
T3: Accurate and Fast Performance Prediction for Relational
Database Systems With Compiled Decision Trees

Maximilian Rieger
Technical University of Munich

Munich, Germany
max.rieger@tum.de

Thomas Neumann
Technical University of Munich

Munich, Germany
neumann@in.tum.de

Abstract
Query performance prediction is used for scheduling, resource
scaling, tenant placement, and various other use-cases. Here, the
main goal is to estimate the execution time of a query without
running it. To be effective, predictors need to be both accurate and
fast. In contrast, neural networks that were used in recent work
deliver very accurate predictions but suffer from high latency.
In this work, we propose the Tuple Time Tree (T3), a new model
that is both accurate and fast. It is orders of magnitude faster than
comparable methods and has competitive accuracy to state-of-the-
art approaches. Additionally, T3 works for new database instances
without re-training because it generalizes across database instances.
We achieve T3’s speed by relying on a low-latency decision tree
model that is compiled to native machine code. We maintain high
accuracy with two novel techniques: pipeline-based query plan
representation and tuple-centric prediction targets.
In our pipeline-based query plan representation, T3 decomposes
query plans into pipelines. Then, T3 predicts the execution time of
each pipeline individually, instead of the whole query in one step.
With tuple-centric prediction targets, T3 predicts the expected time
it takes to push a single tuple through a pipeline. It then multiplies
this predicted value by the input cardinality of the pipeline to
estimate its execution time. As a result, T3 achieves state-of-the-art
accuracy with a low-latency decision tree model.

CCS Concepts
• Information systems→ Database query processing.

Keywords
Database Systems, Query Performance Prediction, Cost Model

ACM Reference Format:
Maximilian Rieger and Thomas Neumann. 2025. T3: Accurate and Fast
Performance Prediction for Relational Database Systems With Compiled
Decision Trees. In Proceedings of the 2025 International Conference onManage-
ment of Data (SIGMOD’25). ACM, New York, NY, USA, Article 227, 14 pages.
https://doi.org/10.1145/3725364

Authors’ Contact Information: Maximilian Rieger, Technical University of Munich,
Munich, Germany, max.rieger@tum.de; Thomas Neumann, Technical University of
Munich, Munich, Germany, neumann@in.tum.de.

SIGMOD’25, Berlin, Germany
© 2025 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
2025 International Conference on Management of Data (SIGMOD’25), https://doi.org/10.
1145/3725364.

10−3 10−2 10−1 100 101
Avg. Latency in ms (log)

1

2

3

4

Pr
ed

ic
tio

n
Er

ro
r

p5
0
Q
-E

rr
or

T3 (ours) Zero Shot
Stage*

AutoWLM*

be
tte
r

Figure 1: Latency and accuracy of recent models [16, 40, 50].
(*values from [50])

1 Introduction
Motivational Example. Modern cloud-based data systems are
designed to dynamically scale resources and automate query sched-
uling to handle diverse workloads. These systems often face sig-
nificant spikes in concurrent query submissions, requiring effi-
cient scheduling across multiple compute clusters to ensure good
performance and resource utilization. Scheduling algorithms as-
sign queries based on predicted resource requirements. Better pre-
dictions can significantly improve overall system performance.
For instance, Amazon Redshift has demonstrated notable perfor-
mance gains by integrating an improved performance prediction
model [50]. Yet, substantial potential for further improvement re-
mains. Wu et al. [50] suggest that average query performance could
still improve by over 40% with more accurate models. Another area
for improvement is prediction latency. Since each query must wait
for its prediction before being scheduled, this latency directly adds
to the total execution time of every query, which significantly im-
pacts short running queries. In this scenario improvements in both
model accuracy and latency can substantially enhance modern data
management systems.
Performance Prediction Goals. We identify three main goals for
performance prediction. First, predictions should be as accurate as
possible. Second, predictions should be made with low latency. And
finally, prediction models should work on new database instances
without any new training data to avoid costly benchmarking and
re-training.
Use-Cases. Modern data management systems utilize query per-
formance prediction models for various use-cases. These include
scheduling [9, 11, 12, 39, 50], data encoding selection [4], admis-
sion control [45], cloud resource scaling [8, 27], tenant placement
[44], holistic workload management [31, 40], materialized view

1

https://doi.org/10.1145/3725364
https://doi.org/10.1145/3725364
https://doi.org/10.1145/3725364

SIGMOD’25, June 22–27, 2025, Berlin, Germany Maximilian Rieger and Thomas Neumann

Query Plan

Γ

B

S B

LB

C O

⇞

=
P0

P1

P3 P2

P5
P4

Feature Vectors Per Pipeline

P0 P1 P2 P3 P4 P5

Predicted Pipeline Times

P0

0ms

P1

0ms

P2

28ms

P3

0.5ms

P4

7.5ms

P5

2ms

PredictedQuery Time
Σ = 38ms

Figure 2: T3 prediction process for TPC-H Q5. Each pipeline
is converted to a flat feature vector. T3’s decision tree model
predicts a time for each feature vector. The sum of the pre-
dicted pipeline times is the result.

creation [40], cloud architecture design [54], and query optimiza-
tion [2, 16, 29, 43, 57].
Learned Models. Predicting performance accurately is a long-
standing challenge that was initially addressed using hand-crafted,
detailed models of database systems [25, 28]. In contrast, recent
learned models capture system performance characteristics auto-
matically and yield significantly better accuracy [16, 43, 50]. Many
of these learned methods use neural networks, valued for their
flexibility in input encoding and accuracy in approximating com-
plex nonlinear functions. However, they come at the cost of high
prediction latency, which is crucial for many use-cases [40, 50].
T3. In this work, we propose the Tuple Time Tree (T3), a compiled
decision tree model for performance prediction. T3 improves predic-
tion latency by orders of magnitude while maintaining state-of-the-
art-accuracy (see Figure 1). The following paragraphs summarize
its main novelties and features.
Prediction Latency.With about 4us inference latency, T3 is roughly
four orders of magnitude faster than neural network models such
as Zero Shot [16]. Even compared to models that use decision trees
like AutoWLM, T3 is orders of magnitude faster (see Figure 1). We
achieve this speedup by compiling our model to native machine
code [3].
Pipeline-BasedQuery Plan Representation.
One of T3’s main novelties is its pipeline-based query plan repre-
sentation. Query plans can be decomposed into multiple pipelines,
which scan some input and fully materialize their result. We apply
T3’s decision tree to predict the execution time of each pipeline
individually. Then, we obtain the execution time of the whole query
by summation of the execution times of all its pipelines. This de-
composition simplifies the performance prediction problem and

improves accuracy for decision trees significantly. See Section 2.2
for further details.
Tuple-Centric Prediction Targets. We predict the expected run-
ning time of pushing a single tuple into a pipeline instead of directly
predicting the execution time of that pipeline for all tuples. We also
build our feature vectors with tuple-centric predictions in mind.
To estimate the whole execution time of a pipeline, we multiply
the prediction value by the input cardinality of the pipeline. This
fits the architecture of decision trees much better and improves
prediction accuracy substantially. See Section 2.4 for further details.
Generalization. Finally, T3 employs a zero shot approach as intro-
duced by Hilprecht and Binnig [15, 16]. This means that it is trained
on a variety of database instances and generalizes to new ones.
Many previous approaches need workload traces and re-training
for every new database instance, whereas T3 can be applied in-
stantly without any expensive work.
Contributions. In summary, we make the following contributions:

• We demonstrate low prediction latency by compiling deci-
sion tree models to native machine code.

• We present a novel tuple-centric prediction strategy and
pipeline-based query plan representations and correspond-
ing feature vectors to achieve state-of-the-art accuracy with
decision trees.

• We implement these approaches in T3, an extremely fast
performance prediction model with state-of-the-art accuracy
and publish the source code and model. 1

• We thoroughly evaluate T3 with respect to latency and ac-
curacy.

2 The T3 Model
This section describes the key components of T3. First, it covers
the exact scope of the prediction problem. Next, it introduces our
pipeline-based query plan representation. Then, it covers the ar-
chitecture of decision trees. Based on this, it explains the exact
inputs and outputs of the T3 model. Finally, we show how model
compilation improves T3’s performance.

2.1 Problem Scope
Performance prediction is the task of predicting how long the data-
base system will take to execute a query without running it. T3
predicts the execution time of Umbra, a flash-based compiling re-
lational database system with in memory performance [36]. T3
works for a wide range of queries including all TPC-DS benchmark
queries. To enable accurate predictions that account for hardware
characteristics, we build our model for fixed hardware. T3 can be
transferred to predict for new hardware by re-running all bench-
mark queries (few hours) and re-training (few seconds) with the
new data. Further, T3 relies on physical query plans for detailed
information about queries. A physical query plan includes annota-
tions of expressions, tuple sizes in bytes, and cardinalities of base
relations and intermediate results. We intentionally decouple this
problem from cardinality estimation. Cardinality estimates will
inevitably be bad for complex queries [23]. Instead of trying to im-
prove cardinality estimates, we build a model that works well with

1https://github.com/MaxRieger96/T3

2

https://github.com/MaxRieger96/T3

T3: Performance Prediction With Compiled Decision Trees SIGMOD’25, June 22–27, 2025, Berlin, Germany

good estimates. However, it can also benefit from ever-improving
cardinality estimation methods [18, 53]. In this work, we focus on
performance prediction for Umbra, but the concepts are transferable
to all kinds of database systems.

2.2 Pipeline-BasedQuery Plan Representation
Decision Trees Require Flat Feature Vectors. We choose to
apply decision trees because of their speed, but they have the limi-
tation that they require a flat feature vector as input. Consequently,
previous approaches like AutoWLM represent a query by a single
feature vector [40]. However, methods that represent queries with
a single vector fail to achieve competitive accuracy.
Query Plans Consist of Pipelines. Most modern database sys-
tems only fully materialize intermediate results when absolutely
necessary. For example, aggregates or the build-side of hash joins
are pipeline breakers that need full materialization. We refer to the
path between two such pipeline breakers as a pipeline. A query plan
can be viewed as a set of individually executed pipelines, which
scan some input, perform computations on it, and materialize their
result. See Figure 2 for an example.
Performance Prediction for Pipelines. Our novel approach for
better accuracy with decision trees is to predict the execution time
for each pipeline individually instead of the whole query. To do
so, we encode each pipeline as a single flat feature vector. We then
apply T3’s decision tree model to each feature vector to predict its
execution time. To predict the execution time of the whole query,
we sum the execution times of all pipelines. Intuitively, this de-
composition of queries into pipelines simplifies the performance
prediction problem. Capturing the distinct computational aspects of
multiple pipelines within a single prediction is intricate. Predicting
for each operator individually, however, introduces new problems,
such as benchmarking operators in isolation and accounting for
dependencies between consecutive operators. In contrast, predict-
ing for individual pipelines strikes a good balance. Conceptually,
it resembles estimating the computational load of a for-loop. Sec-
tion 5.7 shows that this indeed yields better accuracy. Finally, the
use of flat feature vectors enables the use of many types of machine
learning models that require flat feature vectors as input. Some
operators within a pipeline can exhibit nonlinear effects, such as
cache behavior from differently sized hash tables or nonlinear time
complexities in sort operators. Hence we need a model capable of
capturing these nonlinearities, such as a decision tree.

2.3 Gradient Boosted Trees
We use a gradient boosted tree model from the LightGBM frame-
work [19] due to its high performance and compatibility with the
lleaves compilation framework [3].This model consists of an ensem-
ble of decision trees. Each internal tree node contains a condition
and respective branches for the condition’s outcomes (see Figure 3).
For example, a condition could be v[1] < 256where v[1] is the value
at index 1 in the feature vector. Starting at the root, we traverse
the tree based on the evaluation of these conditions on the input.
Finally, we end up at a leaf that holds a prediction value. For ex-
ample, for the vector v = (1, 384, 64), we predict the value 8ms.
To improve the accuracy of such decision trees, gradient boosting

v[1] < 256

v[0] < 2

3ms 5ms

v[2] < 100

8ms 13ms

Y N

Y N Y N

Prediction Values

Decision Nodes

Figure 3: Example of a two level decision tree. During eval-
uation, we traverse the decision nodes of the tree. Once we
reach a leaf, we return the corresponding prediction value.

methods iteratively build new trees. Each new tree aims to pre-
dict the residual error of predictions of all previous trees. Ideally,
predictions become more accurate with each added tree until they
reach a point of diminishing returns. The sum of all values in the
leaves forms the model prediction. In our case, we use 200 trees
with roughly 30 leaves each.

2.4 Model Input and Output
Tuple-Centric Prediction. Because the possible prediction values
of decision trees are limited by the number of leaves, they can only
predict a finite number of values. To enable fine-grained execution
time prediction, we predict the time for each tuple in a pipeline
instead of the time it takes to process all tuples in the pipeline.
Intuitively, the model predicts the expected time the query engine
spends pushing one tuple into the pipeline. The product of the
predicted value and the number of scanned tuples at the beginning
of a pipeline forms the full execution time. Therefore, the model
predictions can scale to arbitrary input cardinalities with a limited
amount of possible prediction values. In Section 5.7 we show that
this results in better accuracy.
Prediction Target Transformation. Since we built our model for
a fast system, the prediction targets can be very small. In our dataset,
the execution times range from 10−15s to 1s per tuple. Training
algorithms for decision trees can optimize different cost functions.
To train an accurate model for this wide range of values, we ideally
want to minimize a relative instead of absolute error. Otherwise,
the absolute error of a single long running query could outweigh
the prediction errors of thousands of short running queries. We
solve this problem by transforming the prediction targets instead
of choosing a specific cost function:

𝑡′ = −log(𝑡) (1)

where 𝑡 is the per tuple execution time. The new target values 𝑡′
are now usually in the range of 0 to 15. Further, relative deviations
for very short queries now have the same distance as for longer
running ones. We observed significantly improved accuracy pre-
dicting for these transformed targets. After this transformation, all
loss functions provided by LightGBM yield better accuracy.

2.5 Model Training
LightGBM provides an easy interface to train decision tree models
[19]. First we need a dataset for training. To form this dataset, we

3

SIGMOD’25, June 22–27, 2025, Berlin, Germany Maximilian Rieger and Thomas Neumann

Table 1: Latencies of different performance prediction mod-
els. Decision trees (DT) are faster than neural networks (NN).
A hierarchy of different models can improve average laten-
cies. Compiled T3 is the fastest model.

Cache DT NN Avg
Zero Shot [16] - - 50ms 50ms

Stage [50] ∼2us ∼1ms ∼30ms ∼300us
T3 interpreted - 22us - 22us

T3 (ours) - 4us - 4us

convert all pipelines from all queries of all but the test database
instance (TPC-DS) to feature vectors and use their respective ex-
ecution times as targets. Next, we sample 20% of training data as
validation data. To train, we call the update function 200 times us-
ing the MAPE objective function. This will create a single gradient
boosted model consisting of 200 trees.

2.6 Better Latency With Compilation
GoodPrediction Latency. Low latency is a key design goal for cost
models [40, 50]. Use-cases like scheduling and other optimization
algorithms can significantly delay query execution if they have to
wait long for model evaluation. Amazon’s Stage model approaches
this problem by building a hierarchy of predictors with varying
latencies [50]. It uses a fast cache for seen queries, a decision tree
model for simple queries, and a neural network model that is the
most accurate. Table 1 shows that, while the cache is very fast and
the decision trees are still acceptable, the neural network model
is very slow. While achieving a significantly improved average la-
tency, Stage still suffers from high latencies whenever the neural
network model is employed. In contrast, T3 is much faster because
it uses a simpler model and employs compilation to native machine
code to speed up the decision tree model.
Model Compilation. A technique that improves latency substan-
tially is model compilation (see Table 1). Instead of using LightGBM
to evaluate our model, we compile it to native machine code using
the framework lleaves [3]. LightGBM evaluates its trees using an
interpretation-based approach. In contrast, lleaves compiles inter-
nal nodes of a decision tree to only two instructions: One instruction
to compute the condition and one branch instruction to jump to
the corresponding next node. Leaves are compiled to single return
instructions. For instance, the tree in Figure 3 would be compiled to
three comparison and three branch instructions as well as four re-
turn instructions. lleaves leverages the LLVM compiler framework
to convert these instructions to native machine code.The final result
is a library providing a single predict function that any program
can link against. Note that this compilation has to be performed
only once after training and does not add to the inference latency.
The compiled version of our model reduces the latency from 22us
to about 4us for the average query we observed. This is orders of
magnitude faster than any current competitive cost model to the
best of our knowledge.
Throughput is Better for Batches. An interesting finding is that
throughput performance differs drastically from latency. Evaluating
models for a large batch (> 1000) of data points at once is much
faster than back-to-back evaluation of single ones. For example,

Table 2: Throughput of models in queries per second.

Back-to-back Batched
Neural Network 20 50,000

Decision Tree 45,000 700,000
Compiled Decision Tree 250,000 4,000,000

op

OUT

IN

BU
IL
D op

OUT

IN RIGHT XX

PR
O
BE op

OUT

IN

SC
A
N

op

OUT

IN

PA
SS
-T
H
RO

U
G
H

Figure 4: Operators can have multiple stages: build, probe,
scan, and pass-through. Furthermore, each operator has up
to three tuple streams for data input (IN, RIGHT) or output
(OUT). At each end we can consider basic features of the
pipeline.

the throughput for neural networks improved by over 1000x in our
experiments (see Table 2). However, not all use-cases can benefit
from batched processing, so we focus on single query prediction
latency in this work.

3 Feature Computation
Feature Crafting. We summarize each pipeline in a single feature
vector that is used by the model (see Figure 2). These feature vectors
need to contain all necessary information for the model to predict
the execution time. This section outlines how we form such feature
vectors.
Operator Stages. First, we distinguish between different stages of
operators as depicted in Figure 4:

• Build: Tuples come into the operator and materialize some
data. E.g., materialize, aggregation, join hash table build.

• Probe: Tuples come from a second (right) input source, per-
form some computation and leave the operator again. E.g.,
join probe.

• Scan:The operator scans some tuples and outputs them. E.g.,
table scan, materialize scan, aggregation scan.

• Pass-Through: Tuples enter the operator and leave it again.
E.g., filter or map.

For example, a join operator has a build stage, that builds a hash
table on its left input. But it also has a probe stage, where it probes
tuples from the right input side against the hash table and outputs
them to the next operator. In contrast, a select operator will only
have a pass-through stage where tuples from the input go directly
to the output. Finally, a hash-based group-by operator will have a
build stage to group elements and a scan stage to output the results.
Tuple Streams. For each operator stage, we consider the relevant
tuple streams: IN, OUT, and RIGHT. We use IN for the input of
operators that only have one input and for the left input of operators
that have two input streams. OUT always denotes the outgoing
stream of an operator. RIGHT refers to the right input of operators

4

T3: Performance Prediction With Compiled Decision Trees SIGMOD’25, June 22–27, 2025, Berlin, Germany

1 fn getFeatureVectors(queryPlan):

2 vectors = []

3 for pipeline in plan.pipelines ():

4 currentVec = zeros(n_features)

5 for op in pipeline.operators ():

6 stage = op.getStage(pipeline)

7 currentVec[countLocation(op, stage)]++

8 features = op.getBasicFeatures(stage)

9 for feature in features:

10 i = getLocation(feature , op, stage)

11 if i >= 0:

12 currentVec[i] += feature.value

13 vectors.append(currentVec)

14 return vectors

Listing 1: Feature computation for a whole query plan in
pseudocode.

that have two input streams. For example, the build stage of a join
operator only uses the IN stream. The probe phase involves both
RIGHT and OUT.
Basic Features. Computing features in a structured way makes
it easily manageable to support all 19 different physical operators
and 28 stages that we encountered in our benchmarks. Hence, we
use generic features that can be used for different operators, stages,
and input/output streams:

• Percentage of all tuples at the start of a pipeline that reach
a tuple stream.

• Size in bytes of single tuples that reach a tuple stream.
• Cardinality of an input or output stream.

Our most used feature is percentage. It indicates the fraction of
tuples in the pipeline that reach a certain stage. In other terms, it is
the product of the selectivities of all its preceding operators. Note
the subtle difference to selectivity. This is a very relevant feature, as
tuples that do not reach an operator have no effect on its execution
performance. E.g., building a hash table for a join is much faster if
only 1% of tuples actually reach the operator. We use this feature for
all operators. Next, we use the size of each tuple for materializing
operators to capture the overhead of storing a tuple. Finally, we
use the cardinality of tuple streams to capture nonlinear execution
times for materializing operators. For example, we use it for the size
of hash tables in joins as well as for the sort operator. In summary,
there is a small set of hand-selected features for all possible stages of
each operator type. Note that all of these features are tuple-centric,
which means they are suitable to predict the expected execution
time of pushing a single tuple through the pipeline.
Feature Encoding. Listing 1 describes the process of creating the
feature vectors for a query. First, we split the respective query plan
into its pipelines. Then, we initialize a new feature vector with only
zeros for each pipeline. Note that the size is always fixed to the
total number of distinct features n_features, in our implementa-
tion that is 110. This number is determined by the features added
to the individual operator stages and will change when new oper-
ators or features are added. Next, we iterate over all operator of
the current pipeline. For the operator, we determine, which stage

1 -- TPC -H Query 5

2 select

3 n_name ,

4 sum(l_extendedprice * (1 - l_discount))

5 as revenue

6 from

7 customer ,

8 orders ,

9 lineitem ,

10 supplier ,

11 nation ,

12 region

13 where

14 c_custkey = o_custkey

15 and l_orderkey = o_orderkey

16 and l_suppkey = s_suppkey

17 and c_nationkey = s_nationkey

18 and s_nationkey = n_nationkey

19 and n_regionkey = r_regionkey

20 and r_name = 'ASIA'

21 and o_orderdate >= date '1994 -01 -01'

22 and o_orderdate < date '1994 -01 -01'

23 + interval '1' year

24 group by

25 n_name

26 order by

27 revenue desc

Listing 2: TPC-H Q5 SQL. This query computes the revenue
of all Asian countries in the year 1994 and orders them by
revenue.

it executes in the current pipeline. Using the respective location,
we increment the count of this operator stage in the feature vector.
Then we compute all basic features for the operator stage. For each
of those features, we determine the corresponding location within
the feature vector. Note that we use different subsets of the basic
features for different kinds of operator stages. After scanning all
operators in the current pipeline, we add the current feature vector
to the result collection. Finally, we return the collection of feature
vectors that can be used by T3.
Feature Encoding Example. As a running example, we use TPC-
H query 5 with scale factor 10 (see Listing 2). The respective query
execution tree is depicted in Figure 2. Note that Umbra does not
include the tables nation and region in the query plan. Because
these tables are very small, the system performs all computation
on this data during optimization. Umbra computes all qualifying
nation keys and removes the joins with those tables. Instead, it uses
in-expressions that check whether the respective nation keys are in
a list of qualifying values. Listing 3 shows the respective feature
vector for pipeline 5. Pipeline 5 scans the customer table, selects all
tuples that have a qualifying nation key, and builds a hash table
over the data. Note that we omitted feature indices and all values
that remain zero for legibility. The whole feature vector has over
100 elements. We can see that there is one table scan scan stage and

5

SIGMOD’25, June 22–27, 2025, Berlin, Germany Maximilian Rieger and Thomas Neumann

Pipeline5 (scan: 1'500'000 tuples)

TableScan_Scan_count: 1

TableScan_Scan_in_card: 1'500'000

TableScan_Scan_out_percentage: 20%

TableScan_Scan_in_expression_percentage: 60%

TableScan_Scan_between_percentage: 100%

HashJoin_Build_count: 1

HashJoin_Build_in_card: 300 '270

HashJoin_Build_in_size: 8

HashJoin_Build_in_percentage: 20%

Listing 3: Feature vector of TPC-H Q5 Pipeline 5. All values
that are zero are omitted.

Pipeline2 (scan: 59 '986 '052 tuples)

TableScan_Scan_count: 1

TableScan_Scan_in_card: 59 '986 '052

TableScan_Scan_out_percentage: 100%

HashJoin_Probe_count: 2

HashJoin_Probe_in_card: 556 '771

HashJoin_Probe_right_percentage: 103%

HashJoin_Probe_out_percentage: 3.1%

GroupBy_Build_count: 1

GroupBy_Build_out_card: 5

GroupBy_Build_out_size: 32

GroupBy_Build_in_percentage: 0.1%

Listing 4: Feature vector of TPC-H Q5 Pipeline 2. There are
two hash join probe stages in this pipeline. All values that
are zero are omitted.

one hash join build stage. The input cardinality of the table scan
operator is the size of the customer table. Out of these 1.5 million
tuples, about 20% get selected by expressions. We will discuss these
expressions in the ’Table Scan Operators’ paragraph later in this
section. Consequently, the hash join is also reached by 20% of the
input tuples and has a cardinality of about 300k. As the hash table
only needs to store the c_custkey column, each materialized tuple
has eight bytes.
Duplicate Operators. Often, the same operator type appears mul-
tiple times within a single pipeline. Most commonly, pipelines con-
tain multiple successive join probes. Note that only probe or pass-
through operator stages can be used repeatedly. Most operators
with very complex nonlinear cost are materializing operators and
appear only once per pipeline (sort, group-by, join-build, …). To fit
the features of duplicate operator stages into a fixed sized feature
vector, we use feature addition. To enable this, we carefully de-
signed our basic features to maintain meaning after being summed
up. To indicate duplicate operators, we also add a count feature for
each operator. If a stage type does not appear in the pipeline, the
count feature will remain at 0. For each occurrence, we increment
this feature value by one. We can see this in the features of TPC-
H query 5 pipeline 2 in Listing 4. There are two hash join probe
phases and the HashJoin_Probe_count feature is set to 2. Next, our
percentage feature, as described above, indicates the likelihood of a

single tuple of reaching a certain operator stage. The sum of several
percentages forms the expected number of stages a tuple will reach.
In the Q5 Pipeline 2, all tuples reach the first probe, but only 3%
satisfy the join predicate and reach the second probe. The expected
value of probes per tuple will be 100% + 3% = 103%, the value
we compute for HashJoin_Probe_right_percentage. Although this
summation of features loses some information, it is a meaningful
input representation that works well in practice.
Table Scan Operators. Table scans are very important operators
for performance prediction, as they commonly make up a large
part of the execution time. We use input cardinality and output
percentage features, as described above, to account for selections
pushed down into the operator. Furthermore, we add additional
features for the different kinds of filter predicates in table scans. We
create a feature for simple comparison operations, like-expressions,
between-expressions, and all other observed expression types. For
each of those, we add the percentage of tuples for which they are
evaluated. For example, in Listing 3 the table scan selects all Asian
customer tuples. Umbra optimized the join with region and nation
away and checks c_nationkey directly. Additionally, it optimized
this check into two expressions. First, tuples are checked to be
within 8 and 21 by a between-expression. Only if they qualify, they
are checked against the actual values (8, 9, 12, 18, 21) with an in-
expression. Hence, our feature vector shows that all tuples reach
the between-expression with TableScan_Scan_between_percentage
= 100%. Only 60% of the tuples reach the in-expression and only
20% of the tuples are selected and pushed to the next operator.
Little Manual Work. We aim to minimize the required effort to
add new operators to T3. To do so, we define the features for each
operator stage as a list of required basic features. T3 then automati-
cally compiles all required features into a feature vector and assigns
indices to each feature. This process allows us to add new operators
with minimal manual effort.

4 Generating and BenchmarkingQueries as
Training Data

Machine Learning Requires Data. Machine learning models rec-
ognize patterns from their training data. If those patterns generalize
well, they can yield good results for new data points. For our pur-
pose, this means we need to train our model on a large dataset of
benchmarked queries.
Training Data Distribution. Ideally, we could sample random
queries from the distribution of all workloads that the model will
be used on in the future [38]. We would need both, the data of
database instances and the queries that are used. This is impossible
because real-world workloads are not available to us. Hence, we
randomly generate queries to create a training dataset that covers
a wide spectrum of potential queries. We generate queries for a va-
riety of database instances to enable the model to generalize across
instances.

4.1 A Multitude of Database Instances
Data.We can maximize the coverage of the possible query space by
using more database instances. Hence, we use 21 publicly available
database instances that are compiled by Hilprecht and Binnig for
their zero shot model [16]. This contains synthetic benchmarks

6

T3: Performance Prediction With Compiled Decision Trees SIGMOD’25, June 22–27, 2025, Berlin, Germany

such as TPC-H and TPC-DS on different scale factors as well as
some real-world data covering financial, health, and other data.
Queries. JOB, TPC-H, and TPC-DS are benchmarks with both data
and queries [23]. We add the provided queries of these benchmarks
to our dataset of queries. However, these are not enough to form a
train set. The larger part of our dataset consists of randomly gener-
ated queries for all instances.
Database Statistics. We collect statistics over the data for query
generation. First, we parse the SQL schema definition of an instance
to obtain table names as well as column names and types. Then, we
run some queries against the database to retrieve table cardinalities,
distinct counts, and value ranges for numeric types. Finally, we
find potentially join-able columns from different tables by consid-
ering their names and types. Our approach of using automatically
retrieved features to generate queries is scalable and allows to add
new instances with minimal effort.

4.2 Randomly Sampling DiverseQueries
Query Structure. As stated above, we aim to provide a query set
that is as diverse as possible. Previous approaches generate random
queries that adhere to a rather strict structure [16, 20]. In contrast,
we build queries modularly from the following primitives:

• Filter: A table scan followed by some filter predicates. We
use both, simple numeric filters to vary the percentage of
qualifying tuples, as well as more complex predicates such
as like patterns or between expressions and more.

• Join: A set of tables that are connected by possible join
columns.

• Aggregate: A collection of aggregate functions that combine
all tuples to a single row or group them by a suitable column.

• Sort: A sort operator that orders arbitrary input on suitable
columns.

• Project: A random subset of available columns that are in-
cluded in the output.

We can combine each of those primitives to create new query struc-
tures. In our query set, we explicitly generate differently structured
groups of queries. For example, we have a group of queries that only
include filters and projections. They all scan a single random table,
use random filter predicates, and return a column subset. There is
also a group combining all primitives. Each query of this group
scans several tables and performs some filter predicates on them.
It joins all of those on suitable columns and groups the output by
some attributes. Finally, it sorts the resulting values by any column
and selects a subset of the columns as output. Additionally, we
generate queries of a fixed structure that use window functions.
Dataset ofQueries. For each of the 16 query structures, we gen-
erate 40 queries per database. Overall, we generate about 14,000
queries. To evaluate our model, we use all queries from the TPC-DS
database instance to form a test set. As we have three variants of
the TPC-DS database instance with scale factor 1, 10, and 100 we
have over 2000 queries for evaluation. There are 13,000 queries we
use for training. The train set does not include any TPC-DS queries.

4.3 Benchmarking
Reliability of Benchmarks. To ensure reliable execution time
measurements we run each query 10 times and use the median

Table 3: Deviations of benchmarks as q-error. For each query
we consider the most consistent 2

3 of all measured values
and report the one that is the furthest from the median. This
table shows statistics over all queries. For 90% of all queries,
the measured running time deviates by less than 13%.

p10 p50 p90 p95 p99 Avg
1.002 1.036 1.129 1.191 1.400 1.058

running time. For additional information such as cardinalities, we
also run an explain analyze statement. Finally, we store 10 running
times and one analyzed plan for our experiments. Hence, we can
also evaluate the deviations observed in our benchmarks. Table 3
shows statistics over the largest q-errors. Out of the 10 runs, we
compare 2

3 (i.e., 7) that are closest to the median. We consider these
statistics as a theoretical optimum for any performance prediction
model. So we expect any model predictions to be at least 5.8% off on
average, which is the observed running time variation. Note that
repeated runs are not necessary for good model performance (see
Section 5.7). In the following section, we evaluate T3 with regard
to accuracy and speed.

5 Evaluation
We ran all our benchmarks on an Ubuntu 24.04 machine using
Linux 6.8.0-39-generic with 64 GiB of DRAM and a Ryzen 9 5950X
processor with 32 threads on 16 cores locked at 2.8 GHz.

5.1 Prediction Speed
Fast. As depicted in Table 1 and Table 2 T3 is remarkably fast. The
advantages in speed come from two main factors. First, we use
decision-tree-like models that are inherently faster than neural
networks. Second, we compile our model to native machine code
using the LLVM-based compilation framework lleaves [3]. This na-
tive machine code executes much faster than regular decision tree
frameworks.
Simple. Another benefit of a fast model is that one could replace
complex hierarchicalmodels like Stagewith a single component [50].
T3’s prediction latency is closer to a cache hit in Stage than to the la-
tency of Stage’s other models. Furthermore, it prevents the rare but
very expensive calls to its slow global model, which would increase
tail latencies. It also has the advantage that a single component is
significantly easier to maintain than a whole model hierarchy.
Scalable. T3 uses one feature vector per pipeline in a query. Con-
sequently, the prediction latency increases for queries with more
pipelines. In our dataset, we observed an average of 4 and a max-
imum of 45 pipelines per query. Figure 5 shows the prediction
latency of a single-threaded compiled implementation. For this
benchmark, we randomly select 1 to 1000 pipelines, since many
random pipelines perform equivalently to a large query for T3. We
observe that the prediction time scales linearly from about 1.5us to
700us for 1000 pipelines. In contrast, the interpreted version is much
slower when only using a single thread. Interpretation using mul-
tiple threads can be faster than the compiled single thread model
for very large queries. However, we expect nearly all real-world
queries to have fewer than 100 pipelines. For these, multi-threaded

7

SIGMOD’25, June 22–27, 2025, Berlin, Germany Maximilian Rieger and Thomas Neumann

1 10 20 30 40 50
0.00

0.05

0.10

La
te
nc

y
in

m
s

Avg Query

1 250 500 750 1000
0.00

0.25

0.50

0.75

1.00

Compiled ST

Interpreted ST

Interpreted MT

Number of Predicted Pipelines

Figure 5: T3’s prediction latency by number of pipelines.
Compiled T3 is always single-threaded (ST), interpretation
can also be executed multi-threaded (MT). The average query
consists of 3 pipelines and has a prediction latency of 4us.

10−5 10−3 10−1 101
Running Time of Query in Seconds

0

500

1000

1500

Fr
eq

ue
nc

y

Figure 6: Observed running times of queries in our dataset.

interpretation does not improve latency compared to the compiled
model. Also, the compiled version could easily be parallelized as
well, but single-threaded execution leaves the remaining CPU cores
available for other workloads. Hence, we consider the compiled
version to be the best pick. Note that neural network models that
rely on the graph structure of query plans also suffer from increased
execution times for larger queries. We conclude that T3 scales to
extremely large queries while maintaining low prediction laten-
cies. In the following sections, we will show that its accuracy is
competitive to state-of-the-art approaches.

5.2 Dataset ofQueries and Benchmarks
Running Times. As depicted in Figure 6, the running times of
queries in our dataset vary drastically. The most common running
times are around one millisecond. But the longest running queries
run for over 20s while the shortest finish in less than 2us.
Very Short Running Queries. Figure 6 also shows a spike of
many queries that run for a very short time. This usually occurs for
two main reasons. First, some queries are extremely selective and
produce very small or empty intermediate results. Second, the data-
base’s optimizer can sometimes answer the query without starting
the execution engine. Optimizations like early-execution and predi-
cate simplification can determine very small or empty intermediate
results. In our experiments T3 did not show any notable accuracy
anomalies for these queries.

Queries p50 p90 Avg
Train Queries 1.14 1.69 1.32

All TPC-DS Test Queries 1.19 1.95 1.46
TPC-DS Benchmark Queries 1.30 2.77 1.94
TPC-DS sf 100 Test Queries 1.25 2.16 1.57

TPC-DS sf 100 Benchmark Queries 1.48 3.30 2.12
Table 4: Accuracy of T3 measured in q-error. T3 is trained
on 20 training database instances and has never seen any
information about TPC-DS data or queries.

Q-Error Percentiles and Average. We employ q-error as an eval-
uation metric for meaningful comparison [35]:

q-error(𝑎, 𝑏) = max (𝑎
𝑏
, 𝑏
𝑎
) (2)

Q-error penalizes overestimation and underestimation equally and
is easy to interpret. Further, we aggregate the q-errors of many
queries in three ways: Regular averages as well as p50 and p90
percentiles. As we will show in the following, there can be heavy
outliers for performance prediction. Percentiles and averages allow
us to reason about the whole accuracy distribution.

5.3 Accuracy on Test Set
Accuracy. First, we show the prediction accuracy of T3 for exact
cardinalities in Table 4. Results with predicted cardinalities are
in Section 5.6. T3 was trained on 20 database instances but has
never seen any information about TPC-DS data or queries. First, we
report the accuracy on the training queries. From the low average q-
error of about 1.3, we conclude that the model can capture relevant
information from the provided feature vectors. Second, we provide
the accuracy for our whole test set of queries for TPC-DS database
instances. These test queries contain over 1500 generated queries
of all groups, as described in Section 4.2, as well as the 100 queries
of the original TPC-DS benchmark. The test queries were run on
three TPC-DS database instances with scale factors 1, 10, and 100
respectively. With an average q-error of about 1.5, the accuracy on
this unseen workload and environment is only moderately worse.
We consider this a good result and we show in Section 5.4 that it is
competitive to state-of-the-art models. Clearly, T3 generalizes to
new data. Next, we show the accuracy for the 100 queries in the
TPC-DS benchmark. It is slightly worse than the accuracy for our
whole test set. Hence, we conclude that our generated query set is
diverse enough to represent a wide range of workloads but doesn’t
fully cover the variety of the TPC-DS benchmark. Finally, we show
the error only on the dataset with scale factor 100. We can see that
predictions are slightly less accurate for these larger datasets.
Error Distribution. Figure 7 depicts the distribution of different
prediction errors for our test set. We can see that the majority of
queries are predicted with a small q-error. Furthermore, there are
few but heavy outliers. This explains why the average q-error far
exceeds the p50 accuracy in Table 4.
Query Types. Figure 8 shows the errors for different query types.
We can see that there are some differences among query types.
Especially, queries with selections, joins, and aggregations (SeJSiA,
CSeJSiA) can be predicted well. Predicting the queries that come

8

T3: Performance Prediction With Compiled Decision Trees SIGMOD’25, June 22–27, 2025, Berlin, Germany

1 2 3 4 5
0

500

1000

Fr
eq

ue
nc

y

8 8 1 5 4 4

5 10 15 20 25 30 35 40
1 3 1

Q-Error of Test Queries

Figure 7: Frequency distribution of different q-errors for T3
predictions on all TPC-DS test queries.

Fix
ed Se SiA A

SeA
J

SeJ JA
SeJ

A JSi
A
SeJ

SiA CS
e
CS

eA CS
eJ
CS

eJA

CS
eJS

iA W
1

2

Q
-E

rr
or

Query Type
p50 p90 Avg

Figure 8: Different q-errors for different query types on TPC-
DS data. Benchmark queries (Fixed) as well as generated
queries: Selections (Se), aggregations (A), simple aggregations
(SiA), joins (J), complex selections (CSe), window functions
(W), and combinations of them.

TP
C-H

TP
C-D

S

Ac
cid

ent
Air

lin
e

Bas
eba

ll

Bas
ket

bal
l

Ca
rci
nog

ene
sis

Co
nsu

me
r
Cre

dit

Em
plo

yee Fhn
k

Fin
anc

ial
Ge

nee
a

Ge
nom

e

He
pat

itis Job

Movi
ele

ns
Sez

nam Ssb

Tou
rna

me
nt

Walm
art

1

2

Q
-E

rr
or

Database Instance
p50 p90 Avg

Figure 9: Different q-errors for different evaluation database
instances. T3 is always trained on all but one database in-
stance and then evaluated on the left-out instance. For TPC-H
and TPC-DS, the respective numbers include different scale
factors.

from the original TPC-DS benchmark (Fixed) are hardest to predict.

Database Types. Figure 9 shows the q-errors for different database
instances. Again, T3 is never trained on the evaluation instances.
The median (p50) q-error does not vary much across databases.

Hence, T3 shows robust generalization across all database instances
we used. The p90 and average q-errors vary a bit more.

5.4 Accuracy Comparison
Compared Models. In this section we compare T3’s accuracy to
state-of-the-art models. We provide a realistic comparison to Zero
Shot [16] and explain why a comparison to AutoWLM and Stage
is not meaningful. Here an overview of the models we show in
Figure 1:

(1) T3 (ours), a compiled decision tree that is trained on ran-
domly generated queries on 20 database instances running
on Umbra. Evaluated on all TPC-DS test queries.

(2) Zero Shot cost models as proposed by Hilprecht and Bin-
nig [15, 16]. A neural network that is trained for the Post-
greSQL database using a huge set of randomly generated
queries for almost the same database instances as T3. Evalu-
ated on JOB-full queries that have a very similar pattern to
the generated training queries.

(3) Stage, a hierarchical model for Amazon Redshift [50]. It
combines caches, decision trees, and neural networks. The
training and evaluation datasets for AutoWLM and Stage are
traces from the workload observed at Redshift over three
weeks across 100 instances.

(4) AutoWLM, the predecessormethod of Stage [40]. Aworkload-
based decision tree model that was replaced to increase ac-
curacy and handle changing workloads.

Comparison Problems.All of these approaches are created for dif-
ferent database systems. This means that various factors can affect
the performance prediction problem. For example, parallel and dis-
tributed execution strategies, query compilation or interpretation,
storage medium access, and database operator implementations all
affect the performance behavior of the systems. It is not clear that
predicting performance for different systems is equally hard. Fur-
thermore, all systems are trained and evaluated on different queries.
As shown in Figure 8, the kinds of queries can heavily influence
the prediction accuracy. For example, Zero Shot does not work for
complex workloads like TPC-DS that are also harder to predict,
so its accuracy appears better. Finally, for comparability, we use
estimated cardinalities for all systems. Consequently, inaccurate
cardinality estimates can further impact the predictions.
Neither Stage nor AutoWLM are publicly available. Therefore, we
cannot reproduce results for these models. Also, the workload used
for their evaluation is unavailable. So every try to provide a compar-
ison would depend on the workload we choose to evaluate T3. As
the workload has a tremendous impact on the accuracy, we decide
not to provide a direct comparison.
Accuracy Comparison to Zero Shot. As Zero Shot model im-
plementations are available, we can reproduce the results for com-
parison with T3 in a reasonably comparable way. To eliminate the
effects of cardinality estimation, we use perfect cardinalities. Fur-
thermore, we evaluate on the same queries: the Join Order Bench-
mark [23], also called JOB-full. The remaining difference is that
both models predict the performance of different database systems.
JOB-full contains queries with several joins and complex selection
predicates. We trained Zero Shot using their complex workload as
training queries, which follow a very similar pattern that consists of

9

SIGMOD’25, June 22–27, 2025, Berlin, Germany Maximilian Rieger and Thomas Neumann

1.00

1.05

1.10

1.15

1.20

p5
0
Q
-E

rr
or 1.1 1.1

1.0

1.5

2.0

2.5

p9
0
Q
-E

rr
or

1.6

2.4

1.0

1.2

1.4

1.6

Av
g
Q
-E

rr
or

1.2

1.6

Model
T3 (ours) Zero Shot

Figure 10: Accuracy comparison of Zero Shot model and T3.
Both are trained on other database instances and evaluated
on the queries of the Join Order Benchmark.

Table 5: Optimization time of join ordering with DPsize using
T3 compared to a very simple cost function. Optimizes all
113 queries of the Join Order Benchmark.

Cost Model Opt. Time Model Calls Time/Call
Cout 8.5ms 158320 0.054us
T3 525.4ms 316640 1.659us

selective table scans, equi-joins, and a final aggregation to a single
tuple. Figure 10 shows that T3’s accuracy actually matches Zero
Shot models in this case. The median (p50) q-error of T3 is approxi-
mately equal, p90 and Avg q-errors are better. We also conducted
the same comparison with estimated instead of exact cardinalities.
T3’s accuracy is superior in all metrics in that experiment. We con-
clude that neural network models yield excellent accuracy. Yet, T3
matches and even surpasses this accuracy in comparable settings.

5.5 Join Ordering Microbenchmark
Join Ordering Implementation. To validate the applicability of
T3 to low latency use-cases, we implement a join order algorithm
that uses T3 as a cost model. In particular, we implement DPsize [34]
in C++ and apply it to the queries of the join order benchmark [23].
As a baseline, we use DPsize with Cout as introduced by Cluet and
Moerkotte [10]:

Cout(T) = {
0 if T is a leaf
|T| + Cout(T1) + Cout(T2) if T = T1 ⋈ T2

(3)

This is a very simple cost function that can be computed by adding
three values in DP algorithms. We use a cardinality oracle to pro-
vide correct cardinalities with low latency for both variants. Hence,
our implementations should have minimal overhead and should
stress the performance impact of calling T3.
Optimization Speed. Optimizing all 113 queries using T3 is about
60x slower in our implementation. Exact numbers are listed in Ta-
ble 5. On average, a call to T3 takes less than 2us. This is faster
than the expected average we provided in Table 1 because each call
predicts only one pipeline. Furthermore, there are twice as many
calls to T3 than to Cout. This is because for every new subtree, two
pipelines change. We add the build stage of a hash join to the open
pipeline of the left subtree and a probe stage to the open pipeline

Table 6: Execution time of all JOB queries. Join orderings
generated by our DPsize implementation using Cout and T3.
For reference we also include Umbra’s native optimizer.

Cost Model Execution Time
Cout 1.348s
T3 1.366s

Native DB 1.382s

of the right subtree. We cache the cost for all other pipelines that
already finished in the subtrees. Overall, we can see that using T3
for algorithms that call it very often is feasible. Nonetheless, it is
still comparatively slow for join ordering.
Resulting Trees. In this section, we validate that our join ordering
algorithm actually works with T3. To do so, we force Umbra to
execute the queries with the join ordering found by our algorithm.
Even though Cout is very simple, we expect it to work very well for
this use-case. Minimizing the sizes of intermediate results should
be a near-perfect strategy. Note that we use the correct cardinali-
ties for both Cout and T3. While Umbra has to use the join order
provided by the plan, it still performs simple optimizations that
do not change the structure. For example, it chooses to build hash
tables over the smaller of the two inputs and probe the larger side.
Hence, the symmetric structure of Cout is no disadvantage. We
therefore consider equal execution times for both models a good
result. As shown in Table 6, the plans found using T3 are slightly
worse than using Cout. The total execution time of all2 JOB queries
with T3’s plans is about 1.6% longer than Cout’s plans. In most cases
both algorithms result in the exact same plans. For eight queries,
T3 provides slightly faster plans, while for 16 queries Cout’s plans
are slightly faster. We observed that T3 sometimes prefers plans
with lower depth but larger intermediate result size, as long as
these intermediate results are not materialized. Umbra’s default
join order algorithm yields slightly slower plans. The reason for
this is that it does not have access to the true cardinalities during
optimization and has to rely on statistics for cardinality estimation.
This experiment validates that T3 gives reasonable estimates. It also
shows that Cout, although unusable to predict execution time, is
still a good metric for join ordering.
Performance Prediction Not Useful For Join Ordering. We
argue that join ordering is not a very compelling use-case for elab-
orate cost models like T3. Leis et al. state that very simple cost
models are suitable for yielding good join orderings [23]. The rea-
son for this is that join ordering algorithms do not need to know
how long individual plans will take to execute. Instead, they only
need a reliable metric to compare two plans to each other. Mini-
mizing intermediate result sizes is intuitively a sensible strategy.
Furthermore, details in the cost model will usually be outweighed
by cardinality estimation errors. The potential for improvement
with different cost models is thus limited. Additionally, join order-
ing algorithms tend to call the cost model tremendously often. T3
is fast enough to be used for optimizing moderately large queries.
However, we believe that adaptive optimization frameworks will
benefit more from covering larger search spaces with simple cost

2Note that we excluded the results of query 33 because our forced query plans do not
correctly distinguish between self-joining relations and the results are not reliable.

10

T3: Performance Prediction With Compiled Decision Trees SIGMOD’25, June 22–27, 2025, Berlin, Germany

1.0

1.2

1.4

p5
0
Q
-E

rr
or

1.2

1.5
1.5

5

10

p9
0
Q
-E

rr
or

2.0

11.6

5.9

2

4

6

Av
g
Q
-E

rr
or

1.5

4.9

7.5

Cardinalities for Model Training and Evaluation
Exact Train, Exact Eval.
Exact Train, Estimated Eval.
Estimated Train, Estimated Eval.

Figure 11: Accuracy with perfect and estimated cardinalities.
Three variants: 1. Amodel trained onperfect cardinalities and
evaluated on perfect cardinalities. 2. Same model trained on
perfect cardinalities and evaluated on estimated cardinalities.
3. Model trained on estimated cardinalities and evaluated on
estimated cardinalities. Median (p50) q-error left, p90 q-error
middle, and avg q-error right. Evaluation on all TPC-DS test
queries on scale factors 1, 10, and 100.

models than from using more complex cost models and introduc-
ing greedy algorithms earlier [37]. Hence, we consider T3 useful
for other low latency use-cases as listed in Section 1, but do not
recommend it as a join ordering cost model.

5.6 Cardinality Estimates
Predicted Cardinalities. As described in Section 2.1, we use per-
fect cardinalities to train and evaluate T3. We argue that cardinality
estimation is an orthogonal problem that is out of scope for this
work. A lot of research is done on better cardinality estimation
methods. For example, Hilprecht and Binnig used DeepDB cardi-
nality estimations to improve their model [16, 18]. If those methods
get better, T3 will benefit directly as well. Nevertheless, in real use-
cases we do not have correct cardinalities at hand. So we provide
accuracy numbers for estimated cardinalities in Figure 11. First, we
see that the median q-error degrades for imperfect cardinality esti-
mates as expected. Second, the p90 q-error increases significantly.
Large cardinality estimation errors also result in large performance
prediction errors. These large errors also strongly affect the average
q-error. While the median q-error only changes slightly, the aver-
age multiplies. This was also observed for Stage [50]. Furthermore,
we see that for most queries T3 trained on estimated instead of
perfect cardinalities is more accurate. T3 successfully compensates
for cardinality estimation errors in many cases. However, the larger
average error indicates that there a few very heavy outliers, which
do not exist when trained on exact cardinalities. We conclude that
while the model can compensate for wrong cardinality estimates in
many cases, it fails worse when it cannot. We observe that incorrect
cardinality estimates distort performance prediction accuracy sub-
stantially. Therefore, these numbers are not very suitable for a good
judgement of T3’s prediction quality. Once again, better cardinality

100 101 102 103 104
Cardinality Estimation Error (Q-Error, Log Scale)

100

101

102

Pr
ed

ic
tio

n
Er

ro
r

(Q
-E

rr
or
,L

og
Sc

al
e)

p50

p90

avg

p50

p90

avg

T3

Zero Shot

Figure 12: Accuracy of T3 and Zero Shot for artificially de-
graded cardinality estimates. Going from exact cardinalities
to 1000x distorted cardinalities.

1.0

1.2

1.4

p5
0
Q
-E

rr
or

1.2

1.3

1.3

1

2

3

p9
0
Q
-E

rr
or

2.0

2.9

3.5

5

10

Av
g
Q
-E

rr
or

1.5

7.0

13.0

Prediction Model Variant
Per Tuple (ours) Per Pipeline Per Query

Figure 13: T3 accuracy when predicting for a single tuple,
an individual pipeline, or a whole query. The second variant
tries to directly predict the execution time for the whole
pipeline. The third variant predicts on a single feature vector
that is the sum of all pipeline feature vectors.

estimation remains an important and unsolved problem. Further-
more, we argue that future work on better cardinality estimates
is the most promising direction for improvements in performance
prediction.
Accuracy Under Degrading Cardinality Estimates. To investi-
gate T3’s resilience against cardinality estimation errors, we show
the degradation of model accuracy under increasingly distorted
cardinality estimates. To do so, we manually modified the cardinal-
ities by increasing factors. Figure 12 shows that with increasing
errors in cardinality estimates the accuracy of both T3 and Zero
Shot decreases drastically. While both models start at roughly the
same accuracy, T3’s prediction error increases slightly faster for
small errors in cardinalities. However, when cardinalities are very
imprecise, roughly 500x, Zero Shot starts to degrade worse than
T3.

5.7 Ablation Study
In this section, we investigate how individual aspects of T3 con-
tribute to its excellent prediction accuracy. In all following experi-
ments, T3 is trained on all except the TPC-DS database instances
and evaluated on all TPC-DS test queries with exact cardinalities.
Per Pipeline Feature Vectors. One of the most novel ideas of

11

SIGMOD’25, June 22–27, 2025, Berlin, Germany Maximilian Rieger and Thomas Neumann

1.0

1.1

1.2

p5
0
Q
-E

rr
or

1.2 1.2
1.2 1.2

1.00

1.25

1.50

1.75

2.00

p9
0
Q
-E

rr
or

1.9 1.9 1.9
2.0

1.0

1.2

1.4

Av
g
Q
-E

rr
or

1.5 1.5
1.5

1.5

Number of Benchmark Runs
1 2 5 10

Figure 14: Model accuracy for different number of bench-
mark runs. There is no evidence that multiple benchmark
runs improve model performance significantly.

T3 is to predict performance for each pipeline. Our decision tree
model can only work with flat feature vectors. By decomposing
queries into several feature vectors for each pipeline, we still enable
indicative feature vectors for the workload. In this experiment, we
create a variant of T3 that uses only a single feature vector per
query. We simply use the sum of all per pipeline feature vectors.
Figure 13 shows that T3 is much more accurate when predicting for
individual pipelines. As described in Section 5.1, multiple predic-
tions for single queries result in higher prediction latency. However,
we argue that prediction latency is good enough for most use-cases
and that the gain in accuracy is worth the overhead of multiple
predictions.
Per Tuple Prediction. As described in Section 2.4, T3 predicts the
running time for a single tuple in a pipeline. Note that this is only
possible when we predict the execution time for each individual
pipeline. Traditionally, similar methods try to estimate the running
time for the whole pipeline directly. Due to the architecture of de-
cision trees, it is hard for them to precisely predict values over a
large range. Predicting per-tuple times instead automatically scales
the prediction to different relation sizes. Figure 13 validates our in-
tuitive explanation. T3 works considerably better when predicting
execution times for single tuples.
Repeated Benchmarks. Finally, we investigate the effect of clean
benchmark data for training. We trained T3 with benchmarks that
are each executed 10 times. Then, the median execution time is used
as training targets. Of course, this increases the required time to
run benchmarks. This is not an issue for a research project like this
work, as we need to collect training data only once. However, it
might be useful to shorten the benchmark time for some use-cases,
such as creating models for a variety of hardware. As depicted in
Figure 14, there is no clear advantage to running several bench-
marks per query. Hence, the pure running time of all queries can be
decreased by a factor of 10 by executing them only once. With the
additional overhead of running queries and requesting analyzed
plans, we estimate that the benchmarking time could be reduced to
about an hour.

6 Limitations
Although we consider T3 a very practical performance prediction
model, our implementation has some limitations.

Spilling to Disk Not Considered. Umbra does not implement
operators that spill intermediate data to disk. Consequently, our
implementation of T3 does not cover the additional cost of spilling
operators. Nevertheless, T3 should implicitly capture the effects of
spilling analogously to the cost of materializing data in memory.
Further, T3’s architecture allows one to add new features to model
spilling better.
Resource Congestion Not Considered. In our experiments, we
do not run queries concurrently. Hence, T3 will always predict
the expected execution time of the query when no concurrent
queries are running. We think that it would be possible to model
concurrency using new features and training data to some degree.
However, we consider workload-centric approaches like the work
of Zhou et al. [56] more promising for this goal.
Resource Usage Modeled Implicitly. We do not use explicit re-
source usage features like disk reads vs. cached data. T3 models
disk reads implicitly, as it observed scans over large data to take
longer in the training data. Table 4 shows that although predictions
for larger datasets are slightly less accurate, T3 can still predict for
queries that scan data larger than memory.
Hardware Specific Model. T3 is trained on the observed exe-
cution time of benchmarked queries. To obtain these execution
times, T3 must be trained for a specific machine to account for
hardware specific characteristics. Adapting to new hardware re-
quires running the queries on the new hardware. Since the number
of different hardware setups is expected to be limited, even in cloud
environments, we consider hardware-specific models to be the most
practical solution. Running all queries we used for T3 on a com-
modity machine takes a few hours. In contrast, other approaches
report much longer running times for benchmarks, e.g., 10 days
[16] or three week traces of 100 instances [50].
Reliance on Cardinality Estimates. T3 uses cardinality estimates
as prediction features. In line with the garbage in garbage out prin-
ciple, T3’s predictions degrade with poor cardinality estimates. This
is a limitation it shares with other performance prediction models
as depicted in Figure 12.

7 Related Work
7.1 Work on Performance Prediction
MainMemory SystemCostModels.There has been considerable
work on performance prediction over the past 20 years. Listgarten
et al. identify main memory databases as a disruptive new tech-
nology and provide a first cost model [25]. Similarly, Manegold et
al. identify hierarchical memory systems as key factors for perfor-
mance prediction [28]. They present a generic approach to build
cost models for such hierarchies.
Early Learning-Based Methods. Before the widespread adoption
of neural networks, there were many attempts on performance
prediction using other learning-based methods. Gupta et al. use
a technique very similar to decision trees to predict time ranges
for queries as early as 2008 [13]. Akdere et al. use support vector
machines and linear regression models on both operator-based and
query-plan-based features [1]. Wu et al. calibrate PostgreSQL’s
cost model using the observations of a small set of calibration
queries [48]. In subsequent work they use an analytical model to
combine the results of the calibrated cost model for multiple queries

12

T3: Performance Prediction With Compiled Decision Trees SIGMOD’25, June 22–27, 2025, Berlin, Germany

and predict the execution time of whole workloads [47]. They show
that their approach is very competitive to full machine-learning-
based approaches of the time, especially for dynamic workloads
of unpredictable queries. Later, they add uncertainty measures for
cost prediction by modeling constants as random variables [49].
Workload-Based Neural Network Models. When neural net-
works became more common, they were applied as estimators for
fixed workloads. Marcus and Papaemmanouil propose to use deep
learning for performance prediction [32]. They hand-craft a neu-
ral network architecture that can pass interesting data between
operator-level neural units. Sun and Li compare different methods
of applying deep learning to the tree shaped query plans [43]. They
observe a pooling architecture to be effective for combining nodes
of trees. Zhao et al. improve on this using a transformer architecture
and available database statistics to the model input [55]. Zhou et
al. employ a graph embedding to encode both single queries, but
also multiple concurrently running queries [56]. By modeling the
interactions of concurrent queries, they accurately predict the exe-
cution time of whole workloads. Chang et al. compare a variety of
deep learning architectures and introduce a combination of graph
neural networks and gated recurrent units [5].
Modern Zero Shot Models. As workload based models come with
several drawbacks, there has been work onmodels that can work on
any database instance without new training. Siddiqui et al. build a
cost model for a production workload to improve the optimizer of a
big data system [41]. As this workload contains various very differ-
ent queries from multiple customers, it is comparable to zero shot
models. They use ensembles of many different models for different
parts of queries and combine them with a gradient boosted decision
tree. Hilprecht and Binnig pioneer zero shot models by purposefully
training and evaluating them on different instances [15, 16]. Despite
this challenging setup, they achieve excellent accuracy. Heinrich
et al. apply a similar model to distributed stream processing [14].
Wu et al. build Stage, a model for the entire Redshift workload,
which arguably needs to generalize to all kinds of new database
instances [50]. They leverage the accuracy of neural networks but
try to improve the model latency using a model hierarchy.
Different Approaches. In this paragraph, we display work that
significantly deviates from the learning-based approaches men-
tioned above to solve the performance prediction problem. Before
their work on zero shot models, Hilprecht et al. propose cost models
based on differential programming [17]. They re-use the known
functions of cost models and only learn a few constants within
those functions similar to [48]. Boissier uses linear regression mod-
els to predict the performance of different compression schemes
for dynamic encoding selection [4]. Yang et al. provide multiple
sets of calibration constants for fixed cost functions based on the
PostgreSQL cost model [51]. They select the best constant set on
a query basis with a decision tree model. As none of the above
methods rely on neural networks, they are comparatively quick to
train and evaluate.

7.2 Other Learning Methods for Databases
GeneratingWorkloads.There is extensive work on randomly gen-
erating queries and workloads for learning methods on databases.

Kipf et al. generate small join queries as training data for cardinal-
ity estimation models [20, 21]. Hilprecht and Binnig extend this
method for more complex selection predicates [16]. Ventura et al.
propose DataFarm to generate diverse workloads based on abstract
execution plan patterns [46].
Prediction of Other Metrics. There has been a plethora of work
using learning-based cardinality estimation [20, 21, 24, 33, 42]. Fur-
thermore, there is some work on estimating the progress of cur-
rently running queries [6, 7, 26]. Finally, there is much work on
learned query optimizers [2, 29, 30, 52, 57].
Latency Problems. Latency of learning-based prediction methods
has been identified as an issue repeatedly in previous work [22, 50,
51]. Lehmann et al. conclude that many modern query optimization
techniques that rely on learned models fail to improve end-to-end
execution time due to prolonged optimization times [22]. Wu et al.
hide the latency of neural network models by using a query cache
and a local decision tree model instead where possible [50]. Many
other models that do not rely on slow machine learning models
provide comparatively good latencies [4, 17, 47, 48].

8 Conclusion
In this work, we propose T3, an extremely fast cross-database per-
formance predictor with state-of-the-art accuracy. We show how
to achieve good prediction accuracy with pipeline-based query
plan representations and tuple-centric prediction targets. Further,
we demonstrate the use of decision tree compilation to native ma-
chine code for better latencies. T3 makes the application of accu-
rate performance prediction models practical for latency-sensitive
use-cases. We conclude that current models tackle the problem of
performance prediction very well, given good cardinality estimates.
Further work on cardinality estimation has the greatest potential
to improve performance prediction.

References
[1] Mert Akdere, Ugur Çetintemel, Matteo Riondato, Eli Upfal, and Stanley B. Zdonik.

2012. Learning-based Query Performance Modeling and Prediction. In ICDE.
IEEE Computer Society, 390–401.

[2] Christoph Anneser, Nesime Tatbul, David E. Cohen, Zhenggang Xu, Prithviraj
Pandian, Nikolay Laptev, and Ryan Marcus. 2023. AutoSteer: Learned Query
Optimization for Any SQL Database. Proc. VLDB Endow. 16, 12 (2023), 3515–3527.

[3] Simon Boehm. 2021. lleaves. https://github.com/siboehm/lleaves
[4] Martin Boissier. 2021. Robust and Budget-Constrained Encoding Configurations

for In-Memory Database Systems. Proc. VLDB Endow. 15, 4 (2021), 780–793.
[5] Baoming Chang, Amin Kamali, and Verena Kantere. 2024. A Novel Technique

for Query Plan Representation Based on Graph Neural Nets. In DaWaK (Lecture
Notes in Computer Science, Vol. 14912). Springer, 299–314.

[6] Surajit Chaudhuri, Raghav Kaushik, and Ravishankar Ramamurthy. 2005. When
Can We Trust Progress Estimators for SQL Queries?. In SIGMOD Conference.
ACM, 575–586.

[7] Surajit Chaudhuri, Vivek Narasayya, and Ravishankar Ramamurthy. 2004. Es-
timating progress of execution for SQL queries. In SIGMOD Conference. ACM,
803–814.

[8] Jing Chen, Tiantian Du, and Gongyi Xiao. 2021. A multi-objective optimization
for resource allocation of emergent demands in cloud computing. J. Cloud Comput.
10, 1 (2021), 20.

[9] Yun Chi, Hyun Jin Moon, Hakan Hacigümüs, and Jun’ichi Tatemura. 2011. SLA-
tree: a framework for efficiently supporting SLA-based decisions in cloud com-
puting. In EDBT. ACM, 129–140.

[10] Sophie Cluet and Guido Moerkotte. 1995. On the Complexity of Generating
Optimal Left-Deep Processing Trees with Cross Products. In ICDT, Vol. 893.
Springer, 54–67.

[11] Archana Ganapathi, Harumi A. Kuno, Umeshwar Dayal, Janet L. Wiener, Ar-
mando Fox, Michael I. Jordan, and David A. Patterson. 2009. Predicting Multiple
Metrics for Queries: Better Decisions Enabled by Machine Learning. In ICDE.
IEEE Computer Society, 592–603.

13

https://github.com/siboehm/lleaves

SIGMOD’25, June 22–27, 2025, Berlin, Germany Maximilian Rieger and Thomas Neumann

[12] Chetan Gupta, Abhay Mehta, and Umeshwar Dayal. 2008. PQR: Predicting
Query Execution Times for Autonomous Workload Management. In ICAC. IEEE
Computer Society, 13–22.

[13] Chetan Gupta, Abhay Mehta, and Umeshwar Dayal. 2008. PQR: Predicting
Query Execution Times for Autonomous Workload Management. In ICAC. IEEE
Computer Society, 13–22.

[14] Roman Heinrich, Manisha Luthra, Harald Kornmayer, and Carsten Binnig. 2022.
Zero-shot cost models for distributed stream processing. In DEBS. ACM, 85–90.

[15] Benjamin Hilprecht and Carsten Binnig. 2022. One Model to Rule them All:
Towards Zero-Shot Learning for Databases. In CIDR. www.cidrdb.org.

[16] Benjamin Hilprecht and Carsten Binnig. 2022. Zero-Shot Cost Models for Out-of-
the-box Learned Cost Prediction. Proc. VLDB Endow. 15, 11 (2022), 2361–2374.

[17] Benjamin Hilprecht, Carsten Binnig, Tiemo Bang, Muhammad El-Hindi, Ben-
jamin Hättasch, Aditya Khanna, Robin Rehrmann, Uwe Röhm, Andreas Schmidt,
Lasse Thostrup, and Tobias Ziegler. 2020. DBMS Fitting: Why should we learn
what we already know?. In CIDR. www.cidrdb.org.

[18] BenjaminHilprecht, Andreas Schmidt, Moritz Kulessa, AlejandroMolina, Kristian
Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from Queries!
Proc. VLDB Endow. 13, 7 (2020), 992–1005.

[19] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting
Decision Tree. In NIPS. 3146–3154.

[20] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and
Alfons Kemper. 2019. Learned Cardinalities: Estimating Correlated Joins with
Deep Learning. In CIDR. www.cidrdb.org.

[21] Andreas Kipf, Dimitri Vorona, Jonas Müller,Thomas Kipf, Bernhard Radke, Viktor
Leis, Peter A. Boncz, Thomas Neumann, and Alfons Kemper. 2019. Estimating
Cardinalities with Deep Sketches. In SIGMOD Conference. ACM, 1937–1940.

[22] Claude Lehmann, Pavel Sulimov, and Kurt Stockinger. 2024. Is Your Learned
Query Optimizer Behaving As You Expect? A Machine Learning Perspective.
Proc. VLDB Endow. 17, 7 (2024), 1565–1577.

[23] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz,
Alfons Kemper, and Thomas Neumann. 2018. Query optimization through the
looking glass, and what we found running the Join Order Benchmark. VLDB J.
27, 5 (2018), 643–668.

[24] Pengfei Li, Wenqing Wei, Rong Zhu, Bolin Ding, Jingren Zhou, and Hua Lu. 2023.
ALECE: An Attention-based Learned Cardinality Estimator for SPJ Queries on
Dynamic Workloads. Proc. VLDB Endow. 17, 2 (2023), 197–210.

[25] Sherry Listgarten and Marie-Anne Neimat. 1997. Cost Model Development for
a Main Memory Database System. In Real-Time Database Systems: Issues and
Applications, Azer Bestavros, Kwei-Jay Lin, and Sang Hyuk Son (Eds.). Springer
US, Boston, MA, 139–162.

[26] Gang Luo, Jeffrey F. Naughton, Curt J. Ellmann, and Michael Watzke. 2005.
Increasing the Accuracy and Coverage of SQL Progress Indicators. In ICDE. IEEE
Computer Society, 853–864.

[27] Chenghao Lyu, Qi Fan, Fei Song, Arnab Sinha, Yanlei Diao, Wei Chen, Li Ma,
Yihui Feng, Yaliang Li, Kai Zeng, and Jingren Zhou. 2022. Fine-Grained Modeling
and Optimization for Intelligent Resource Management in Big Data Processing.
Proc. VLDB Endow. 15, 11 (2022), 3098–3111.

[28] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. 2002. Generic Database
Cost Models for Hierarchical Memory Systems. In VLDB. Morgan Kaufmann,
191–202.

[29] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Al-
izadeh, and Tim Kraska. 2022. Bao: Making LearnedQuery Optimization Practical.
SIGMOD Rec. 51, 1 (2022), 6–13.

[30] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: A Learned
Query Optimizer. Proc. VLDB Endow. 12, 11 (2019), 1705–1718.

[31] Ryan Marcus and Olga Papaemmanouil. 2016. WiSeDB: A Learning-based Work-
load Management Advisor for Cloud Databases. Proc. VLDB Endow. 9, 10 (2016),
780–791.

[32] Ryan Marcus and Olga Papaemmanouil. 2019. Plan-Structured Deep Neural
Network Models for Query Performance Prediction. Proc. VLDB Endow. 12, 11
(2019), 1733–1746.

[33] Volker Markl, Guy M. Lohman, and Vijayshankar Raman. 2003. LEO: An auto-
nomic query optimizer for DB2. IBM Syst. J. 42, 1 (2003), 98–106.

[34] Guido Moerkotte and Thomas Neumann. 2006. Analysis of Two Existing and One
New Dynamic Programming Algorithm for the Generation of Optimal Bushy
Join Trees without Cross Products. In VLDB. ACM, 930–941.

[35] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing Bad
Plans by Bounding the Impact of Cardinality Estimation Errors. Proc. VLDB
Endow. 2, 1 (2009), 982–993.

[36] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In CIDR. www.cidrdb.org.

[37] Thomas Neumann and Bernhard Radke. 2018. Adaptive Optimization of Very
Large Join Queries. In SIGMOD Conference. ACM, 677–692.

[38] AndrewNg. 2018. Machine learning yearning: Technical strategy for AI engineers,
in the era of deep learning. (2018).

[39] Jignesh M. Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu Zhang,
Marc Spehlmann, Hakan Memisoglu, and Saket Saurabh. 2018. Quickstep: A
Data Platform Based on the Scaling-Up Approach. Proc. VLDB Endow. 11, 6 (2018),
663–676.

[40] Gaurav Saxena, Mohammad Rahman, Naresh Chainani, Chunbin Lin, George
Caragea, Fahim Chowdhury, Ryan Marcus, Tim Kraska, Ippokratis Pandis, and
Balakrishnan (Murali) Narayanaswamy. 2023. Auto-WLM: Machine Learning
Enhanced Workload Management in Amazon Redshift. In SIGMOD Conference
Companion. ACM, 225–237.

[41] Tarique Siddiqui, Alekh Jindal, Shi Qiao, Hiren Patel, and Wangchao Le. 2020.
Cost Models for Big Data Query Processing: Learning, Retrofitting, and Our
Findings. In SIGMOD Conference. ACM, 99–113.

[42] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO
- DB2’s LEarning Optimizer. In VLDB. Morgan Kaufmann, 19–28.

[43] Ji Sun and Guoliang Li. 2019. An End-to-End Learning-based Cost Estimator.
Proc. VLDB Endow. 13, 3 (2019), 307–319.

[44] Rebecca Taft, Willis Lang, Jennie Duggan, Aaron J. Elmore, Michael Stonebraker,
and David J. DeWitt. 2016. STeP: Scalable Tenant Placement for Managing
Database-as-a-Service Deployments. In SoCC. ACM, 388–400.

[45] Sean Tozer, Tim Brecht, and Ashraf Aboulnaga. 2010. Q-Cop: Avoiding bad query
mixes to minimize client timeouts under heavy loads. In ICDE. IEEE Computer
Society, 397–408.

[46] Francesco Ventura, Zoi Kaoudi, Jorge-Arnulfo Quiané-Ruiz, and Volker Markl.
2021. Expand your Training Limits! Generating Training Data for ML-based Data
Management. In SIGMOD Conference. ACM, 1865–1878.

[47] Wentao Wu, Yun Chi, Hakan Hacigümüs, and Jeffrey F. Naughton. 2013. To-
wards Predicting Query Execution Time for Concurrent and Dynamic Database
Workloads. Proc. VLDB Endow. 6, 10 (2013), 925–936.

[48] Wentao Wu, Yun Chi, Shenghuo Zhu, Jun’ichi Tatemura, Hakan Hacigümüs, and
Jeffrey F. Naughton. 2013. Predicting query execution time: Are optimizer cost
models really unusable?. In ICDE. IEEE Computer Society, 1081–1092.

[49] Wentao Wu, Xi Wu, Hakan Hacigümüs, and Jeffrey F. Naughton. 2014. Uncer-
tainty Aware Query Execution Time Prediction. Proc. VLDB Endow. 7, 14 (2014),
1857–1868.

[50] ZiniuWu, RyanMarcus, Zhengchun Liu, Parimarjan Negi, VikramNathan, Pascal
Pfeil, Gaurav Saxena, Mohammad Rahman, Balakrishnan Narayanaswamy, and
Tim Kraska. 2024. Stage: Query Execution Time Prediction in Amazon Redshift.
In SIGMOD Conference Companion. ACM, 280–294.

[51] Jiani Yang, Sai Wu, Dongxiang Zhang, Jian Dai, Feifei Li, and Gang Chen. 2023.
Rethinking Learned Cost Models: Why Start from Scratch? Proc. ACM Manag.
Data 1, 4 (2023), 255:1–255:27.

[52] Zongheng Yang, Wei-Lin Chiang, Sifei Luan, GautamMittal, Michael Luo, and Ion
Stoica. 2022. Balsa: Learning a Query Optimizer Without Expert Demonstrations.
In SIGMOD Conference. ACM, 931–944.

[53] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and
Ion Stoica. 2020. NeuroCard: One Cardinality Estimator for All Tables. Proc.
VLDB Endow. 14, 1 (2020), 61–73.

[54] Geoffrey X. Yu, ZiniuWu, Ferdi Kossmann, Tianyu Li, Markos Markakis, Amadou
Ngom, Samuel Madden, and Tim Kraska. 2024. Blueprinting the Cloud: Unifying
and Automatically Optimizing Cloud Data Infrastructures with BRAD. Proc.
VLDB Endow. 17, 11 (2024), 3629–3643.

[55] Yue Zhao, Gao Cong, Jiachen Shi, and Chunyan Miao. 2022. QueryFormer: A
Tree Transformer Model for Query Plan Representation. Proc. VLDB Endow. 15,
8 (2022), 1658–1670.

[56] Xuanhe Zhou, Ji Sun, Guoliang Li, and Jianhua Feng. 2020. Query Performance
Prediction for Concurrent Queries using Graph Embedding. Proc. VLDB Endow.
13, 9 (2020), 1416–1428.

[57] Rong Zhu, Wei Chen, Bolin Ding, Xingguang Chen, Andreas Pfadler, Ziniu Wu,
and Jingren Zhou. 2023. Lero: A Learning-to-Rank Query Optimizer. Proc. VLDB
Endow. 16, 6 (2023), 1466–1479.

Received October 2024; revised January 2025; accepted February 2025

14

	Abstract
	1 Introduction
	2 The T3 Model
	2.1 Problem Scope
	2.2 Pipeline-Based Query Plan Representation
	2.3 Gradient Boosted Trees
	2.4 Model Input and Output
	2.5 Model Training
	2.6 Better Latency With Compilation

	3 Feature Computation
	4 Generating and Benchmarking Queries as Training Data
	4.1 A Multitude of Database Instances
	4.2 Randomly Sampling Diverse Queries
	4.3 Benchmarking

	5 Evaluation
	5.1 Prediction Speed
	5.2 Dataset of Queries and Benchmarks
	5.3 Accuracy on Test Set
	5.4 Accuracy Comparison
	5.5 Join Ordering Microbenchmark
	5.6 Cardinality Estimates
	5.7 Ablation Study

	6 Limitations
	7 Related Work
	7.1 Work on Performance Prediction
	7.2 Other Learning Methods for Databases

	8 Conclusion
	References

