based on the last executed basic block.

We use the phi instruction to read a value from the used variant. However, to translate
the φ nodes later, the variants must know the subsequent basic block during execution.
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1 UInt32 temp = uint32Ptr.load();
2
3 // Start the alternative block
4 codegen.enterDynamicBlock(alternative);
5 // Get the current basic block and compute
6 auto variant1 = codegen.getCurrentBlock();
7 auto value1 = temp * UInt32(codegen, 2);
8 // Switch to the next variant
9 codegen.nextVariant(alternative);

10 // Get the current basic block and compute
11 auto variant2 = codegen.getCurrentBlock();
12 auto value2 = temp + temp;
13
14 // Leave the alternative block
15 codegen.leaveDynamicBlock(alternative);
16
17 // Build the PHI node
18 auto ret = codegen.buildRawPhi({{variant1, value1},
19 {variant2, value2}});
20 codegen.returnValue(ret);

Variant 1

Variant 2

(a) C++ code for generating the example.

1 .1 {type: standard, level: 0, variant: 0, id: 0}:
2 %temp = load int32 ptr 0x7ffd70abf7b0
3 dynbr .3 .2
4

5 .3 {type: alternative, level: 1, variant: 0, id: 0}:
6 %value1 = mul int32 %temp, 2
7 dynbr .4 .2
8

9 .4 {type: alternative, level: 1, variant: 1, id: 0}:
10 %value2 = add int32 %temp, %temp
11 dynbr .2 .2
12
13 .2 {type: standard, level: 0, variant: 0, id: 0}:
14 %ret = phi int32 [%value1, .3 %value2, .4]
15 return %233

Alternative Block Variant 1

Variant 2

(b) Umbra IR with dynamic blocks for the ex-
ample.

Figure 4.8.: Example for reading values from dynamic blocks: we provide two equivalent
implementations for computing the expression (*uint32Ptr * 2).

Usually, this is not the next basic block but the first block after the dynamic block. In
order to reference this block, we introduce a new dynbr instruction that holds pointers
to both blocks. Figure 4.8 gives a small example of how these two instructions work
together to access values defined in an alternative block. In Figure 4.8a, we provide the
corresponding C++ code that generates the intermediate representation for the example.
We use the dynbr instruction whenever a dynamic block is started or left and when
switching the variants. The five helper functions from above automatically place the
instruction and reference the first basic block outside the dynamic block.

4.5. Applications and Practical Problems

After introducing our Dynamic Blocks framework, we present three applications of
Adaptive Query Processing in Umbra and discuss several design decisions. Inspired
by the adaptive operators in NoisePage [42], we also provide dynamic operator imple-
mentations for predicate evaluation, join ordering, and aggregation. Furthermore, we
describe our new optimizer pass that adds dynamic operators when beneficial.

4.5.1. Dynamic Predicates

In Umbra, three operator types evaluate filter predicates: the select and table scan
operators filter their input and joins evaluate a join condition. As we already showed
for TPC-H Q12, we can dynamically change the execution order of the clauses in the
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4. Variant-Aware Code Generation

62

63 .24 {type: reorder, level: 2, variant: 2, id: 1}:
64 %2732 = getelementptr int8 %2569, int64 3932160
65 %2754 = load int32 %2732, %localTid
66 %3626 = cmpult int32 %2754, %2812
67 condbr %3626 .25 .13
68
69 .25 {type: reorder, level: 2, variant: 2, id: 1}:
70 dynbr .26 .19
71

72 .26 {type: reorder, level: 2, variant: 3, id: 1}:
73 %3680 = getelementptr int8 %2569, int64 3670016
74 %3702 = load int32 %3680, %localTid
75 %3724 = cmpult int32 %3702, %2754
76 condbr %3724 .27 .13
77
78 .27 {type: reorder, level: 2, variant: 3, id: 1}:
79 dynbr .19 .19
80 ...

Variant 3

Variant 4

(a) default implementation

62

63 .26 {type: reorder, level: 2, variant: 3, id: 1}:
64 %3680 = getelementptr int8 %2569, int64 3670016
65 %3702 = load int32 %3680, %localTid
66 %3724 = cmpult int32 %3702, %2754
67 condbr %3724 .27 .13
68
69 .27 {type: reorder, level: 2, variant: 3, id: 1}:
70 dynbr .19 .19
71

72 .24 {type: reorder, level: 2, variant: 2, id: 1}:
73 %2732 = getelementptr int8 %2569, int64 3932160
74 %2754 = load int32 %2732, %localTid
75 %3626 = cmpult int32 %2754, %2812
76 condbr %3626 .25 .13
77
78 .25 {type: reorder, level: 2, variant: 2, id: 1}:
79 dynbr .26 .19
80 ...

Variant 4

Variant 3

(b) reordered

Figure 4.9.: Invalid Umbra IR with dynamic blocks for the two comparisons using
l_commitdate from TPC-H Q12 when caching columns.

condition1.
All three operators represent the condition as a conjunction of terms. A term can

either be an actual comparison or, again, a conjunction/disjunction. However, unlike
NoisePage, Umbra does not convert the condition into the conjunctive or disjunctive
normal form to avoid exponentially growing expressions. Instead, it keeps the original
expression tree and applies several heuristics to simplify it, like flattening nested
conjunctions and disjunctions, eliminating duplicated terms, or extracting common ones.
In order to keep the dynamic implementation as simple as possible and to restrict the
number of variations, we decided to reorder only the terms in the top-level conjunction
of the condition. As all three operators use the same logic to evaluate the expression,
implementing the dynamic predicates requires only minor changes to the existing
codebase.

During implementation, we noted a rather fundamental problem with Umbra’s
caching mechanism: the first time a column is accessed, we cache the loaded value
and reuse it in later accesses. For TPC-H Q12, this happens with l_receiptdate and
l_commitdate. The commit date is cached when evaluating the term l_commitdate

< l_receiptdate, and the second comparison l_shipdate < l_commitdate reuses the
cached value. Figure 4.9 illustrates this problem: When reordering the two terms, the
second comparison in line 66 will try to read a value that is loaded later by the first
comparison in line 74. Hence, when caching the columns on the first access, we generate
an invalid program that reads from another variant in the same dynamic block.

The same happens for the receipt date: the between statement caches the value, and

1Both index-nested loop joins and hash joins evaluate the equi-join condition directly on the index
structure, so for these operators, we only consider the remaining residuals for dynamic execution.
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HJ

HJ

EarlyProbe

HJ

...

...

...

...

1. enterDynamicBlock(ReorderBlock)

2. nextVariant()

3. nextVariant()

4. variant := leaveDynamicBlock() 5. restartDynamicBlock(variant)

6. previousVariant()

7. previousVariant()

8. leaveDynamicBlock()

Reorder Block

Variant 3

Variant 2

Variant 1

Figure 4.10.: Reordering two hash joins and one early probe using dynamic blocks.

the first comparison reads it. There are two solutions to avoid this problem: either
loading the column in every term or caching it in the non-dynamic part of the code.
Both loading the same column twice and caching all accessed columns upfront can
reduce the performance significantly. We, therefore, decided to cache only columns that
are used by more than one term in the conjunction and whereby avoid unnecessary
accesses. In lines 4 to 7 of Figure 4.7, we load l_receiptdate and l_commitdate once
and use them later in both variants of the alternative block.

4.5.2. Dynamic Joins

Another optimization used by the NoisePage system is the adaptive reordering of hash
joins. In Umbra, we reimplement this feature using our Dynamic Blocks framework, as
shown in Figure 4.6b. We can reorder a join under the following conditions:

1. The join must be independent of the previously reordered joins, i.e., it cannot use
columns computed by one of the previous joins.

2. The join must not produce unmatched tuples (outer join) or perform additional
work (left-semi/-anti join), i.e., we only support reordering inner and right-semi
joins.

Besides hash joins, we also support reordering early probes that essentially perform
a right-semi join using a register-blocked bloom filter instead of a hash table. Unlike
some of the approaches in interpreting systems [4, 39], we cannot change the pipeline’s
driving table or switch the build side and the probe side. Hence, we can only change
the order in which we probe the hash tables and bloom filters.
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4. Variant-Aware Code Generation

Figure 4.10 illustrates reordering a chain of two hash joins and one early probe. Since
a dynamic join spans multiple operators in the pipeline, reordering the code fragments
is more challenging: The first translator in the chain of dynamic joins starts the reorder
block. When switching to the next hash join/early probe translator, we start a new
variant. The last translator in the chain leaves the reorder block and remembers the last
variant. After generating the code fragment for the subsequent operators, we return to
the last translator in the chain, restart the reorder block, and finish the hash join. From
here on, we return to the previous translator and its variant until we reach the first
translator in the chain.

As for the dynamic predicates, we also face the problem of cached columns when
reordering joins. Conveniently, we can reuse the same solution as before: columns
accessed by more than one join are cached before entering the dynamic block. We also
considered index-nested loop joins and eager-right groupjoins for reordering. However,
as both join methods tend to process comparatively few tuples, we decided against it.

4.5.3. Dynamic Preaggregation

Umbra uses a thread-local preaggregation phase to optimize the aggregation and exploit
morsel-driven parallelism [36]. As shown in Figure 4.11, each thread has a lookup
table with 1024 slots and 512 output streams for preaggregating values and partitioning
the set of keys. The lookup table stores pointers to the entries in the output stream.
When processing a tuple, the aggregation first computes its hash value, retrieves the
expected hash value and pointer to the last entry in the output stream from the lookup
table, and compares the two hash values. If they are identical, Umbra checks the
actual key from the entry in the output stream, and in case of a match, it updates the
aggregates; otherwise, a new entry is appended to the output stream, and the lookup
table is updated. After adding all tuples to the output streams, Umbra merges the
streams and computes the final result. For this step, the operator first shuffles the output
streams to process all streams from the same partition on one thread and then inserts
the preaggregated values into a global hash table.

Since Umbra’s preaggregation lookup table and NoisePage’s hot cache have the same
effect, we looked for other ways to optimize the aggregation. Although Umbra already
uses hardware-optimized hash functions, it is possible to improve this part of the
lookup even further. Especially for very few unique keys using the radix as hash can be
beneficial and for even fewer keys, we can bypass the hash table entirely and always use
the last accessed entry. Figure 4.11 illustrates the two alternative access paths as well.

Besides the standard aggregation (group by), the eager-right groupjoins, and set oper-
ations such as union, intersect (all), and except (all) use our dynamic preaggregation.
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Lookup Table
(1024 slots)

. . .

. . .

. . .
Tuple x

Last Used Entry

Output Streams
(512 streams)

. . .

. . . Entry(h, k, v)

. . .

x.key % 1024

hash(x.key) % 1024

Variant 1

Variant 2

Variant 3

hash(x.key) == h

&& x.key == h

x.key == k

Figure 4.11.: Three alternative access paths for accessing the entries in the output streams
during preaggregation. The first variant is the default access path used by
Umbra.

4.5.4. Dynamic Optimizer

Although our Dynamic Blocks framework is as lightweight as possible, it still introduces
a small overhead during compilation. Hence, using the dynamic operators in every
place possible will do more harm than good. So, we added another optimization pass to
our query optimizer that introduces dynamic operations only in pipelines where we
can expect a performance boost. Umbra uses dynamic operators if the following two
conditions are met:

1. The pipeline should process enough tuples to explore the different variations and
to find the best-performing one.

2. The operator must have a measurable impact on the pipeline’s performance, i.e., it
must process a substantial fraction of the incoming tuples.

Algorithm 4.1 sketches the additional optimizer pass. Our optimizer for dynamic
operators starts at a pipeline breaker, checks if it produces at least 25 thousand tuples
per execution thread, and then traverses the query tree until the next pipeline breaker.
For every operator in the pipeline, we check that it processes at least 1 % of the pipeline’s
incoming tuples and if so, we try to apply our dynamic optimizations. During this
pass, we also compute the hash joins and early probes that can be reordered. Since
a dynamic join can move every hash join or early probe to the front, we update the
estimated number of tuples after the last reordered operator.
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Algorithm 4.1: Optimizer for introducing dynamic operators.
1 input: Operator inOperator, Double inputSize
2 begin
3 # Consider only pipeline breakers that process enough tuples
4 if not inOperator.isPipelineBreaker() or inputSize < 25000 · degreeOfParallelism():
5 return
6

7 # Minimum number of tuples an operator has to process for dynamic execution
8 minTuples← inputSize · 0.01
9 # List of hash joins and early probes that are currently reordered
10 dynamicJoins← []
11

12 op← inOperator
13 estimatedTuples← inputSize
14 # Iterate over the pipeline
15 do
16 if estimatedTuples < minTuples:
17 break
18

19 # Check if the current operator is a join and if we can reorder it
20 if (op.isHashJoin() or op.isEarlyProbe()) and canReorderJoin(dynamicJoins, op):
21 dynamicJoins.append(op)
22 op.markAsDynamicJoin()
23 else:
24 dynamicJoins← []
25 if dynamicJoins.size() == 1:
26 op.child.unmarkDynamicJoin() # Do not reorder a single join
27

28 if op.isTableScan() or op.isSelect() or op.isJoin():
29 # Check if the operator’s conjunction has at least 2 terms
30 if op.condition.size() >= 2:
31 op.useDynamicPredicates()
32

33 # Do not update the number of estimated cardinality when reordering joins
34 if dynamicJoins.empty():
35 estimatedTuples← op.estimateCardinality()
36 op← op.parent
37 while not op.pipelineBreaker
38

39 if dynamicJoins.size() == 1:
40 op.child.unmarkDynamicJoin() # Do not reorder a single join
41

42 # Check if the pipeline breaker can use dynamic preaggregation
43 if estimatedTuples >= minTuples
44 and (op.isGroupBy() or op.isEagerRightGroupJoin() or op.isSetOperation()):
45 op.useDynamicPreaggregation()
46 end
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Our Dynamic Blocks framework allows developers to generate multiple variations of
the same pipeline with almost no overhead. Still, we have to answer the question of how
to generate optimized assembly code for these dynamic queries.

As noted by Menon et al., it is too expensive to generate the code for every variation
from scratch [42]. Although our Flying Start compiler reduces compilation times to a
few milliseconds, compiling dozens or hundreds of variations will still have a notable
impact on the runtime. Instead, we follow the same principle as before for generating the
intermediate representation in the Dynamic Blocks framework: compile the pipeline once
with all variants and use the generated machine code to assemble different variations
later. This approach requires some modification to Umbra’s Flying Start compiler, which
we describe in Section 5.1, and Section 5.2 shows how to assemble the variations.

5.1. Lowering Umbra IR to Machine Code

Umbra provides several backends for compiling the intermediate representation to
machine code. Most notably, the Flying Start compiler introduced by Kersten et al. in [32],
which we also use for lowering the dynamic blocks. Apart from its fast compilation
time, the backend performs basic block placement, liveness computation, and register
allocation in (almost) linear time. After an initial optimization pass that determines the
block order and variables’ lifetimes, the Flying Start compiler emits assembly instructions
in a second pass.

Before discussing how dynamic blocks are compiled, we briefly examine the machine
code generated for our example query TPC-H Q12 (cf. Figure 4.6a). Figure 5.1 shows the
assembly instructions that our variant-aware version of the Flying Start compiler emits
for the first pipeline of the query when reordering the filter predicates. As before, we
generate code fragments for every variant, but this time the fragments do not contain
high-level IR instructions but low-level machine code. The first variant in the alternative
block evaluates all predicates and combines the resulting flags using an and instruction
(cf. lines 37, 40, and 45). The second variant contains code fragments for each predicate.
When examining the code fragments closely, we notice that the variants in the reorder
block do not depend on each other and can also be reordered on the assembly level.
The same applies to the alternative block, we can run any of the two variants, and the
function will still compute the correct result.
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1 ...
2 .11:
3 mov r12, qword ptr [rsp+32] # %localTid
4 mov rbx, qword ptr [rsp+80]
5 mov ebx, dword ptr [rbx+r12*4+3932160] # %2754
6 mov r13, qword ptr [rsp+80]
7 mov r13d, dword ptr [r13+r12*4+4194304] # %2812
8

9 .16:
10 mov eax, 2449354
11 cmp eax, r13d
12 setbe r14b # %2862
13 cmp r13d, 2449718
14 setbe r15b # %2886
15 and r14b, r15b # %2900
16 mov r15, qword ptr [rsp+80]
17 lea r15, byte ptr [r15+5505024] # %2928
18 mov rax, r12
19 shl rax, 4
20 add r15, rax # %2950
21 mov rdi, qword ptr [r15] # %2972
22 mov r15, qword ptr [r15+8] # %2990
23 mov r8d, edi # %3012
24 mov eax, 12
25 cmp eax, r8d
26 setb r9b # %3032
27 mov r8, r15
28 add r8, qword ptr [rsp+48] # %3046
29 cmp r9b, 1
30 cmovnz r8, r15 # %3060
31 mov qword ptr [rsp+144], rdi
32 mov rdi, qword ptr [rsp+144]
33 mov rsi, r8
34 mov rdx, 140066139148240
35 mov rax, 94573980143328
36 call rax # %3120
37 and r14b, al # %3142
38 cmp ebx, r13d
39 setb r15b # %3156
40 and r14b, r15b # %3170
41 mov r15, qword ptr [rsp+80]
42 mov r15d, dword ptr [r15+r12*4+3670016] # %3220
43 cmp r15d, ebx
44 setb r15b # %3242
45 and r14b, r15b # %3256
46 cmp r14b, 1
47 jnz .13
48
49 .17:

50 .18:

Alternative Block Variant 1

Variant 2

49 .17:

50 .18:
51

52 .20:
53 mov eax, 2449354
54 cmp eax, r13d
55 setbe r12b # %3328
56 cmp r13d, 2449718
57 setbe r14b # %3342
58 and r12b, r14b # %3356
59 cmp r12b, 1
60 jnz .13
61
62 .21:

63 .22:
64 mov r12, qword ptr [rsp+80]
65 lea r12, byte ptr [r12+5505024] # %3410
66 mov r14, qword ptr [rsp+32]
67 mov rax, r14
68 shl rax, 4
69 add r12, rax # %3432
70 mov r15, qword ptr [r12] # %3454
71 mov r12, qword ptr [r12+8] # %3472
72 mov edi, r15d # %3494
73 mov eax, 12
74 cmp eax, edi
75 setb r8b # %3504
76 mov rdi, r12
77 add rdi, qword ptr [rsp+48] # %3518
78 cmp r8b, 1
79 cmovnz rdi, r12 # %3532
80 mov qword ptr [rsp+152], rdi
81 mov rdi, r15
82 mov rsi, qword ptr [rsp+152]
83 mov rdx, 140066139148240
84 mov rax, 94573980143328
85 call rax # %3564
86 cmp al, 1
87 jnz .13
88
89 .23:

90 .24:
91 cmp ebx, r13d # %3626
92 jae .13
93
94 .25:

95 .26:
96 mov r14, qword ptr [rsp+32]
97 mov r12, qword ptr [rsp+80]
98 mov r12d, dword ptr [r12+r14*4+3670016] # %3702
99 cmp r12d, ebx # %3724

100 jae .13
101
102 .27:
103
104 .19:
105
106 .15:
107 ...

Variant 2

Reorder Block Variant 1

Variant 2

Variant 3

Variant 4

Figure 5.1.: Machine code with dynamic blocks for the Umbra IR from Figure 4.7 (TPC-H
Q12) generated by the variant-aware version of the Flying Start compiler.
The comments after the assembly instructions denote the IR value computed
by the instruction(s).
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Hence, our version of the Flying Start backend compiles functions with dynamic
blocks so that the dynamic blocks’ semantics still apply to the assembly code, i.e., it is
possible to reorder and exchange fragments of the generated instructions. Of course, the
difficulty now is to emit machine code that computes the expected result and can be
modified later. To do so, we have to solve the following three problems:

1. Umbra’s block placement algorithm optimizes the block order for tight loops. In
particular, it could move basic blocks from a dynamic block to any position in the
program. For assembling the variations later in Section 5.2, we have to avoid this
situation and keep all basic blocks in the variant they belong to.

2. The algorithm for computing the lifetime of IR values (liveness analysis) does
not take dynamic blocks into account. This results in an underestimation of the
lifetime of values in reorder blocks and incorrect register assignments.

3. The register allocation also has to consider dynamic blocks: When switching
between the variants of a dynamic block, we have to restore the register assignment.

5.1.1. Block Placement

The Flying Start compiler implements its own block placement algorithm to generate
tight loops and facilitate range-based liveness analysis. The algorithm is based on a
simple principle: first, identify all loops in the program and then place the blocks that
belong to the same loop one after the other. The challenging part of the algorithm is to
find the loops in linear time. Umbra solves this problem by computing the loop nesting
forest using Tarjan’s algorithm [54]. One should note that the algorithm only works
for programs with a reducible control flow graph [22], i.e., all loops are entered solely
through one basic block, the loop header. The operator implementations ensure that
only natural loops are generated, avoiding irreducible graphs during query compilation.

To facilitate the compilation of dynamic blocks and the later assembling of the
variations, we restrict the block placement as follows. All basic blocks that belong to
the same dynamic block must be placed together. However, this limitation collides with
our initial goal of generating tight loops. For instance, consider the control flow graph
shown in Figure 5.2. The basic blocks 2, 3, 4, 6, and 7 are all part of a loop. Apart from
the loop header and tail, blocks 4 and 6 are also part of a dynamic block. The dynamic
block has an additional third basic block that is not in the loop: block 5. The block
placement algorithm would place the basic blocks of the loop consecutively, and block 5
is moved after the loop’s tail (block 7) and outside of the dynamic block. Hence, the
dynamic block would be split into two parts.

This problem can be solved by modifying the algorithm for identifying the loops. We
introduce a virtual loop for every dynamic block that contains all basic blocks in the
dynamic block and thereby enforce the block placement in dynamic blocks. For the
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Figure 5.2.: Dynamic Block inside of a loop.

given example, the algorithm first generates a virtual loop consisting of blocks 4 to 6 and
then adds this loop with all its basic blocks to the actual loop. The existing placement
algorithm rearranges the basic blocks without splitting the dynamic blocks and places
the blocks 4, 5, and 6 next to each other.

However, this implementation introduces a new limitation: we cannot interleave
dynamic blocks and loops, i.e., loop entry and tail (last block in the loop) must be in
the same dynamic block. Hence, a dynamic block completely encloses a loop, or it is
fully enclosed by a loop, but situations where the loop head is part of a dynamic block
and the tail not (or vice versa) must be avoided. As for the reducible control flow, we
manually ensure that our operator implementations do not interleave dynamic blocks
and loops.

5.1.2. Liveness Analysis

The Flying Start compiler computes the lifetimes of IR values in linear time. As proposed
by Kohn et al., the liveness is not computed per basic block, but instead, the compiler
uses an interval-based approach to avoid quadratic runtime [33]. For every IR value, it
stores the interval where the value must be alive. Usually, the end of the interval is the
last basic block that reads the value, but in some cases, we have to extend the lifetime
beyond this block. Again, consider the control flow graph in Figure 5.2: if a value is
defined in block 1 and last read in block 3, the value’s life range must be extended to
the last block of the loop (block 7). If the interval ends in block 3, a subsequent block in
the loop can override the value’s register, and the value cannot be accessed in the next
iteration of the loop. Therefore, we extend the lifetime of an IR value to the end of the
enclosing loop of the last basic block that reads it.

A similar situation can occur for reorder blocks: take, for example, an IR value defined
before the dynamic block and last read in the first variant. As for loops, the live range
of the value must be extended to the end of the reorder block since the first variant can
be executed after the other variants. Similarly, we also have to consider the situation
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where the value is defined inside a reorder block and last accessed outside the dynamic
block. Here we extend the beginning of the value’s lifetime to the start of the reorder
block. For alternative and optional blocks, the live ranges are not modified as the order
in which the variants are executed remains the same.

5.1.3. Register Assignment

Lastly, we modified the register assignment logic used in the final pass over the in-
termediate representation while emitting the assembly instructions. At the beginning
of the function, we reserve space on the stack for all IR values. Values with disjoint
lifetimes can share stack entries to reduce memory usage and keep them in the L1 cache.
Nonetheless, to achieve good performance, it is not sufficient to keep the values in the
L1 cache; we must also use the CPU’s registers. Umbra’s register assignment algorithm
determines for every IR instruction in which CPU registers the operands are loaded and
where to place the result.

The algorithm partitions the set of CPU registers into three classes. The scratch
registers hold temporary values that are only used by the current IR instruction. In fixed
registers, we store IR values needed in multiple blocks, which cannot be evicted until
the last instruction reads the value. The remaining unfixed registers cache IR values
used by more than one instruction. Values in the unfixed CPU registers are regularly
evicted and must be reloaded from the stack.

The Flying Start compiler emits assembly instruction in a single pass. It starts by
compiling the first basic block of the function and then continues with the next block
in the order determined by the block placement algorithm (cf. Subsection 5.1.1). While
compiling the basic blocks, we track the IR values which are loaded into the registers.
When switching from the current basic block to the subsequent one, most of the time,
we can keep the register assignment intact and reuse IR values loaded before1. However,
for dynamic blocks, we have to modify the register assignment when entering/leaving a
dynamic block or switching between the block’s variants.

For instance, consider the machine code for TPC-H Q12 in Figure 5.1 at line 49 when
switching from the first variant of the alternative block to the second variant. At this
position, the Flying Start compiler has filled the CPU registers with IR values needed
for evaluating the predicates. But, if we now switch to the next variant in the dynamic
block, the cached values cannot be reused since only one code fragment will be executed.
Hence, we must revert the changes made to the register assignment by the first variant
and reset to the state before entering the dynamic block. Similar problems occur for the
optional and the reorder block. The following actions are required for each dynamic
block:

1Some registers must be evicted if multiple blocks can enter the subsequent basic block or the entering
block is not the current block, i.e., the current block ends with a jump instruction.
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Alternative Block: Before entering the dynamic block, we spill all modified registers
and save the current register state. When switching between the variants, we evict
all newly allocated registers, i.e., all IR values loaded from the stack or computed
after entering the alternative block. We also have to clear the unfixed registers
when leaving the dynamic block since the variants could change them. Hence,
only the fixed registers keep their IR values after the alternative block, and the
other CPU registers are empty.

Optional Block: We only have to modify the register assignment for this dynamic
block when leaving the first and only variant. As before, we evict the newly
allocated registers, but this time, we restore the original register state with all
unfixed registers. Compared to the eviction policy for the alternative block, this
approach avoids register movements when the optional block is not used and
prefers the execution path without the dynamic block.

Reorder Block: As there is no fixed order in which the variants are executed, we clear
all unfixed registers before entering the dynamic block. Similarly, when switching
the variant or leaving the dynamic block, we reset the register assignment state so
that only fixed IR values from before the reorder block are available. Hence, at the
start of a variant and after the reorder block, only the fixed IR values are cached in
the CPU registers, and other values must be loaded from the stack.

Despite this more limited register assignment, we still generate highly optimized
assembly code. In our example in Figure 5.1, the registers ebx and r13d hold the IR
values for the l_commitdate and l_receiptdate columns. The two values are loaded
into the CPU registers in block 11. We access them multiple times in both dynamic
blocks, and fixed registers store the values to avoid unnecessary memory loads.

5.2. Rewriting Compiled Queries

With our modifications to the Flying Start compiler, it is possible to compile functions
in Umbra’s intermediate representation with dynamic blocks. The generated assembly
code can still be reordered and exchanged, allowing us to apply the semantics of our
Dynamic Blocks framework also to low-level machine code. The last step is implementing
a mechanism that performs these dynamic changes on generated code fragments and
rewrites the function. Since we might have to assemble several dozens of different
variants, we need a mechanism that is both fast and scales to multiple threads.

5.2.1. Jump-based Approach

Our first idea for implementing this rewriting mechanism was to introduce jump
instructions before entering a dynamic block and between the variants. If we want
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1 ...
2 .11:
3 ...
4 jmp [rbp-328] # {.16, .18}

5 .16:
6 ...
7 .17:
8 jmp .15

9 .18:
10 jmp [rbp-336] # {.20, .22, .24, .26}

11 .20:
12 ...
13 .21:
14 jmp [rbp-344] # {.22, .24, .26, .19}

15 .22:
16 ...
17 .23:
18 jmp [rbp-352] # {.20, .24, .26, .19}

19 .24:
20 ...
21 .25:
22 jmp [rbp-360] # {.20, .22, .26, .19}

23 .26:
24 ...
25 .27:
26 jmp [rbp-368] # {.20, .22, .24, .19}
27
28 .19:
29 jmp .15
30
31 .15:
32 ...

Alternative Block Variant 1

Variant 2

Reorder Block Variant 1

Variant 2

Variant 3

Variant 4

(a) memory-indirect jumps

1 ...
2 .11:
3 ...
4 jmp .18 # {.16, .18}

5 .16:
6 ...
7 .17:
8 jmp .15

9 .18:
10 jmp .20 # {.20, .22, .24, .26}

11 .20:
12 ...
13 .21:
14 jmp .24 # {.22, .24, .26, .19}

15 .22:
16 ...
17 .23:
18 jmp .19 # {.20, .24, .26, .19}

19 .24:
20 ...
21 .25:
22 jmp .26 # {.20, .22, .26, .19}

23 .26:
24 ...
25 .27:
26 jmp .22 # {.20, .22, .24, .19}
27
28 .19:
29 jmp .15
30
31 .15:
32 ...

Alternative Block Variant 1

Variant 2

Reorder Block Variant 1

Variant 2

Variant 3

Variant 4

(b) instruction pointer-relative jumps

Figure 5.3.: Jump-based rewriting for TPC-H Q12. The comments after the jump instruc-
tions list the possible destinations.

to execute a different variant of the code, we simply change the destination of the
jumps and whereby modify the control flow. Figure 5.3a sketches this approach: we use
memory-indirect jumps that load the destination address from the stack to switch or
reorder variants. The alternative block needs one jump before entering the dynamic
block that can either continue execution in the first or second variant. At the end of
the first variant, we placed another jump instruction to skip the second variant. For the
reorder block, we need more indirect jumps: at the entry of the dynamic block and after
every variant. In total, the function needs six memory-indirect jumps to represent all 25
variations. The destination address for each jump is computed upfront and placed in an
array. A pointer to this array is passed to the function as an additional argument, and in
the function’s preamble, we copy this array onto the stack to access the jump addresses
efficiently.

If we want the generate the variation with optimal predicate ordering from Figure 4.3b,
we place the memory addresses of the following blocks in the given order in the array:
[.18, .20, .24, .19, .26, .22]. The jump before the alternative block skips the first
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variant and continues in the second variant at block 18. After that, execution goes on in
block 20 as usual, but at the end of the variant in block 21, we skip the second variant of
the reorder block and jump to the third variant starting at block 24. Variant 3 jumps to
variant 4, and from block 27, we jump back to the second variant to block 22. Lastly,
block 23 leaves the reorder block and goes to block 19.

This approach scales well to multiple execution threads and, apart from generating
the vector of the memory addresses, has no overhead for generating different variations
of the function. By copying the addresses onto the stack, we can use the base pointer
rbp for addressing them and do not reserve an additional register for the pointer to
the array. Furthermore, we align the first instruction in the jump targets to 16 bytes to
facilitate instruction decoding [17]. Nonetheless, memory-indirect jumps can stall the
CPU’s execution pipeline and affect the performance.

We, therefore, propose a second implementation using direct jumps with offsets
relative to the instruction pointer. Instead of loading the destination addresses from
the stack, we patch the offsets in the jump instruction before executing the function.
Figure 5.3b illustrates this approach. As for the memory-indirect approach, we changed
the execution order to the optimal variations. But this time, no memory loads are
required, and the destination is encoded into the instruction. With this approach, we
first compute the destination addresses for the current variation as before and then
replace the old offsets in the executable code with the new ones. However, when
executing different variations on multiple threads in parallel, each thread needs its own
copy of the function that can be modified.

5.2.2. Direct Approach

While the jump-based approach is easy to implement, causes only a small overhead
upfront, and scales well to multiple threads, the additional jumps can cause a significant
overhead while executing the function. For instance, adding a jump instruction to the
third variant in the reorder block of TPC-H Q12 increases the number of instructions for
the variant by 50 %. Furthermore, the jumps interrupt the instruction decoding and put
more pressure on the CPU’s front-end.

Hence, we devised a direct approach for rewriting the function with dynamic blocks
that does not introduce additional jumps. Since we know which code fragments are
executed and their order before calling the function, we can generate optimized code
for each variation. To do this, we first copy the code fragments into a new memory
area using memcpy. Fragments that are not executed are skipped, and the reorder blocks’
variants are already placed in the correct order. After assembling the specialized version
of the function, we perform a second pass to patch instruction pointer-relative offsets in
jump and call instructions.

We examine the quality of the generated machine code for the optimal variation of
TPC-H Q12 in Figure 5.4. The left side shows the code produced by our modified
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1 ...
2 .11:
3 mov r12, qword ptr [rsp+32]
4 mov rbx, qword ptr [rsp+80]
5 mov ebx, dword ptr [rbx+r12*4+3932160]
6 mov r13, qword ptr [rsp+80]
7 mov r13d, dword ptr [r13+r12*4+4194304]
8

9 .18:
10

11 .20:
12 mov eax, 2449354
13 cmp eax, r13d
14 setbe r12b
15 cmp r13d, 2449718
16 setbe r14b
17 and r12b, r14b
18 cmp r12b, 1
19 jnz .13
20
21 .24:
22 cmp ebx, r13d
23 jae .13
24
25 .26:
26 mov r14, qword ptr [rsp+32]
27 mov r12, qword ptr [rsp+80]
28 mov r12d, dword ptr [r12+r14*4+3670016]
29 cmp r12d, ebx
30 jae .13
31
32 .22:
33 mov r12, qword ptr [rsp+80]
34 lea r12, byte ptr [r12+5505024]
35 mov r14, qword ptr [rsp+32]
36 mov rax, r14
37 shl rax, 4
38 add r12, rax
39 mov r15, qword ptr [r12]
40 mov r12, qword ptr [r12+8]
41 mov edi, r15d
42 mov eax, 12
43 cmp eax, edi
44 setb r8b
45 mov rdi, r12
46 add rdi, qword ptr [rsp+48]
47 cmp r8b, 1
48 cmovnz rdi, r12
49 mov qword ptr [rsp+152], rdi
50 mov rdi, r15
51 mov rsi, qword ptr [rsp+152]
52 mov rdx, 139988395511760
53 mov rax, 94041331114160
54 call rax
55 cmp al, 1
56 jnz .13
57
58
59 .15:
60 ...

Alternative Block Variant 2

Reorder Block Variant 1

Variant 3

Variant 4

Variant 2

(a) with dynamic blocks

1 ...
2 .11:
3 mov r12, qword ptr [rsp+32]
4 mov rbx, qword ptr [rsp+80]
5 mov ebx, dword ptr [rbx+r12*4+3932160]
6 mov r13, qword ptr [rsp+80]
7 mov r13d, dword ptr [r13+r12*4+4194304]
8
9 .20:

10 mov eax, 2449354
11 cmp eax, r13d
12 setbe r14b
13 cmp r13d, 2449718
14 setbe r15b
15 and r14b, r15b
16 cmp r14b, 1
17 jnz .13
18
19 .24:
20 cmp ebx, r13d
21 jae .13
22
23 .26:
24 mov r13, qword ptr [rsp+80]
25 mov r13d, dword ptr [r13+r12*4+3670016]
26 cmp r13d, ebx
27 jae .13
28
29 .22:
30 mov rbx, qword ptr [rsp+80]
31 lea rbx, byte ptr [rbx+5505024]
32 mov rax, r12
33 shl rax, 4
34 add rbx, rax
35 mov r13, qword ptr [rbx]
36 mov rbx, qword ptr [rbx+8]
37 mov r14d, r13d
38 mov eax, 12
39 cmp eax, r14d
40 setb r15b
41 mov r14, rbx
42 add r14, qword ptr [rsp+48]
43 cmp r15b, 1
44 cmovnz r14, rbx
45 mov rdi, r13
46 mov rsi, r14
47 mov rdx, 139497207448144
48 mov rax, 93929822198432
49 call rax
50 cmp al, 1
51 jnz .13
52
53 .15:
54 ...

(b) without dynamic blocks

Figure 5.4.: Assembly code for the optimal variation for TPC-H Q12 (cf. Figure 4.3b)
generated by the variant-aware Flying Start compiler for dynamic blocks
with direct rewriting (left) and the original version (right).
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version of the Flying Start compiler for dynamic blocks in combination with the direct
rewriting approach. The assembly code for the variation compiled with the original
version of the Flying Start backend is displayed on the right side. The code generated
by the two versions is almost identical, aside from the register assignment. Furthermore,
the version with dynamic blocks performs two additional memory loads to retrieve the
local tuple id from the stack. Overall, our modifications to the Flying Start compiler and,
in particular, to the register assignment degrade the quality of the generated machine
code slightly.

Admittedly, the example we considered in this chapter is simple and does not use φ

nodes to extract values from the dynamic blocks. For more complex functions, we also
noticed only a minor overhead when using direct rewriting. However, since assembling
the query is now more expensive than for the jump-based approach, it is too expensive
to rewrite the function every time before calling it. Hence, we cache the assembled code
for each variation and reuse it for later executions. The assembly code for a variation is
generated by the first thread that tries to execute it. Other threads that want to run the
same variations have to wait until the first thread finishes assembling it. With multiple
threads, it is possible to assemble different variations in parallel and insert them into
the cache.

5.2.3. Comparison

We close this chapter with an experiment that evaluates the overhead of the jump-based
mechanism compared to the direct rewriting approach. We use the TPC-H, TPC-DS,
and SSB datasets at scale factor 10 and the join order benchmark with their respective
queries. The benchmark reports the per pipeline speedup/slowdown using (indirect)
jumps relative to the direct rewriting approach. The speedup is computed as follows:
First, we determine the average runtime for a pipeline per variation. Then, the ratio
between the two rewriting approaches is computed for every variation, and, finally, the
average over the per variation speedups in the same pipelines is returned as the per
pipeline speedup.

Figure 5.5 shows the distribution and the mean value of the per pipeline speedups
using memory-indirect and instruction pointer-relative jumps. The first plots determine
the overhead for each of the three dynamic optimizations individually, and the last
two plots show the speedup when combining all optimizations. As expected, the
jump-free version of the pipeline assembled with the direct rewriting approach is faster
than the jump-based approach. The pipelines with memory-indirect and instruction
pointer-relative jumps are on average 5 % slower.

Surprisingly, the instruction pointer-relative jumps are slower than the memory-
indirect jumps. We assume that the branch prediction is responsible for this behavior:
The CPU’s branch target buffer predicts the destination address of the memory-indirect
jumps based on the current position in the code [17]. A jump relative to the instruction
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Figure 5.5.: Relative performance of the jump-based approach. The direct rewriting
mechanism without any additional jumps serves as baseline.

pointer, on the other hand, must first decode the offset and compute the destination
address.

The memory-indirect approach computes the destination addresses for the jumps
upfront and places them in an array that is passed to the generated code. For the
performance of the code, it is essential to copy this array onto the stack and access the
elements using the stack pointer. Another important factor is the alignment of the jump
targets to 16-byte. We ran the experiment also with unaligned jump addresses and
observed an additional 2 % slowdown.

Although our rewriting approach performs best, memory-indirect jumps are still
interesting. Assembling a specialized version of the machine code is more complex and
requires changes to the underlying compiler. The memory-indirect approach can also be
implemented on top of LLVM using the indirectbr instruction.
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In the previous chapters, we discussed code generation with our Dynamic Blocks
framework and the compilation with the Flying Start backend. The last missing piece
for adaptive query processing is the execution of functions with dynamic blocks. Like
Vectorwise or NoisePage, we have to balance the exploration and the exploitation
phase. During exploitation, different variations of a function are executed, and runtimes
are recorded. The exploitation phase then chooses the best-performing variation and
executes it.

Both Vectorwise and NoisePage re-evaluate different variations in constant intervals
to adapt the executed variant to changing data distributions. However, interleaving the
exploration and exploitation phase is not compatible with Umbra’s existing execution
model. Adaptive Execution first runs a slow version of the function generated by the
Flying Start compiler and later switches to an optimized version of the function that
LLVM compiles in the meanwhile [34]. This technique allows Umbra to hide LLVM’s
slow compilation times and keep the otherwise idle threads busy during compilation.
However, exploring different variations is only possible while executing the machine
code generated by the Flying Start compiler. Once LLVM finishes compiling, a static
version of the function without dynamic blocks will be executed. Hence, we plan to use
our Flying Start compiler with dynamic block support for finding the best variation and
then compile it with LLVM to generate optimized machine code. Combining dynamic
blocks and LLVM is out of scope for this thesis and is considered future work. Instead,
we focus on finding the best variation with as few exploration runs as possible.

6.1. Switching Between Variations

Umbra uses morsel-driven execution in combination with work-stealing to parallelize
query processing. As proposed by Leis et al., we divide the input to a pipeline into
small chunks of work, so-called morsels [36]. The pipeline’s function obtains a morsel
and processes all tuples in the morsel. Once a thread finishes processing a morsel, it
asks the scheduler for the next morsel and executes the function again. This approach
allows for a simple parallelization scheme where each thread evaluates the pipeline
until no tuples/morsels are left. For table scans, a single morsel contains between 1000
and 20000 tuples.

Since morsels are the smallest unit of work in Umbra’s query engine, we can change
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Figure 6.1.: Execution Trace of TPC-H Q2 (scale factor 1) using 4 threads for the third
pipeline.

the executed variation only when switching the morsel. Before processing a morsel
for a pipeline with dynamic blocks, we first determine which variation to execute. We
alternate the variations during the exploration phase until the best-performing variation
can be determined. The exploitation phase executes the optimal variation found before.
Once a variation is chosen, we retrieve the machine code from the Flying Start compiler
and call it with the current morsel. The Flying Start compiler assembles the code using
the direct rewriting approach (cf. Subsection 5.2.2).

Figure 6.1 shows an execution trace of the morsels in pipeline 3 of TPC-H Q2. For
this query, it is possible to reorder the two hash joins, resulting in the two variations
from Figure 4.4. We evaluate both variations five times each and choose the one with
the minimum runtime for a single morsel. In the case of Q2, reordering the joins as in
Figure 4.4b provides better performance, and we switch to the reordered version for
exploitation. Note that the exploitation phase starts once the first ten morsels are issued.
Although the exploration phase is not finished at this point, we use the variation with
the lowest measured runtime till then and switch later to a faster variation.

6.2. Choosing the Best-performing Variation

In the previous section, we used the minimum runtime for a single morsel to find the
best-performing variation. However, this metric is susceptible to data skew. Therefore,
we also considered other policies for identifying the best variation. Both the average
and median runtime per variation are easy to implement and take all measurements
into account.

For all three metrics, we implement data structures that record the runtimes and
compute the best-performing variation. Furthermore, the structure also determines
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which variation to execute next and when to start the exploitation phase. We use the
rdtsc instruction to retrieve a hardware timestamp and report the difference between
the timestamps before and after executing the pipeline as the morsel’s execution time.
The length of the exploration phase is determined by two factors: 1) the number of
variations n and 2) the number of measurements per variations p. Hence, we evaluate
the different variations for the first n · p morsels and then exploit the best-performing
one.

For TPC-H Q2, we evaluated two variations with p = 5 measurements and explored
them in only ten morsels. However, a query with more variations, like TPC-H Q12, will
spend far more time in the exploration phase. Furthermore, evaluating a slow variation
can have a significant overhead. Therefore, we split the exploration phase into runs and
constantly reduce the number of different variations to explore. We eliminate variations
with high execution times early on and evaluate the most-promising ones more often.
The best-performing variation is determined based on the minimum, average, or median
runtime.

The number of variations we consider in each run decreases exponentially until only
one is variation is left. We evaluate at least as many morsels as there are threads per
run to fully parallelize the exploration phase. If all morsels in the current run were
scheduled, but some threads are still running, we preemptively explore variations for
the next run on the idle threads. The number r denotes the number of runs to perform.

6.3. Comparison

Umbra with Dynamic Execution implements six different policies for choosing the
best-performing variation. The first three policies measure each variation p-times and
choose the variation with the best minimum, average, median execution time. We
further refined these policies by eliminating slow variations early on using the run-based
exploration phase from Section 6.2. We refer to the optimized version as minimum’,
average’, and median’.

We evaluate the effectiveness and accuracy of the six policies as follows: First, we
execute each variation for a pipeline individually and determine the optimal implemen-
tation of the query. Then, we evaluate the pipeline again, but this time the Dynamic
Execution framework explores different variations during execution and chooses a
variation using one of the six policies. Based on these measurements, we compute the
accuracy of the policies as the percentage of executions that choose the best-performing
variation from the first pass. Figure 6.2a reports the results for different values of the
parameter p respectively r that determine the number of measurements per variation
and the number of runs.

All six policies perform similarly and choose the best-performing variations for
roughly 70 % of the executions. The median policy achieves the highest accuracy for
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Figure 6.2.: Accuracy of the different policies for choosing the best-performing variation
or one that is at least as fast as Umbra’s default implementation.

30 measurements per morsels. However, in practice, the exploration phase is too long
to exploit the found variation effectively. We, therefore, find that the average’ and the
median’ policy perform best for realistic values for the parameter r (10, 15, or 20).

While finding the optimal variation is crucial, overall, it is more important to avoid
performance degradations. Hence, we performed a second experiment investigating
how often Dynamic Execution chooses a variation that is at least as fast as Umbra’s
default implementation. This time the policies choose a good variation in more than 85 %
of the cases (cf. Figure 6.2b, for r >= 10). Overall, the median’ policy performs best with
more than 88 % accuracy with 30 exploration runs. For fewer runs, the average’ policy
performs better: with 15 runs, an accuracy of 88 % is achieved. Although the accuracy
decreases by 1 %, we decided to use the average’ policy with r = 10 in the following
benchmarks. This setting evaluates slow variations less often and offers a better tradeoff
between the length of the exploration phase and accuracy. We also decided against the
median’ policy as it is more expensive to compute the median value than the mean.
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We now evaluate our Dynamic Blocks framework and the Dynamic Execution strategy
in end-to-end benchmarks on the TPC-H, TPC-DS, SSB, and JOB datasets. We first look
into the compilation and execution overhead of our Dynamic Blocks framework and
then investigate where Adaptive Query Processing improves or reduces performance in
the end-to-end benchmarks. For this, we analyze 16 queries in detail and examine the
factors that cause speedups or slowdowns.

We run the benchmarks on an Intel i9-7900X CPU (Skylake X, 3.3-4.4 GHz) with 10
cores (20 threads) and 128 GB of memory. The machine has Ubuntu 21.04 installed
(Kernel 5.11) and uses gcc 10.3 and llvm 12.0 for compilation. All modifications were
made to Umbra at version 9f134bc7. In Appendix A, the recorded runtimes for the five
versions of Umbra are listed, and Appendix B shows the query plans for 16 queries
we investigate further. Unless stated otherwise, we use the TPC-H, TPC-DS, and SSB
dataset at scale factor 10 and repeat all measurements a hundred times.

In the experiments, we compare the unmodified version of Umbra (Umbra) against
the adaptive version UmbraAQP with the three dynamic optimizations and our modified
Flying Start compiler with dynamic blocks. Umbra without Adaptive Query Processing
uses the original Flying Start backend that generates the code without the Dynamic
Blocks framework. Our variant-aware version of the Flying Start backend employs
the direct rewriting approach from Subsection 5.2.2, and Dynamic Execution uses the
average’ policy with 10 runs for switching between variations (cf. Section 6.2). When
evaluating one of the optimizations individually, we denote them as follows: UmbraPred

(Dynamic Predicates, Subsection 4.5.1), UmbraJoin (Dynamic Joins, Subsection 4.5.2),
and UmbraPreAgg (Dynamic Preaggregation, Subsection 4.5.3).

7.1. Theoretic Performance Boost

Before starting the experimental analysis, we first determine the theoretical performance
gain of our three dynamic optimizations without considering the execution and compi-
lation overhead caused by the Dynamic Blocks framework. For this, we compare the
runtime of Umbra’s default implementation against the optimal variation compiled
with the original version of the Flying Start backend without dynamic blocks support
and report the speedup per query. Since both the optimal and the default variation are
compiled with the same backend and do not use Dynamic Execution, we can filter out
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Figure 7.1.: Histogram of the possible relative performance boost of UmbraAQP over
Umbra without considering the execution and compilation overhead caused
by the Dynamic Blocks framework.

the overhead of the Dynamic Blocks framework.
Figure 7.1 shows the distribution and the average of the possible speedups. Umbra al-

ready chooses the optimal variation for roughly 60 % of the queries, and the performance
cannot be improved further using one of the three optimizations. For the remaining
queries, a different variation is used, but we observe only for 15 % of the queries a signif-
icant performance improvement (>5 %): adapting the predicate evaluation, in particular,
can reduce the execution time by factor 2. On average, the three optimizations increase
the performance by 6 %, 2 %, and 3 %, resulting in a total speedup of 4 %. Of course,
this experiment only determines an upper bound for the possible speedup as finding
the optimal variations at run-time causes a non-neglectable overhead. Nevertheless, the
results are a good baseline to evaluate the effectiveness of Adaptive Query Processing in
Umbra.

7.2. Compilation Overhead

Our Dynamic Blocks framework and the variant-aware version of the Flying Start
compiler come at a prize: during code generation, the different variants must be
constructed, and lowering Umbra IR to assembly instructions is more complex. On the
other hand, our dynamic rewriting approach makes it possible to efficiently assemble
the variations with almost no execution overhead. Figure 7.2 investigates the impact
of our modification to Umbra’s code generation phase closer: The plot on the left
side visualizes the performance of our variant-aware Flying Start compiler relative
to the original version without dynamic blocks. The second plot shows the time the
two backends need to assemble the variations for a pipeline with Dynamic Predicates
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Figure 7.2.: Compilation overhead of the variant-aware Flying Start compiler and the
original version without dynamic blocks.

(TPC-H Q12) and one with Dynamic Joins (SSB Q42).
As expected, our version of the Flying Start backend is slower for all three dynamic

optimizations and their combination. We measure an average slowdown of 4 % and
maximum compile time overhead of 13 % when combining multiple optimizations in
the same pipeline. Nevertheless, this overhead is acceptable when considering that
compiling a query usually takes only a few milliseconds, and most of the time is spent
executing the generated code.

The benefits of our approach are then again visible in Figure 7.2b. We extracted the
compilation times for the first n variations when using the original Flying Start compiler
without dynamic blocks (Umbra) and our variant-aware version (UmbraAQP). The green
lines show our running example from TPC-H Q12 that uses the Dynamic Predicates
optimization with 25 variations. For the Dynamic Joins (blue lines), we use Q42 from the
star schema benchmark. The query has a chain of four hash joins that can be reordered,
resulting in 24 different variations.

The compilation times grow linearly with the number of variations. Assembling the
24 variations for the Dynamic Join with the original compiler takes roughly 1.7 ms. Our
version, in contrast, needs less than 0.1 ms to generate the variations. The same happens
for the query with Dynamic Predicates: the compilation time with the variant-aware
backend reduces by one order of magnitude. Please note that in this experiment, Umbra
still uses the Dynamic Blocks framework to generate the different variants in Umbra IR;
we only changed the underlying backend responsible for emitting the machine code.

In conclusion, our Dynamic Blocks framework and the variant-aware Flying Start
backend introduce only a small overhead when compiling queries. The modified
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Figure 7.3.: Execution time of the original Flying Start backend and the LLVM-based
backend relative to our modified version of the Flying Start backend with
dynamic blocks support.

backend generates the variations one order of magnitude faster than the original Flying
Start compiler.

7.3. Execution Overhead

After looking into the compilation overhead, we now measure the overhead caused
by our modified version of the Flying Start compiler with dynamic block support
from Chapter 5. We repeat the experiment from Subsection 5.2.3, but this time the
performance is reported relative to the original Flying Start compiler without dynamic
blocks and the LLVM-based backend. As before, Figure 7.3 shows the per-pipeline
speedups of the two backends. While the LLVM-based backend always generates faster
code, there is no clear winner for the original Flying Start backend. We sometimes also
observe a slowdown compared to our variant-aware version with dynamic blocks.

Compared to the original version, our modified Flying Start backend spills register
values earlier to the stack to keep the register assignments between variants intact.
Hence, we sometimes lose performance due to additional loads but in other cases
spilling values to the stack and loading a different one is beneficial. As a result, these
two factors neutralize each other, and overall, our modifications introduce no significant
speedup or slowdown. Both versions of the Flying Start backend produce equally fast
code, and we observe no execution overhead for machine code with dynamic blocks.

The experiment also shows that the performance can be increased further by roughly
25 % using the LLVM-based backend. However, this comes at the prize of higher
compilation times. Therefore, functions should only be compiled with the LLVM-based
backend once the best-performing variation is found as the existing Adaptive Execution
framework does. As this feature is out of scope for this thesis, it is considered future
work.
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Figure 7.4.: Adaptive Query Processing on TPC-H: execution times and speedup relative
to non-adaptive Umbra.

7.4. End-To-End Benchmarks

The previous two experiments analyzed the compilation and execution performance
individually; our end-to-end benchmarks report the total query runtimes and determine
the speedup achieved by Adaptive Query Processing. Furthermore, for each of the four
datasets, we inspect four queries closer that show a significant speedup or slowdown and
analyze the effects of the three dynamic optimizations. We use the Dynamic Execution
framework to find the optimal variation while executing the query.

7.4.1. TPC-H Benchmark

First, we evaluate the TPC-H benchmark. Figure 7.4 shows the overall speedup and
the runtimes of the four queries we inspect closer. In total, 19 of the 22 queries use
at least one of the dynamic optimizations at scale factor 10. When combining the
three optimizations in UmbraAQP, we measure an average speedup of 3 %. Overall
the dynamic optimizations achieve similar improvements, and four queries show a
significant performance boost with more than 10 %.

Q2 We used this query as a running example for reordering hash joins throughout this
thesis. It is possible to change the order of the joins with the eurosupp and the part table
(cf. Figure 4.1). Umbra’s default implementation, which first joins the eurosupp table,
executes the pipeline in 6 ms. Our Dynamic Execution framework correctly reorders
the joins in all repetitions, reducing the pipeline’s execution time to 3.35 ms. Since the
pipeline accounts for roughly 60 % of the query’s runtime, the optimization improves
the overall performance by 1.31x.

In order to analyze the effects of Adaptive Query Execution on smaller and larger
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Figure 7.5.: Speedup of UmbraAQP relative to Umbra for increasing scale factors.

datasets as well, we repeated the experiments for the scale factors 1, 3, 30, and 100.
Figure 7.5a shows the results of these experiments. For Q2, we observe that the speedup
increases with the scale factor of the dataset as the query spends more time in the third
pipeline. For scale factor 100, the runtime improves by more than 100 %.

Q12 Like Q2, we used the query before as an example for the Dynamic Predicate
optimization. With four predicates (cf. Figure 4.2), 25 variations for the table scan on
lineitem are possible. Umbra with Adaptive Query Processing chooses a variation
that changes the evaluation order of the filter predicates. The performance is increased
significantly by moving the in statement after the two comparisons on the date columns.
We observe a performance boost of 5 ms in the adaptive pipeline compared to the default
implementation, and the execution time is reduced from 30 ms to 25 ms. In 80 % of
the executions, the Dynamic Execution framework chooses the optimal ordering from
Figure 4.3b. The remaining executions use a slightly different implementation, where
the two comparisons are exchanged. Nevertheless, the runtime improves by more than
4.5 ms. Overall, the UmbraAQP is 11 % faster than Umbra.

When increasing the scale factor, the speedup does not increase further. However, the
speedup reducesf or smaller datasets, and for scale factor 1, we even see a slowdown.
For smaller datasets, Umbra schedules fewer morsels and reduces their size. Therefore,
the exploration phase is relatively long, and we cannot hide the Dynamic Execution’s
overhead.

Q13 & Q18 The two queries use Dynamic Preaggregation for aggregating the lineitem

table. In both, queries the third access path with the pointer to the last inserted entry
(cf. Figure 4.11) reduces the runtime of the pipeline by more than 20 %. The Dynamic
Execution chooses in all repetitions the optimal implementation.
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Figure 7.6.: Adaptive Query Processing on SSB: execution times and speedup relative to
non-adaptive Umbra.

7.4.2. Star Schema Benchmark (SSB)

For the star schema benchmark, we can use the Dynamic Optimizations in seven of the
thirteen queries. With Adaptive Query Processing, the performance of these queries
improves on average by 10 % (cf. Figure 7.6). While the highest performance boost is
achieved by the Dynamic Predicates that are used in only one query, we still see a 6 %
speedup when reordering joins. However, adapting the preaggregation does not help,
and we measure a minimal slowdown (less than 1 %) for the optimization.

Figure 7.5b shows how this speedup scales with the size of the dataset. As for the
TPC-H benchmark, the benefits of Adaptive Query Processing are evident for large
datasets. At scale factors 30 and 100, the performance improves by roughly 12 %, and
we observe almost no performance deterioration (<3 %).

Q11 We start with the query with the highest speedup: The performance of Q11
increases by 39 % using by adapting the filter predicates on the lineorder table. The
table scan evaluates two filter predicates on the 60 million entries of the relation.
However, neither of the two conditions is very selective, and branching after one of them
causes branch misses. The optimal implementation, therefore, evaluates both predicates
together and then branches. As a result, the number of branch misses decreases by
factor 3, and the runtime improves by more than 12 ms.

Q22 For this query, we observe an 11 % speedup. However, the performance boost is
not caused by one of our dynamic optimizations; instead, our version of the Flying Start
accidentally finds a better register assignment and is roughly 4 ms faster than Umbra’s
default implementation. The query reorders two hash joins, and our backend tends to
produce slightly better code than the original Flying Start compiler (cf. Figure 7.3).
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Q41 In this query, we lose performance due to the overhead of exploring different
variations. In addition, the code generated by the Flying Start compiler for dynamic
blocks is slightly slower than compiled with the default version of the compiler.

Q42 The last query we inspect for this benchmark reorders four hash joins. Without
Dynamic Joins, the lineorder reorder is joined with customer, supplier, date, and
part (in this order). The Dynamic Execution framework, in contrast, moves the hash
join with the date table in front of supplier and customer. Although the reordered join
is less selective than the first two, the hash table is smaller, and the number of cache
misses decreases. Therefore, the optimal join order is 12 ms faster than Umbra’s default
implementation. However, finding the optimal variations costs another 5 ms, and the
runtime improves only by 7 ms (the worst join order increases the pipeline’s execution
by more than 3x).

At scale factor 10, reordering the joins improves the runtime by 11 %. For larger
datasets, this speedup increases further as the sizes of hash tables for the supplier

and the customer increase linearly with the scale factor. The number of entries in the
date is independent of the scale factor and the hash table, therefore, remains the same
on all scale factors. For the largest scale factor, the performance of Q42 improves by
60 %, and the speedup exceeds the performance benefits measured for the first Q11 (cf.
Figure 7.5b).

7.4.3. TPC-DS Benchmark

This experiment evaluates the performance of Dynamic Execution on the TPC-DS
benchmark. Figure 7.7 shows the overall speedup and the runtimes for the four queries
we inspect closer. In comparison to the star schema benchmark, we now observe a
slowdown for the Dynamic Predicates and a speedup of 5 % when optimizing the
preaggregation. In total, the performance improves by 2 % on the TPC-DS benchmark
at scale factor 10. The maximum performance boost is achieved by Q4 and Q11 using
Dynamic Preaggregation.

Q4 & Q11 & Q14a All three queries use Dynamic Preaggregation to adapt the group
by operators before the set operations (cf. Table B.3). While Q4 and Q11 achieve a
26 %/38 % speedup, we lose performance in Q14a. The first two queries use eight
columns, including string values, as key for the aggregation. Computing the hash value
with Umbra’s default implementation is therefore expensive and bypassing the lookup
table is beneficial. Thanks to this optimization, we save 150 ms and 115 ms in the two
queries, and the runtime drops to 600 ms/300 ms. Q14a, on the other hand, uses only
three columns as keys in the aggregation and the radix-based hash function reduces the
number of hits in the lookup table. Hence, the other access paths allocate more entries
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Figure 7.7.: Adaptive Query Processing on TPC-DS: execution times and speedup rela-
tive to non-adaptive Umbra.

in the output streams, and the runtime increases by 28 ms as UmbraAQP often chooses a
suboptimal implementation.

Q27 The last query we inspect for TPC-DS achieves a 12 % speedup using the Dynamic
Joins optimization. We can reorder the three joins in the pipeline starting in store_sales.
Umbra’s query optimizer overestimates the selectivity of the first join with date_dim

and therefore places it before the second join with customer_demographics. In reality,
the second join filters 99 % of the incoming tuples while the first join passes one of five
tuples on. With Adaptive Query Processing, Umbra finds the optimal join order, and
the runtime of the pipeline decreases from 20 ms to 16 ms.

7.4.4. Join Order Benchmark (JOB)

The last end-to-end benchmark looks into the join order benchmark by Leis et al. [38].
Although we use the Dynamic Join optimization in most queries, the highest perfor-
mance boost is achieved by adapting the filter predicates, as shown in Figure 7.8. With
the Dynamic Predicate optimization, the runtime of three queries improves by roughly
70 %. When adapting the join order, we measure for the majority of the queries a
speedup/slowdown between -3 % and 3 % caused by the different register assignments
of the two versions of the Flying Start backend.

Q13b & Q13d Both queries can reorder the first two hash joins in the pipeline starting
in movie_info (cf. Table B.4). In this pipeline, Umbra overestimates the selectivity of the
first join. However, while in Q13b the estimation error is not large enough the change
the join order, in Q13d, a different order is faster. UmbraAQP finds the optimal order for
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Figure 7.8.: Adaptive Query Processing on JOB: execution times and speedup relative to
non-adaptive Umbra.

Q13d, and the execution time improves by 4 ms. But for Q13b, the Dynamic Execution
framework chooses the wrong join order resulting in the 2 ms performance loss.

Q15a & Q15c Q15a and Q15c adapt the filter condition on movie_info relation. While
in Q15a, a different order of the predicates improves the execution time by more than
70 %, Q15c cannot benefit from this optimization. We even lose 3 ms in the pipeline
due to the execution overhead introduced by our version of the Flying Start backend.
For Q15a, checking for the phrase internet eliminates more than 99.9 % of the tuples,
and executing it first improves the runtime of the pipeline by 2.4x, resulting in the 70 %
speedup. The other two queries with 70 % performance boost (Q15b and Q23b) reorder
the same filter condition on movie_info.

7.5. Putting It All Together

In the previous section, we saw several queries with a significant speedup and some
with an undeniable slowdown. The question now is whether Adaptive Query Processing
improves the overall runtime and achieves the theoretical possible performance boost
from before (cf. Section 7.1).

Figure 7.9 answers the first part of the question: For all three dynamic optimizations
and their combination, we observe on average a speedup in the queries that use the
optimizations. Most importantly, the seven queries with more than 25 % speedup from
Figure 7.1 provide a similar speedup with Adaptive Query Processing. UmbraPred

achieves a 4 % performance improvement and therefore provides the highest speedup
of the three optimizations. The reason for this is, to a large extent, the three JOB
queries whose runtimes improve by 70 %. Adapting the filter predicates is particularly

54



7.5. Putting It All Together

[-25 %, -10 %)

[-10 %, -5 %)

[-5 %, 0 %) 0 %

(0 %, +5 %]

(+5 %, +10 %]

(+10 %, +25 %]

(+25 %, +75 %]

UmbraAQP

UmbraPreAgg

UmbraJoin

UmbraPred

3 15 58 26 35 10 11 7

0 1 12 6 11 3 2 2

0 8 39 29 32 7 8 1

3 2 22 8 6 1 2 4

+2 %

+3 %

+1 %

+4 %

Figure 7.9.: Histogram of the actual speedup of UmbraAQP over Umbra when using our
Dynamic Blocks framework, the variant-aware Flying Start compiler, and
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beneficial for statements that are difficult to estimate, for instance, in or like predicates.
We observed the highest performance boost for aggregations when multiple columns
are used as keys, and computing the hash value with the default implementation is
expensive. Most of the queries use the Dynamic Join optimization, and several minor
improvements can be explained with fluctuations in the execution time. Nevertheless,
we measure for several queries a clear speedup if Umbra’s query optimizer was not able
to find the optimal join order.

The second part of the question, on the other hand, is more ambivalent. While
overall, we gain performance, the boost is not as big as theoretically possible. We lose
roughly 2 % of the speedup due to the compilation and execution overhead in UmbraAQP

compared to Umbra. As a result, 46 % of the queries are slower with Adaptive Query
Processing. Although most of these queries exhibit only a minor slowdown, for 10 % of
the queries, the performance drops by more than 5 %. The slowdown is mostly caused
by the fluctuations in the execution times of the generated programs (cf. Section 7.3)
and exploring suboptimal variations. However, in some cases, the fluctuations in the
execution can also improve the runtime: a few queries with speedup between 1 % and
25 % are faster even though they use the default implementation.
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The following chapter discusses some of the decisions we made then implementing
Adaptive Query Processing in Umbra and additional work for the future. Although
the existing dynamic optimizations already provide significant performance improve-
ments in Umbra, query processing can be improved further. We believe that our
existing Dynamic Blocks framework is the perfect building block for these enhance-
ments. Nonetheless, the Dynamic Execution strategy needs additional refinements to
react to changes in the processed data and combine it with the existing LLVM-based
backend. The following improvements are possible for the three components of the
Adaptive Query Processing in Umbra.

Dynamic Blocks framework (Chapter 4) The three dynamic block types we proposed
in the framework can represent the adaptive optimization from NoisePage and integrate
well into the existing Tidy Tuples framework. However, more block types might be
necessary for further adapting the code and avoiding recompilations. For instance,
we could use an optional-like block for instrumenting the generated code and collect
runtime statistics on samples without generating the code twice. Furthermore, we
plan to implement more dynamic optimizations to adapt the query plan and optimize
expression evaluation. In addition, the existing dynamic optimization and optimizer
that decides whether to apply them require further fine-tuning to avoid performance
regressions.

Variant-aware Flying Start compiler (Chapter 5) We modified Umbra’s Flying Start
compiler to generate machine code for the variations fast and with no execution over-
head. These modifications make it possible to lower dynamic blocks to machine code
without recompilation by rearranging the generated instructions. While compilation
time increases minimally, we observed overall no relevant slowdown when executing the
rewritten code. Nevertheless, it might be beneficial to compile pipelines with only a few
variations with the original Flying Start backend to avoid fluctuations in the execution
time.

Dynamic Execution strategy (Chapter 6) Probably the most debatable decision in
this thesis is that we explore the variations only once in the beginning. The reason for
this design decision is the future goal to compile the best-performing variation with
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the LLVM-based backend after exploring all variations. This last step will allow us to
combine the benefits of Adaptive Query Execution with Adaptive Execution, which is
already available in Umbra [34]. Nevertheless, it is possible to react to changes in the
processed data and choose a different variation after the initial exploration phase. We
propose to re-evaluate the first initial choice if the performance of the currently exploited
variation drops significantly and another variation might perform better.

Although our run-based policy for finding the best-performing variation achieves
good results, a well-researched technique like Thompson sampling could perform better
and shorten the exploration phase [28]. We can also reduce the length of the exploration
phase by pruning the search space: When reordering joins or predicates, most of the time,
only one variant changes its position. Hence, we can reduce the number of variations to
explore by considering only these permutations.

Another problem arises then combining multiple dynamic optimizations in the same
pipeline. Currently, we evaluate all combinations of the dynamic blocks created by the
optimizations. Hence, the exploration phase grows exponentially with the number of
dynamic blocks in the pipeline. This was not a problem in our experiments as none of
the pipelines used more than two dynamic blocks in the same pipeline. However, once
more operators and expressions use our Dynamic Blocks framework, this number will
increase, and the search space explodes. Again, we can solve this problem by pruning
the explored variations: assuming that the dynamic blocks in a pipeline are independent
of each other, we can incrementally determine the best configuration per block.
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9. Conclusion

This thesis implemented Adaptive Query Processing in a compiling query engine with
tuple-at-a-time processing. We propose three key techniques for efficiently generating
variations for pipelines in Umbra, compiling them to machine code, and adapting
the generated code during execution. Together these three components solve the
initial challenges for tuple-routing adaptivity in a compiling database system: The
Dynamic Blocks framework supports changes to the query’s execution plan and fine-
grained optimizations to the generated code. Our modified Flying Start compiler
avoids recompilations of the query and the intermediate representation while emitting
optimized assembly instruction. During execution, the Dynamic Execution strategy first
explores different variations and then executes the best-performing one. We minimized
the number of morsels used in the exploration phase, and the overhead of assembling
the different variations is as small as possible.

Our experimental analysis shows performance improvements in four major bench-
marks for database systems. Reordering joins, adapting the filter evaluation, and
optimizing the preaggregation improve the runtime by up to 2x. On average, we
measure 2 % speedup in the 165 queries that use one of our dynamic optimizations.
Although some of the queries see a minor slowdown, most of them are faster, and the
maximum performance boost exceeds the losses by far. In particular, we observe similar
speedups as NoisePage with the Permutable Compiled Queries [42] and can validate
their findings.

In conclusion, our results show that tuple-routing Adaptive Query Processing is not
only feasible in a high-performance system like Umbra but also improves the execution
times. The implementation we proposed is a good starting point for future optimizations
and further research in this area.
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A. Runtimes

In total, 165 of the 251 queries in the four benchmarks use at least one dynamic
optimization. We report for all queries the original runtime using the Flying Start
compiler without dynamic blocks as backend (Umbra). Furthermore, the speedup
and execution time for Dynamic Predicates (UmbraPred), Dynamic Joins (UmbraJoin),
or Dynamic Preaggregation (UmbraPreAgg) are shown. UmbraAQP combines all three
optimizations and uses the Flying Start backend with dynamic blocks.

Table A.1.: Runtimes and speedups for TPC-H queries that use a dynamic optimization.
Query Umbra UmbraPred UmbraJoin UmbraPreAgg UmbraAQP

Q1 151.3 ms - - 158.8 ms -5 % 161.3 ms -6 %
Q2 10.6 ms 11.2 ms -5 % 8.0 ms +33 % - 8.1 ms +31 %
Q3 69.6 ms - - 69.6 ms 0 % 69.5 ms 0 %
Q5 48.0 ms - - 48.6 ms -1 % 48.6 ms -1 %
Q6 25.6 ms 24.5 ms +4 % - 24.8 ms +3 % 24.7 ms +4 %
Q7 56.9 ms - 60.2 ms -5 % - 59.5 ms -4 %
Q8 44.3 ms - 45.3 ms -2 % - 44.6 ms -1 %
Q9 195.5 ms - - 197.4 ms -1 % 197.2 ms -1 %
Q10 67.8 ms - - 68.0 ms 0 % 68.1 ms -1 %
Q12 46.8 ms 42.5 ms +10 % - 47.1 ms -1 % 42.0 ms +11 %
Q13 99.3 ms - - 87.8 ms +13 % 87.9 ms +13 %
Q14 30.9 ms - - 31.0 ms 0 % 31.0 ms 0 %
Q15 26.8 ms - - 26.1 ms +3 % 26.1 ms +3 %
Q16 56.9 ms 56.9 ms 0 % - 55.3 ms +3 % 56.3 ms +1 %
Q17 363.4 ms 312.3 ms +16 % - 308.2 ms +18 % 310.8 ms +17 %
Q18 179.5 ms - - 167.0 ms +8 % 166.0 ms +8 %
Q19 84.0 ms 86.2 ms -2 % - - 86.2 ms -2 %
Q20 29.8 ms - 32.2 ms -7 % - 32.1 ms -7 %
Q22 49.9 ms 50.3 ms -1 % - 50.7 ms -2 % 50.2 ms -1 %

Table A.2.: Runtimes and speedups for SSB queries that use a dynamic optimization.
Query Umbra UmbraPred UmbraJoin UmbraPreAgg UmbraAQP

Q11 43.7 ms 31.3 ms +39 % - 41.9 ms +4 % 31.5 ms +39 %
Q21 50.3 ms - 50.2 ms 0 % 51.5 ms -2 % 50.6 ms -1 %
Q22 36.5 ms - 32.9 ms +11 % - 32.9 ms +11 %
Q23 31.2 ms - 26.4 ms +18 % - 26.4 ms +18 %
Q31 69.4 ms - 69.5 ms 0 % 69.4 ms 0 % 72.4 ms -4 %
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Query Umbra UmbraPred UmbraJoin UmbraPreAgg UmbraAQP

Q41 77.4 ms - 78.2 ms -1 % 79.9 ms -3 % 82.1 ms -6 %
Q42 71.0 ms - 64.2 ms +11 % - 64.0 ms +11 %

Table A.3.: Runtimes and speedups for TPC-DS queries that use a dynamic optimization.
Query Umbra UmbraPred UmbraJoin UmbraPreAgg UmbraAQP

Q2 61.3 ms - - 59.7 ms +3 % 59.6 ms +3 %
Q4 762.7 ms - - 604.7 ms +26 % 604.6 ms +26 %
Q5 66.7 ms - - 70.5 ms -5 % 70.4 ms -5 %
Q7 23.0 ms 23.4 ms -1 % 20.8 ms +11 % - 20.7 ms +11 %
Q8 20.8 ms - 19.5 ms +7 % 20.6 ms +1 % 19.1 ms +9 %
Q9 156.5 ms - - 160.5 ms -2 % 160.5 ms -3 %
Q10 34.9 ms - 34.2 ms +2 % - 34.1 ms +2 %
Q11 420.6 ms - - 305.2 ms +38 % 304.9 ms +38 %
Q13 28.8 ms 30.8 ms -6 % - - 30.8 ms -6 %
Q14a 295.7 ms - - 322.8 ms -8 % 323.6 ms -9 %
Q14b 475.9 ms - - 495.3 ms -4 % 495.0 ms -4 %
Q16 13.5 ms - 13.9 ms -3 % - 13.9 ms -3 %
Q18 48.7 ms 48.9 ms -1 % - - 48.9 ms 0 %
Q19 18.0 ms - 16.6 ms +9 % - 16.5 ms +9 %
Q21 59.1 ms - 62.2 ms -5 % - 62.1 ms -5 %
Q23a 762.9 ms - 741.0 ms +3 % 754.0 ms +1 % 758.4 ms +1 %
Q23b 768.1 ms - 743.6 ms +3 % 755.7 ms +2 % 756.1 ms +2 %
Q26 14.7 ms 14.7 ms 0 % 14.8 ms -1 % - 14.6 ms +1 %
Q27 28.6 ms 28.6 ms 0 % 25.2 ms +13 % - 25.4 ms +12 %
Q28 114.8 ms 115.0 ms 0 % - 114.2 ms +1 % 116.1 ms -1 %
Q33 32.3 ms - 33.3 ms -3 % - 33.3 ms -3 %
Q34 18.3 ms - 19.0 ms -3 % - 19.0 ms -3 %
Q36 53.3 ms - 53.5 ms 0 % - 53.4 ms 0 %
Q37 73.0 ms - 77.5 ms -6 % - 77.5 ms -6 %
Q38 118.7 ms - - 109.9 ms +8 % 109.8 ms +8 %
Q40 9.0 ms - 9.8 ms -8 % - 9.8 ms -8 %
Q42 16.9 ms - 14.7 ms +15 % - 14.7 ms +15 %
Q43 32.8 ms - 31.2 ms +5 % - 31.2 ms +5 %
Q44 11.1 ms 11.8 ms -6 % - - 11.9 ms -6 %
Q46 38.1 ms - 36.2 ms +5 % - 36.1 ms +6 %
Q47 185.6 ms - 184.9 ms 0 % - 184.6 ms +1 %
Q48 46.4 ms 49.0 ms -5 % - - 49.1 ms -6 %
Q52 13.9 ms - 13.2 ms +5 % - 13.3 ms +5 %
Q54 25.6 ms - 27.6 ms -7 % - 27.5 ms -7 %
Q55 14.4 ms - 15.0 ms -4 % - 15.0 ms -4 %
Q56 31.4 ms - 28.3 ms +11 % - 28.6 ms +10 %
Q59 111.2 ms - - 108.8 ms +2 % 108.9 ms +2 %
Q60 38.3 ms - 37.3 ms +3 % - 37.1 ms +3 %
Q61 13.1 ms - 12.3 ms +6 % - 12.2 ms +7 %
Q64 29.4 ms - 30.4 ms -4 % - 30.6 ms -4 %
Q66 24.8 ms - 24.7 ms +1 % - 24.8 ms 0 %
Q67 1061.0 ms - 1074.0 ms -1 % - 1068.2 ms -1 %
Q68 21.8 ms - 18.8 ms +16 % - 18.7 ms +16 %
Q72 220.2 ms - 219.4 ms 0 % 219.5 ms 0 % 218.9 ms +1 %
Q73 16.3 ms - 15.9 ms +3 % - 15.9 ms +3 %
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Query Umbra UmbraPred UmbraJoin UmbraPreAgg UmbraAQP

Q74 178.4 ms - - 162.1 ms +10 % 163.1 ms +9 %
Q75 165.8 ms - 165.3 ms 0 % - 165.3 ms 0 %
Q79 20.6 ms - 20.7 ms -1 % - 20.7 ms -1 %
Q80 48.0 ms - 47.2 ms +2 % - 47.0 ms +2 %
Q81 14.7 ms - 15.3 ms -4 % - 15.1 ms -3 %
Q82 71.1 ms - 78.1 ms -9 % - 78.2 ms -9 %
Q84 3.6 ms - 3.6 ms 0 % - 3.6 ms 0 %
Q85 11.8 ms 12.2 ms -3 % - - 11.9 ms 0 %
Q87 118.0 ms - - 115.5 ms +2 % 115.3 ms +2 %
Q88 115.4 ms - 110.7 ms +4 % - 110.9 ms +4 %
Q89 34.5 ms - 34.6 ms 0 % - 34.6 ms 0 %
Q94 9.1 ms - 8.4 ms +8 % - 8.4 ms +9 %
Q95 159.0 ms - 159.2 ms 0 % - 158.6 ms 0 %
Q96 14.0 ms - 13.5 ms +4 % - 13.6 ms +3 %
Q98 36.0 ms - 34.5 ms +4 % - 34.3 ms +5 %

Table A.4.: Runtimes and speedups for JOB queries that use a dynamic optimization.
Query Umbra UmbraPred UmbraJoin UmbraPreAgg UmbraAQP

Q1a 6.5 ms 6.7 ms -3 % 6.6 ms -3 % - 6.6 ms -3 %
Q1b 3.9 ms - 4.0 ms 0 % - 4.0 ms 0 %
Q1c 5.5 ms 5.6 ms -2 % 5.5 ms 0 % - 5.6 ms -2 %
Q1d 3.8 ms - 3.9 ms -3 % - 3.9 ms -3 %
Q2b 6.7 ms - 6.6 ms +2 % - 6.7 ms +1 %
Q2c 4.2 ms - 4.3 ms -2 % - 4.3 ms -3 %
Q5a 14.5 ms 14.8 ms -2 % 14.5 ms 0 % - 14.7 ms -1 %
Q5b 19.5 ms 19.9 ms -2 % 19.7 ms -1 % - 20.0 ms -3 %
Q5c 23.3 ms 24.3 ms -4 % 21.8 ms +7 % - 22.5 ms +4 %
Q6c 16.6 ms - 16.5 ms 0 % - 16.5 ms 0 %
Q8a 18.1 ms 19.1 ms -5 % - - 19.1 ms -5 %
Q8b 21.8 ms 19.1 ms +14 % - - 19.1 ms +14 %
Q8c 110.0 ms - 105.8 ms +4 % 110.7 ms -1 % 105.2 ms +5 %
Q8d 37.0 ms - 36.5 ms +1 % 37.7 ms -2 % 36.4 ms +2 %
Q9a 52.8 ms 53.5 ms -1 % - - 53.6 ms -1 %
Q9b 25.8 ms 27.2 ms -5 % 26.8 ms -4 % - 27.1 ms -5 %
Q10a 31.5 ms 32.6 ms -3 % 30.7 ms +3 % - 32.9 ms -4 %
Q10b 30.8 ms - 29.9 ms +3 % - 30.0 ms +3 %
Q10c 62.1 ms - - 62.1 ms 0 % 62.7 ms -1 %
Q11a 4.9 ms - 4.9 ms +1 % - 4.9 ms -1 %
Q11b 5.6 ms 5.8 ms -4 % 5.1 ms +9 % - 5.6 ms 0 %
Q11c 9.0 ms - 9.0 ms +1 % - 9.2 ms -1 %
Q11d 8.8 ms - 8.9 ms -1 % - 8.9 ms -1 %
Q12a 14.9 ms - 15.4 ms -3 % - 15.3 ms -3 %
Q12b 12.7 ms 12.6 ms +1 % 12.8 ms -1 % - 13.5 ms -6 %
Q12c 17.5 ms - 17.9 ms -3 % - 18.0 ms -3 %
Q13a 38.6 ms - 38.5 ms 0 % - 38.4 ms +1 %
Q13b 19.2 ms 19.2 ms 0 % 21.2 ms -10 % - 21.1 ms -9 %
Q13c 16.9 ms 17.1 ms -2 % 18.4 ms -8 % - 18.6 ms -9 %
Q13d 57.5 ms - 52.8 ms +9 % - 52.3 ms +10 %
Q14a 34.8 ms - 36.0 ms -3 % - 35.2 ms -1 %
Q14b 34.3 ms - 34.5 ms -1 % - 34.5 ms -1 %
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A. Runtimes

Query Umbra UmbraPred UmbraJoin UmbraPreAgg UmbraAQP

Q14c 36.8 ms - 36.9 ms 0 % - 37.1 ms -1 %
Q15a 24.7 ms 14.5 ms +71 % - - 14.4 ms +72 %
Q15b 25.0 ms 14.9 ms +68 % 25.0 ms 0 % - 14.9 ms +67 %
Q15c 12.5 ms 15.9 ms -22 % - - 15.8 ms -21 %
Q18a 116.8 ms - 116.1 ms +1 % - 116.4 ms 0 %
Q18b 44.5 ms 43.9 ms +1 % 44.3 ms 0 % - 44.0 ms +1 %
Q18c 52.5 ms - 52.6 ms 0 % - 52.9 ms -1 %
Q19a 81.4 ms 81.8 ms 0 % 81.6 ms 0 % - 82.1 ms -1 %
Q19b 48.2 ms 48.4 ms 0 % 48.2 ms 0 % - 48.7 ms -1 %
Q19c 79.3 ms - 79.2 ms 0 % - 79.5 ms 0 %
Q19d 279.6 ms - 276.5 ms +1 % - 277.1 ms +1 %
Q21a 23.0 ms - 22.8 ms +1 % - 22.9 ms 0 %
Q21b 15.3 ms - 14.9 ms +2 % - 14.8 ms +3 %
Q21c 34.1 ms - 33.9 ms 0 % - 34.0 ms 0 %
Q22a 33.2 ms 33.1 ms +1 % 33.9 ms -2 % - 33.6 ms -1 %
Q22b 32.7 ms 33.0 ms -1 % 33.6 ms -3 % - 33.2 ms -1 %
Q22c 39.8 ms 39.2 ms +2 % 38.9 ms +2 % - 38.9 ms +2 %
Q22d 43.6 ms - 42.9 ms +1 % - 43.1 ms +1 %
Q23a 13.4 ms 16.5 ms -19 % - - 16.6 ms -19 %
Q23b 23.4 ms 13.5 ms +73 % 23.4 ms 0 % - 13.4 ms +74 %
Q23c 13.5 ms 16.3 ms -17 % - - 16.4 ms -18 %
Q24a 81.2 ms - 81.6 ms -1 % - 81.7 ms -1 %
Q24b 81.0 ms - 81.1 ms 0 % - 80.5 ms +1 %
Q25a 49.8 ms - 50.1 ms -1 % - 50.0 ms 0 %
Q25b 48.7 ms - 49.8 ms -2 % - 49.1 ms -1 %
Q25c 53.1 ms - 53.4 ms 0 % - 53.4 ms 0 %
Q26a 21.9 ms - 23.5 ms -7 % - 23.5 ms -7 %
Q26b 20.1 ms - 19.9 ms +1 % - 20.1 ms 0 %
Q26c 24.3 ms - 24.1 ms +1 % - 24.1 ms +1 %
Q27a 17.0 ms - 17.1 ms 0 % - 17.1 ms 0 %
Q27b 16.2 ms - 16.3 ms -1 % - 16.5 ms -2 %
Q27c 27.1 ms - 27.2 ms 0 % - 27.4 ms -1 %
Q28a 31.7 ms 32.7 ms -3 % 31.4 ms +1 % - 31.9 ms -1 %
Q28b 22.9 ms 23.4 ms -2 % 23.3 ms -2 % - 23.4 ms -2 %
Q28c 33.5 ms 34.0 ms -1 % 33.0 ms +2 % - 33.1 ms +1 %
Q29a 83.8 ms 83.4 ms 0 % 84.4 ms -1 % - 84.0 ms 0 %
Q29b 65.0 ms 64.0 ms +1 % 64.8 ms 0 % - 64.6 ms 0 %
Q29c 139.7 ms - 139.7 ms 0 % - 140.1 ms 0 %
Q30a 48.9 ms - 49.4 ms -1 % - 49.5 ms -1 %
Q30b 48.7 ms - 49.2 ms -1 % - 49.0 ms -1 %
Q30c 50.8 ms - 51.6 ms -2 % - 51.4 ms -1 %
Q31a 56.8 ms - 57.2 ms -1 % - 56.9 ms 0 %
Q31b 50.9 ms - 51.2 ms -1 % - 51.3 ms -1 %
Q31c 81.9 ms - 82.3 ms -1 % - 82.3 ms -1 %
Q33a 9.2 ms - 9.1 ms +1 % - 9.2 ms 0 %
Q33b 8.8 ms - 8.8 ms -1 % - 8.8 ms -1 %
Q33c 8.5 ms - 8.4 ms +2 % - 8.4 ms +1 %
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B. Query Plans

Section 7.4 inspected several queries from the four benchmarks (TPC-H, SSB, TPC-DS,
and JOB) closer. The following tables contain the SQL statements and the corresponding
query execution plan used by Umbra. For some of the queries, we only show the
relevant part of the plan where the dynamic optimizations are applied. The full plans
can be found in the Umbra web interface (https://umbra-db.com/interface/). Please
note that the plans shown in this thesis might differ from the ones shown online due to
updates to Umbra’s query optimizer.

Table B.1.: SQL statements and query plans for the four queries from TPC-H.
SQL statement Query Plan

Q2

with eurosupp as (select s.*
from supplier s, nation, region
where s.s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’EUROPE’)

select s_acctbal, s_name, n_name, p_partkey, p_mfgr,
s_address, s_phone, s_comment

from part, eurosupp, partsupp,
where p_partkey = ps_partkey and s_suppkey = ps_suppkey
and p_size = 15 and p_type like ’%BRASS’
and ps_supplycost = (select min(ps_supplycost)

from partsupp, eurosupp
where p_partkey = ps_partkey
and s_suppkey = ps_suppkey)

order by s_acctbal desc, n_name, s_name, p_partkey
limit 100;

sort

HJ

eurosupp INLJ

partsuppΓ

HJ

HJ

eurosupp partsupp

σ

part

Q12

select l_shipmode,
sum(case when o_orderpriority = ’1-URGENT’

or o_orderpriority = ’2-HIGH’
then 1 else 0 end) as high_line_count,

sum(case when o_orderpriority <> ’1-URGENT’
and o_orderpriority <> ’2-HIGH’

then 1 else 0 end) as low_line_count
from orders, lineitem
where o_orderkey = l_orderkey
and l_shipmode in (’MAIL’, ’SHIP’)
and l_commitdate < l_receiptdate
and l_shipdate < l_commitdate
and l_receiptdate >= date ’1994-01-01’
and l_receiptdate < date ’1994-01-01’ + interval ’1’ year

group by l_shipmode
order by l_shipmode;

sort

Γ

HJ

lineitem orders
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B. Query Plans

SQL statement Query Plan

Q13

select c_count, count(*) as custdist
from (select c_custkey, count(o_orderkey)

from customer left outer join orders on
c_custkey = o_custkey
and o_comment not like ’%special%requests%’

group by c_custkey) as c_orders (c_custkey, c_count)
group by c_count
order by custdist desc, c_count desc;

sort

Γ

GroupJoin

lineitem orders

Q18

select c_name, c_custkey, o_orderkey, o_orderdate,
o_totalprice, sum(l_quantity)

from customer, orders, lineitem
where o_orderkey in (select l_orderkey from lineitem

group by l_orderkey having sum(l_quantity) > 300)
and c_custkey = o_custkey and o_orderkey = l_orderkey

group by c_name, c_custkey, o_orderkey,
o_orderdate, o_totalprice

order by o_totalprice desc, o_orderdate
limit 100;

sort

GroupJoin

lineitem
HJ

customer
HJ

ordersσ

Γ

lineitem

Table B.2.: SQL statements and query plans for the four queries from SSB.
SQL statement Query Plan

Q11
select sum(lo_extendedprice*lo_discount) as revenue
from lineorder, date
where lo_orderdate = d_datekey and d_year = 1993
and lo_discount between 1 and 3 and lo_quantity < 25;

Γ

HJ

date lineorder

Q22

select sum(lo_revenue), d_year, p_brand1
from lineorder, date, part, supplier
where lo_orderdate = d_datekey and lo_partkey = p_partkey
and lo_suppkey = s_suppkey and p_brand1 between ’MFGR#2221’
and ’MFGR#2228’ and s_region = ’ASIA’

group by d_year, p_brand1
order by d_year, p_brand1;

Γ

HJ

date
HJ

supplier
HJ

part lineorder
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SQL statement Query Plan

Q41

select d_year, c_nation,
sum(lo_revenue - lo_supplycost) as profit

from date, customer, supplier, part, lineorder
where lo_custkey = c_custkey and lo_suppkey = s_suppkey
and lo_partkey = p_partkey and lo_orderdate = d_datekey
and c_region = ’AMERICA’ and s_region = ’AMERICA’
and (p_mfgr = ’MFGR#1’ or p_mfgr = ’MFGR#2’)

group by d_year, c_nation
order by d_year, c_nation;

sort

Γ

HJ

date
HJ

part
HJ

supplier
HJ

customer lineorder

Q42

select d_year, s_nation, p_category,
sum(lo_revenue - lo_supplycost) as profit

from date, customer, supplier, part, lineorder
where lo_custkey = c_custkey and lo_suppkey = s_suppkey
and lo_partkey = p_partkey and lo_orderdate = d_datekey
and c_region = ’AMERICA’ and s_region = ’AMERICA’
and (d_year = 1997 or d_year = 1998)
and (p_mfgr = ’MFGR#1’ or p_mfgr = ’MFGR#2’)

group by d_year, s_nation, p_category
order by d_year, s_nation, p_category;

sort

Γ

HJ

part
HJ

date
HJ

supplier
HJ

customer lineorder

Table B.3.: SQL statements and query plans for the four queries from TPC-DS.
SQL statement Query Plan

Q4

with year_total as (

select c_customer_id customer_id, c_first_name customer_first_name,

c_last_name customer_last_name, c_preferred_cust_flag customer_preferred_cust_flag,

c_birth_country customer_birth_country, c_login customer_login,

c_email_address customer_email_address, d_year dyear,

sum(((ss_ext_list_price-ss_ext_wholesale_cost-ss_ext_discount_amt)+ss_ext_sales_price)/2)

year_total, ’s’ sale_type

from customer, store_sales, date_dim

where c_customer_sk = ss_customer_sk and ss_sold_date_sk = d_date_sk

group by c_customer_id, c_first_name, c_last_name, c_preferred_cust_flag, c_birth_country,

c_login, c_email_address, d_year

union all

select c_customer_id customer_id, c_first_name customer_first_name,

c_last_name customer_last_name, c_preferred_cust_flag customer_preferred_cust_flag,

c_birth_country customer_birth_country, c_login customer_login,

c_email_address customer_email_address, d_year dyear,

sum((((cs_ext_list_price-cs_ext_wholesale_cost-cs_ext_discount_amt)+cs_ext_sales_price)/2))

year_total, ’c’ sale_type

from customer, catalog_sales, date_dim

where c_customer_sk = cs_bill_customer_sk and cs_sold_date_sk = d_date_sk

group by c_customer_id, c_first_name, c_last_name, c_preferred_cust_flag, c_birth_country,

c_login, c_email_address, d_year

union all

select c_customer_id customer_id, c_first_name customer_first_name,

c_last_name customer_last_name, c_preferred_cust_flag customer_preferred_cust_flag,

c_birth_country customer_birth_country, c_login customer_login,

c_email_address customer_email_address, d_year dyear,

sum((((ws_ext_list_price-ws_ext_wholesale_cost-ws_ext_discount_amt)+ws_ext_sales_price)/2))

year_total, ’w’ sale_type

from customer, web_sales, date_dim

where c_customer_sk = ws_bill_customer_sk and ws_sold_date_sk = d_date_sk

group by c_customer_id, c_first_name, c_last_name, c_preferred_cust_flag, c_birth_country,

c_login, c_email_address, d_year)

...

...

]

σ

Γ

HJ

date_dim
HJ

customer store_sales

σ

Γ

HJ

date_dim
HJ

customer web_sales

σ

Γ

HJ

date_dim
HJ

customer catalog_sales
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B. Query Plans

SQL statement Query Plan

Q11

with year_total as (

select c_customer_id customer_id, c_first_name customer_first_name,

c_last_name customer_last_name, c_preferred_cust_flag customer_preferred_cust_flag,

c_birth_country customer_birth_country, c_login customer_login,

c_email_address customer_email_address, d_year dyear,

sum(ss_ext_list_price-ss_ext_discount_amt) year_total, ’s’ sale_type

from customer, store_sales, date_dim

where c_customer_sk = ss_customer_sk and ss_sold_date_sk = d_date_sk

group by c_customer_id, c_first_name, c_last_name, c_preferred_cust_flag, c_birth_country,

c_login, c_email_address, d_year

union all

select c_customer_id customer_id, c_first_name customer_first_name,

c_last_name customer_last_name, c_preferred_cust_flag customer_preferred_cust_flag,

c_birth_country customer_birth_country, c_login customer_login,

c_email_address customer_email_address, d_year dyear,

sum(ws_ext_list_price-ws_ext_discount_amt) year_total, ’w’ sale_type

from customer, web_sales, date_dim

where c_customer_sk = ws_bill_customer_sk and ws_sold_date_sk = d_date_sk

group by c_customer_id, c_first_name, c_last_name, c_preferred_cust_flag , c_birth_country,

c_login, c_email_address, d_year)

...

]
σ

Γ

HJ

date_dim
HJ

customer store_sales

σ

Γ

HJ

date_dim
HJ

customer web_sales

Q14a

with cross_items as (select i_item_sk ss_item_sk

from item,

(select iss.i_brand_id brand_id, iss.i_class_id class_id, iss.i_category_id category_id

from store_sales, item iss, date_dim d1

where ss_item_sk = iss.i_item_sk and ss_sold_date_sk = d1.d_date_sk

and d1.d_year between 1998 AND 1998 + 2

intersect

select ics.i_brand_id, ics.i_class_id, ics.i_category_id

from catalog_sales, item ics, date_dim d2

where cs_item_sk = ics.i_item_sk and cs_sold_date_sk = d2.d_date_sk

and d2.d_year between 1998 AND 1998 + 2

intersect

select iws.i_brand_id, iws.i_class_id, iws.i_category_id

from web_sales, item iws, date_dim d3

where ws_item_sk = iws.i_item_sk and ws_sold_date_sk = d3.d_date_sk

and d3.d_year between 1998 AND 1998 + 2) x

where i_brand_id = brand_id and i_class_id = class_id and i_category_id = category_id),

...

...

∩

HJ

item
HJ

date_dim web_sales

HJ

date_dim
HJ

item catalog_sales

HJ

item
HJ

date_dim store_sales

Q27

select i_item_id, s_state, grouping(s_state) g_state, avg(ss_quantity) agg1,

avg(ss_list_price) agg2, avg(ss_coupon_amt) agg3, avg(ss_sales_price) agg4

from store_sales, customer_demographics, date_dim, store, item

where ss_sold_date_sk = d_date_sk and ss_item_sk = i_item_sk and ss_store_sk = s_store_sk

and ss_cdemo_sk = cd_demo_sk and cd_gender = ’F’ and cd_marital_status = ’M’

and cd_education_status = ’Advanced Degree’ and d_year = 1998

and s_state in (’TN’,’AL’, ’SD’, ’SD’, ’SD’, ’SD’)

group by rollup (i_item_id, s_state)

order by i_item_id, s_state

limit 100;

sort

χ

Γ

INLJ

item
HJ

store
HJ

customer_demographics
HJ

date_dim store_sales
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Table B.4.: SQL statements and query plans for the four queries from JOB.
SQL statement Query Plan

Q13b

select min(cn.name) as producing_company,
min(miidx.info) as rating,
min(t.title) as movie_about_winning

from company_name as cn, company_type as ct, info_type as it,
info_type as it2, kind_type as kt, movie_companies as mc,
movie_info as mi, movie_info_idx as miidx, title as t

where cn.country_code = ’[us]’ and t.title !!!= ’’
and ct.kind = ’production companies’ and it.info = ’rating’
and it2.info = ’release dates’ and kt.kind = ’movie’
and (t.title like ’%Champion%’ or t.title like ’%Loser%’)
and mi.movie_id = t.id and it2.id = mi.info_type_id
and kt.id = t.kind_id and mc.movie_id = t.id
and cn.id = mc.company_id and ct.id = mc.company_type_id
and miidx.movie_id = t.id and it.id = miidx.info_type_id
and mi.movie_id = miidx.movie_id
and mi.movie_id = mc.movie_id
and miidx.movie_id = mc.movie_id;

Γ

HJ

info_type
HJ

movie_info
INLJ

company_nameHJ

company_type
HJ

movie_companies
HJ

kind_type
HJ

title
HJ

info_type movie_info_idx
Q13d

select min(cn.name) as producing_company,
min(miidx.info) as rating, min(t.title) as movie
from company_name as cn, company_type as ct, info_type as it,
info_type as it2, kind_type as kt, movie_companies as mc,
movie_info as mi, movie_info_idx as miidx, title as t

where cn.country_code = ’[us]’ and kt.kind = ’movie’
and ct.kind = ’production companies’ and it.info = ’rating’
and it2.info = ’release dates’ and mi.movie_id = t.id
and it2.id = mi.info_type_id and kt.id = t.kind_id
and mc.movie_id = t.id and cn.id = mc.company_id
and ct.id = mc.company_type_id and miidx.movie_id = t.id
and it.id = miidx.info_type_id
and mi.movie_id = miidx.movie_id
and mi.movie_id = mc.movie_id
and miidx.movie_id = mc.movie_id;

Q15a

select min(mi.info) as release_date,
min(t.title) as internet_movie

from aka_title as at, company_name as cn, company_type as ct,
info_type as it1, keyword as k, movie_companies as mc,
movie_info as mi, movie_keyword as mk, title as t

where cn.country_code = ’[us]’ and it1.info = ’release dates’
and mc.note like ’%(200%)%’ and mc.note like ’%(worldwide)%’
and mi.note like ’%internet%’ and mi.info like ’USA:% 200%’
and t.production_year > 2000 and t.id = at.movie_id
and t.id = mi.movie_id and t.id = mk.movie_id
and t.id = mc.movie_id and mk.movie_id = mi.movie_id
and mk.movie_id = mc.movie_id and mk.movie_id = at.movie_id
and mi.movie_id = mc.movie_id and mi.movie_id = at.movie_id
and mc.movie_id = at.movie_id and k.id = mk.keyword_id
and it1.id = mi.info_type_id and cn.id = mc.company_id
and ct.id = mc.company_type_id;

Γ

INLJ

keyword
HJ

movie_keyword
HJ

company_type
INLJ

company_nameINLJ

title
HJ

aka_title
HJ

movie_companies
HJ

info_type movie_info
Q15c

select min(mi.info) as release_date,
min(t.title) as modern_american_internet_movie

from aka_title as at, company_name as cn, company_type as ct,
info_type as it1, keyword as k, movie_companies as mc,
movie_info as mi, movie_keyword as mk, title as t

where cn.country_code = ’[us]’ and it1.info = ’release dates’
and mi.note like ’%internet%’ and mi.info is not null
and (mi.info like ’USA:% 199%’ or mi.info like ’USA:% 200%’)
and t.production_year > 1990 and t.id = at.movie_id
and t.id = mi.movie_id and t.id = mk.movie_id
and t.id = mc.movie_id and mk.movie_id = mi.movie_id
and mk.movie_id = mc.movie_id and mk.movie_id = at.movie_id
and mi.movie_id = mc.movie_id and mi.movie_id = at.movie_id
and mc.movie_id = at.movie_id and k.id = mk.keyword_id
and it1.id = mi.info_type_id and cn.id = mc.company_id
and ct.id = mc.company_type_id;
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