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Abstract

Parquet is the most commonly used file format to store data in a
columnar, binary structure. The format also supports storing nested
data in this flattened columnar layout. However, many query en-
gines either do not support nested data or process it with substan-
tially worse performance than relational data.

In this work, we close this gap and present a new way to leverage
relational query engines for nested data that is stored in this flat
columnar file format. Specifically, we demonstrate how to process
nested Parquet files much more efficiently.

Our approach does not store a copy of the data in an internal
format but reads directly from the Parquet file. During query com-
putation, the required flat columns are scanned independently and
the nesting is reconstructed using joins with on-the-fly generated
join keys. Our approach can be easily integrated into existing query
engines to support querying nested Parquet files. Furthermore, we
achieve orders of magnitude faster analytical query performance
than existing solutions, which makes it a valuable addition.
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1 Introduction

In today’s era of cloud object stores and data lakes, the volume of
data is growing exponentially. Whether in web or scientific com-
puting, data often contains nested objects or arrays. For example,
logging data or structured documents use nested schemata [31, 32].
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Figure 1: Idea of nested Parquet file processing: Abstract repre-
sentation of a nested Parquet file and how it is efficiently processed

with our approach 1 -3 .

Examples of such formats include JSON and XML, which store
nested data in a hierarchical, human-readable form.

Modern data lakes, however, predominantly use Parquet files,
which store data in a columnar, binary structure [5, 14, 27]. The
format leverages columnar storage for better query performance
and compression techniques to improve the storage footprint and
allow faster data scans. Handling semi-structured, nested data in
Parquet is done using the record shredding and assembling algo-
rithm, originally developed by Google for their distributed system
Dremel [32].

Unlike human-readable file formats such as JSON and XML,
Parquet does not use a nested representation internally to store
nested data. Figure 1 (left) illustrates an abstract nested dataset in
its nested form, as it would be structured in a JSON or XML file.
Parquet, on the other hand, dissects nested records into columns as
flattened chunks as depicted in the center of the figure.

Existing systems typically convert the flattened representation
offered by the Dremel encoding into some internal nested formats,
which complicates processing and increases complexity [9, 20]. In
contrast, our approach allows reconstructing the nesting with on-
the-fly generated join keys. We keep the data flattened for the entire
query computation and join the required columns only as needed.
Hence, the database system can scan the data without nested types
and use the already existing efficient filtering and byte processing
techniques of standard primitive types. When scanning, we do
not persist any new data or auxiliary structures but process the
original file on the fly each time. This approach obviates the need
for complex nesting logic and is in addition trivially parallelizable
on all nesting levels.


https://doi.org/10.1145/3725329
https://doi.org/10.1145/3725329
https://doi.org/10.1145/3725329

SIGMOD’25, June 22-27,2025, Berlin, Germany

Furthermore, our evaluation shows that this approach delivers
significantly better performance compared to using the nested rep-
resentations of various systems. We propose to derive surrogate
keys to use joins between columns across different nesting levels
to assemble tuples, achieving orders of magnitude speedup over
the existing approaches. Compared to Trino [42], we achieve an
average speedup of 20x using our approach, and for DuckDB [35]
even 60x. Given the pivotal role of joins in database systems, their
implementations are commonly heavily optimized and backed by
decades of research [11, 12, 15, 16, 25]. We demonstrate that the sys-
tems we evaluated can process nested data much faster by using our
join-based approach, compared to their existing nested algorithms.

Furthermore, modern query engines provide additional sophis-
ticated techniques and optimizations to process Parquet files effi-
ciently. Previous work leverages the capabilities of relational sys-
tems such as statistics and parallelization to speed up Parquet ana-
lytics by up to an order of magnitude [30, 36, 41, 46]. Our approach
allows these techniques to be applied to nested Parquet files without
intrusive extensive changes.

Figure 1 shows a high-level overview of how our approach works.
First, we generate join keys for every nesting level (/1 ). These keys
act as pairs of foreign keys and primary keys that connect deeply
nested columns to less deeply nested columns. We call these surro-
gate keys and ancestor keys. Ancestor keys reference the surrogate
keys of less deep columns. Given a user query, we choose the re-
quired columns and build a join tree to join columns of different
nesting levels (/2 ). As join predicates, we use the newly generated
key attributes. Thirdly, the database’s query optimizer optimizes
the query plan and chooses the optimal join ordering ('3 ). If the
query contains a selection predicate, the optimizer will also push
down the predicate as much as possible.

Our approach reinterprets nested Parquet data as relational
data. Similarly, significant work has been done on storing and
querying different kinds of nested data in relational database sys-
tems [13, 19, 21, 26, 38, 44]. A relational schema has to be derived
and then the data is loaded into the newly created relational schema,
effectively converting the hierarchical format into a relational one.
In contrast, we reinterpret the existing Parquet file on the fly with-
out duplicating the data. Parquet already stores data in a columnar
format, and we view the nested encoding as a predefined relational
interpretation. In Section 7, we will further explore the parallels
between our approach and the methods used for other nested file
formats.

This work unlocks the good processing speed of modern query
engines for nested Parquet files. In particular, we make the following
contributions:

« A new, fast processing strategy for nested Parquet files that
is easy to implement.

+ An implementation of our approach that has been integrated
into the state-of-the-art research database system Umbra [34].

« A thorough evaluation of our approach in three different
systems as well as a performance comparison between the
processing of nested and flat Parquet files, for which we
publish all supplemental material®.

!https://github.com/alicerey/nested-parquet
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Users
|-- UserId: int
|-- Name: string
|-- Followers: list(int)
|-- Posts: list(struct)
|-- Text: string
| -- Reactions: list(struct)
|-- UserId: int
|-- Emoji: string
| -- Comments: list(struct)
|-- UserId: int
|-- Text: string
|-- Likes: list(int)

Figure 2: Nested dataset of a fictional social media platform.

The rest of this paper is structured as follows: Section 2 covers
fundamentals such as the Parquet format and how nested data is
encoded. In Section 3, we explain how we generate join keys on
the fly for the different nesting levels. Next, Section 4 shows in
detail how an initial join tree can be built on top of the different
nesting levels to reconstruct the nesting. Section 5 concludes our
method with information on how our approach can be integrated
into existing systems and the operations performed during scanning.
We provide a thorough performance evaluation of our approach in
Section 6. Finally, we review existing work and draw conclusions
in Section 7 and Section 8, respectively.

2 Background

In this section, we cover some background knowledge that we build
upon in this work. First, we describe the Parquet format and current
scanners on flat data. Then, we explain how nested Parquet files
store their data using record shredding as introduced by Google
Dremel [32]. Finally, we highlight the drawbacks of integrating
existing strategies into query engines.

2.1 Parquet Format

The Parquet format was released in 2013 by Twitter and Cloudera
and, since then, has become the most widely used open-source
columnar file format in data lakes [5]. On a high level, Parquet files
are partitioned horizontally into row groups. Within a row group,
data is stored in a paged column store which allows fast processing.
Pages can be encoded and compressed in various ways.

Existing Parquet writers make highly divergent choices for com-
pression schemes as well as for row group and page sizes. State-of-
the-art Parquet scanners, therefore, introduce elaborate techniques
to guarantee robust and fast execution [29, 36]. First, they use very
fine granular access for skipping filtered data as well as robust
parallelization. By skipping data using existing statistics they can
significantly speed up scan times. Second, they collect more sta-
tistics on the data during the first scans. This allows the query
optimizer to make better choices, resulting in drastically faster pro-
cessing. Using these techniques without complicated changes to
the scanning logic is desirable.

2.2 Nested Parquet Encoding

Parquet files use the Dremel encoding to encode nested data. Dremel
is a record shredding and assembly algorithm that was presented in
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"UserId": 302, "UserId": 406, L ¢

"Name": "alice", "Name": "bob",

"posts": [{ "Posts": | Name R | D UserIld| R | D Followers | R | D
"Text": "nice day", "Text": "movie night!", alice olo 302 oo Text R | D 406 0l1
"Comments": [{ "Reactions": [{ -

"UserTd": 406 "UserTd": 302, bob 0|0 406 0|0 nice déy 0|1 501 1)1

"Text": "same here" }], "Emoji": "%" }] coffee time | 1 | 1 908 01

( "Comments": [{ movie night!| 0 | 1 302 1)1

"Text": "coffee time", "UserId": 908, "

"Reactions": [{ "Text": "happy for you" Likes | R | D Reactions

nUserld": 501, Likes": [406, 908] }, Userld| R | D Text R|D| [usertd| R [D | [Emoji | R [ D

Emoji": "©@" }, { 0] 2

{ "UserId": 302, 1)1 406 0|2 same here 0|2 0|1 0|1

"UserId": 406, "Text": "have fun!", 406 0|3 101 1|1 501 1|2 ® 102

"Emojit: et 31 }] "Likes": [501] }] }] 908 |33 908 |0 | 2| |happyforyou| 0 |2 406 |22 v |02

: "Followers": [406, 501] ) "Followers": [908, 302] 501 2|3 302 1|2 have fun! 102 302 ol2 * 5|2

Figure 3: Example instantiation of the social media platform example from Figure 2.

and on the right how a Parquet file conceptually stores it.

2010 by Melnik et al. [32]. The encoding consists of two main parts:
Repetition and definition level fields for every atomic value. The
repetition level tells us at which level the current entry is getting
repeated and the definition level tells us at which level the current
value is defined.

Figure 2 visualizes a nested document of a fictional social media
platform which we will use as running example in this work. At
the top level, it stores a list of users. Each user has an id and a
name, which are stored as simple members. Additionally, each user
has a list of followers and posts. While followers are organized
as a simple list of integers representing the userids, posts form a
further nested data type. A post contains text and can be reacted
to and commented on. Comments can, in turn, be liked by other
users. This results in a Parquet file with four levels of nesting where
every atomic column is stored in a flattened representation, e.g., all
user names will be stored in a single column, and the texts of all
comments in the entire dataset will be stored in a single column.
The Parquet file stores additional metadata for each value to later
be able to reconstruct the nested records correctly.

Figure 3 visualizes how an instance of the schema in Figure 2 can
be stored with Parquets nesting encoding. The left side visualizes the
instantiation with JSON, and the right side uses record shredding
to split the dataset into columns of primitive types. This examples
contains entries for the two users “alice” and “bob”. The visualization
on the right is represented as a tree. All leaf nodes represent atomic
values as stored in a Parquet file. The repetition levels (R) and
definition levels (D) are encoded as metadata per column (light
blue).

To reassemble the nested data structure, we need to scan the
required leaves sequentially. Whenever the repetition level value
(R) is zero, it denotes the start of a new entry at the highest level,
which is e.g. a new user in our dataset. If the repetition level is
one, it denotes the start of a new post or follower entry since
these are our first-level nodes. We observe the largest variety of
repetition level values in the Likes column. This column is nested
inside three other nodes (Users, Posts, and Comments). Therefore,
the maximum repetition level is three. If the repetition level equals
three it is repeated on the innermost level, which means that the
entry belongs to the same comment as the preceding one. In our
case, this means that like 908 and like 406 belong to the same
comment. If we start scanning the likes from the beginning, we see

Represented as JSON Document on the left

that the first two entries are empty. To understand that, we have
to look at the definition level values. Since arrays can be empty,
there might potentially be users without any posts, posts without
comments, or comments without likes. This means that an entry
in likes can be undefined at all levels. The definition level tells us
at which level the value is still defined. The maximum definition
level of the likes column therefore is three. For the first entry, the
definition level is 2 which tells us that it is defined until level 2
(comments). Therefore, we have a post and a comment, but no like
for the first post of the first user. The second entry is 1, which means
the post is defined, but no comment exists for it. The last three like
entries all have the maximum definition level which means that
they are defined.

Google’s original reassembly algorithm is based on a finite state
machine (FSM) that allows reconnecting the layers[32]. The idea
is that each state in the FSM represents one leaf node and the
transitions are labeled by the repetition levels. The state machine
is constructed based on the columns that are required and can
be reduced to a subset of columns to speed up the reassembly.
Consequently, this algorithm scans all nested columns at once,
jumping back and forth between different nesting levels.

In our approach, we opt away from this approach and build a
semantically equivalent algorithm.

2.3 Challenges of Existing Solutions

Query engines, especially relational databases, commonly work on
data in a normalized relational format. Previous efforts to support
nested Parquet to meet the increasing demand for analytics on data
lakes immediately reconstruct the nesting from the flat layout into
nested types. They make an effort to integrate nested types such
as lists as new data types. This requires adding new logic to all
relation operators. As described in Section 2.1, Parquet scanners
themselves entail sophisticated functionality. Therefore, we argue
for a decoupling of scanning and nesting logic.

Instead of scanning the whole data in one pass, we interpret
the nested columns of the Parquet files as independent sets of
flat columns and reconnect the sets later with joins. Hence, we
can scan all the layers independently and parallelize over subsets
of data more easily. Furthermore, as we treat each nesting level
as simple columns, we also do not introduce any new data types.
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Another advantage is that nested data appears like flat data to query
optimizers, which can tremendously improve execution plans. We
can build this approach on existing logic in query engines for query
optimization and join ordering, taking advantage of decades of
database research.

3 Nested Data Normalization

In this chapter, we will describe how a nested dataset can logically
be split into multiple flat, or normalized, datasets while keeping the
connection between the different nesting levels. On a high level, we
first group the columns into nodes based on their repetition level.
Each node represents a relation that only contains columns of basic
types. We call this decomposition of nested data into relation-like
nodes “normalization”. In the second step, we will explain how we
keep the connection between the different layers with generated
keys. These keys are generated for every query on-the-fly and allow
us to later join the base relations to answer queries that require
columns from more than one node, like the number of posts per
user in our example in Figure 2.

3.1 Logical Schema Normalization

In this section, we discuss how we can retrieve the different Parquet
scan nodes that logically split and group the columns into basic
relations. Figure 4 visualizes how nested datasets can be interpreted
as normalized nodes of flat datasets that are connected with one-
to-many relations using the schema of Figure 2. We use Google’s
Protocol Buffers [23] syntax to formalize the schema. All elements
in nested schemata are classified as required, optional, or repeated.
Required values appear exactly once, which is the same as not
null in a relational schema. Optional values can appear once or
not at all, which is like nullable in a relational system. Repeated
values can occur not at all, once, or more than once. In a relational
system, repeated values would be represented as some kind of array
type or by introducing a new table. The repeated keyword is not
trivially transferable to a normalized schema since it should only
contain atomic values. Whenever a column is repeated, we assign
this element and its potential child columns to a new relation. In
other words: We logically normalize the schema by expanding all
arrays into separate relations.

In our social media example, splitting the schema into relations
based on the repeated keyword gives us the conceptual data model
on the right side of the figure. All boxes are connected to their
parent nodes with one-to-many relations. For the generated nodes,
it does not matter whether the repeated column is of an primitive
type or a group. Both, repeated groups such as posts, reactions, and
comments as well as arrays with primitive types, such as followers
and likes, are translated into separate nodes. The repeated groups
will contain a column in the node for every contained flat member.
For example, the reaction node will contain one column for the
userid and one column for the emoji. The likes and followers nodes
will only contain one column for the primitive integer type, which
represents the userids.

Since we reinterpret the nested columns as logically split rela-
tions, we need surrogate keys to maintain the relationships between
the logical relations which will be discussed in the following section.

Rey et al.
message Users | L e
required int64 UserId;
required varchar Name; Name
repeated int64 Followers; L *lposts Followers
repeated group Posts: { Text Userld
required varchar Text; ( \
repeated group Reactions: { * Comments T?eactions
required int64 UserlId; Userld Userld
required varchar Emoji; } Text Emoji
repeated group Comments: { 1
required inté64 UserId; Likes *
required varchar Text; Userld

repeated int64 Likes; }}}

Figure 4: Conceptual grouping of nested columns into rela-
tions of simple domains. Social Media Example from Figure 2.

Users Posts Reactions
Userld Name sk Text sk |ak(0) Userld |[Emoji| sk |ak(1) [ak(0)
302 alice 0 nice day 0 0 0 0 0
406 bob 1 coffee time | 1 0 501 © 1 1 0
movie night | 2 1 406 v 2 1 0
Likes 302 * 3 2 1
sk [ak(2) [ak(1)[ak(0) Followers
Comments
ol o 0 o sk |ak(0)
1 1 0 406 | 0 0 Userld Text sk [ak(1)|ak(0)
406 | 2 2 2 1 501 | 1 0 406 same here 0 0 0
908 | 3 2 2 1 908 | 2 1 1 1 0
501 | 4 3 2 1 302 | 3 1 908 |happy for you | 2 2 1
302 have fun! 3 2 1

Figure 5: Reinterpretation of nested Parquet data as relations
with on-the-fly generated surrogate keys (light blue) and
ancestor keys (dark blue). This is only a logical reinterpretation,
no data from the Parquet file is transferred into the internal database
storage layer (Social Media Example from Figure 2).

3.2 Generate surrogate and ancestor keys

To keep track of the one-to-many relationships between the differ-
ent relations, we work with generated pairs of primary keys and
foreign keys which we generate on-the-fly. We treat these keys
like additional columns inside the relations. Figure 5 visualizes the
resulting logical relations with the additional key columns for the
running example. An example of a one-to-many relationship is
the relationship between users and their posts. Each user can be
associated with many posts, so we add an additional primary key
column to the user relation. The posts relation gets an additional
foreign key column that references the primary key column of the
user. We call the generated primary key column surrogate key and
the foreign key ancestor key since the posts relation is a child node
of the users relation.

As primary keys, we use the row numbers of the users. Gener-
ating foreign keys that match the generated primary keys of the
parent nodes is more complex. For every post, we need to get the
row number of the corresponding user. We retain this information
using the repetition levels that are part of the nested Parquet encod-
ing. The repetition level is used to encode at which level the current
entry is repeated. Values can be repeated multiple times along their
path. For example, the comments in the running example are con-
tained in two nested repeated groups: Users and posts. To compute
the surrogate key, i.e., the row number of the corresponding parent
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Figure 6: Seven examples of building initial join trees. Examples of join tree construction. The required nodes are blue, the light blue
list contains the required nodes in preorder traversal order, and the currently processed node is highlighted in orange.

node, we have to scan the repetition level values of all previous
rows until the required entry. Whenever the repetition level value
is less than or equal to the nesting level of the parent, we increment
the parent surrogate key. We call the corresponding surrogate keys
of ancestor nodes ancestor keys. Nodes can be nested in multiple re-
peated groups, therefore we create ancestor key columns for every
nesting level. This allows us to skip intermediate nodes later and
directly join two nodes that are not neighbors. Figure 5 visualizes
the relational interpretation of the nested Parquet data along with
the generated surrogate and ancestor keys of the running example.
In practice, these columns will only be generated on-the-fly during
query execution.

The posts and followers relations only have one ancestor at level
0, so they just have one foreign key column. The likes relation has
two ancestors: Posts at level 1 and users at level 0. Therefore, it
has two foreign key columns referencing the nodes at the corre-
sponding levels. The comments relation has three ancestors and
therefore three foreign key columns. The keys for different values
allow us to directly connect two base relations that are not directly
connected with a one-to-many relation. If we for example search
for all comments that user “bob” ever received, we can filter the
comments relations for rows where ak(0) equals the row number
of “bob”. In Section 4, we explain in more detail how this can be
integrated and how the query engine chooses the correct pairs of
surrogate and ancestor keys for the join predicates.

1 ancestorKey = -1

w

for i in range(rowCount):
ancestorKey += rows[i].repetitionLevel <= ancestorLevel
ancestorKeyBuffer[i] = ancestorKey

Listing 1: Simplified pseudocode for computing ancestor
keys.

The pseudocode in Listing 1 shows how ancestor keys are com-
puted. Given a node and an ancestor for whom we need to generate
foreign keys, we start by retrieving the nesting level of the required
ancestor. Then, we loop over all rows in our node and check for ev-
ery tuple if the repetition level is less than or equal to the ancestors’
nesting depth. Whenever this is the case, we increment the current
ancestor key index (ancestorKey). This is a simplified realization

of the computation which can be further optimized for parallelized
execution of the scan (c.f. Section 5).

4 Expressing Queries as Joins

After explaining the theoretical aspects of how nested Parquet files
can be normalized, we now describe how the normalized data can
be queried in a typical relational query engine. We integrate our
approach into a fully fledged database system, but the techniques
that we describe in the following are applicable to any query en-
gine. This general applicability is also demonstrated later, in the
evaluation in Section 6. There, we simulated the integration of our
approach into other systems by manually transforming Parquet
files accordingly and measured the performance impact.

In this section, we show how the initial join tree can be con-
structed in linear time, in a single pass.

Given a SQL query, there is a set of required columns. Our ap-
proach internally joins the Parquet nodes to provide a normalized
result. In this section, we describe how the initial join tree is built.
We refer to it as the “initial” join tree since afterward, a query opti-
mizer can take the join tree as input and optimize it based on the
available statistics.

To make the explanation more visual, we will use the examples
in Figure 6 to guide us through the different cases based on the
social media example from Figure 2. We abstracted it with nodes
(c.f. Figure 4) and used the first letters for their naming: U for the
users, P for the posts, R for the reactions, C for the comments, L for
the likes, and F for the followers.

For every example, we highlight the required nodes in blue. In
the end, our join tree will only contain the highlighted nodes. In
the following, we list a possible query that would have resulted in
the given highlighting for every example:

I Get all posts about coffee.
IT Get the users with the longest posts.
IIT Get the users with the most comments.
IV Get comments from users who also reacted to the post.
V Get followers that write the most comments.
VI Get users that commented and liked their own posts.
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VII Get followers of Alice that liked any comment of her posts
about movies.

The first step in the join tree construction is to evaluate which
nodes contain columns that are required in the query. We already
did that for our examples in Figure 6 by highlighting the required
nodes in blue.

I. For the first example, we require all texts of posts, so only node
P. Therefore, we do not need any join and do not build a join tree
for this case. This showcases how beneficial it is to stick with the
columnar representation as long as possible. Since we do not store
the data in an explicitly nested representation, we will only scan
the data we need and do not have to access all entries of U to get
all entries of P.

Examples II to V only require two nodes. These examples demon-
strate the four different join types that can occur during the join
tree construction:

(a) Join with parent node.

(b) Join with an ancestor node.

(c) Join with a sibling node.

(d) Join with a descendant of a sibling node.

Examples VI and VII require more than two nodes. These exam-
ples show how our approach generalizes to more complex scenarios
with more than two nodes. In example II, we need to join the users
with the posts which corresponds to a join between a parent and
a direct child node. To do that we take the surrogate key from the
users node U and the ancestor key from the posts node P. Example
III requires information about users and the comments that they
got, so we are joining a node with an ancestor node that is not a
direct parent. In this case, we again take the surrogate key from
the node higher up in the path U and from the comments node C,
we choose the ancestor key that references the correct level, in this
case, we need the ak that references level 0.

Example IV joins the reactions R with the comments C, which
are two sibling nodes. At first, we have to identify their lowest
common ancestor, which is the posts node P in this case. Then,
we take the ancestor keys from the required nodes R and C that
reference node P. We do not need to include the posts node P
itself in the join tree since the ancestor keys from nodes R and C
reference the same column in P (sk(P)) and therefore we can directly
compare the ancestor keys from R and C. Example V shows that
we might also need to join two nodes that are not direct siblings
but are themselves on different levels in the tree. In our example
query, with nodes R and F, we are joining the followers with the
reactions. In the end, this does not change anything for the tree
construction: We approach it the same way we approached example
IV. We identify their lowest common ancestor and then choose the
ancestor keys corresponding to the level of the lowest common
ancestor. In this case, this is the root node U on level 0.

Before we explain the last two examples, we introduce our gen-
eral approach to join tree construction, which we show in Listing 2.
The basic intuition is to start with the nodes at the bottom and move
up the tree until we reach the top-most node (1imit in line 10). For
example VI, this means that we will at first join nodes C and L and
then we will add node U with another join. The resulting joins are
of the same form as the joins from examples II and III. To state this

Rey et al.

1 def storeJoin(join):
current = predecessor
ancestor = current.parent
4 current.replaceWith(join)

¢ def buildJoinTree(current, limit):
predecessor = current.predecessor
8 ancestor = current.parent

10 while current > limit:
11 if (predecessor == ancestor):

join = joinSkAk(predecessor,
storeJoin(join)

current)

14 elif (predecessor < ancestor):
15 ancestor = ancestor.parent
16 else: # predecessor > ancestor

if # only one element from left sibling:
18 join = joinAkAk(predecessor, current)
storeJoin(join)
20 else:
21 subtree = buildJoinTree(current.predecessor,
ancestor)
23 if finalNode(subtree) == ancestor:
24 join = joinSkAk(subtree, current)
storeJoin(join)
26 else:
join = joinAkAk(subtree,
28 storeJoin(join)
29 return join

current)

30
51 buildJoinTree(requiredNodes.last, requiredNodes.first)

Listing 2: Pseudocode for computing the initial join tree.

intuition more precisely: We sort the tree in preorder traversal or-
der, then we add all required nodes into a list based on the ordering,
and then we scan the nodes from back to front to get the join tree.
For each node we visit in the list, we compare its predecessor with
the parent of the current node, and based on the result, we decide
what kind of join we have to construct. The predecessor can either
be equal to (line 11), less than (line 14) or greater than (line 16) the
parent, which are the three cases visualized in the pseudocode in
Listing 2.

II. In the second example, we build the chain with the nodes U
and P and start at the back with node P. Comparing its predecessor
U with the parent of P, which is also U, gives us equality. Therefore
we know that the join we need is a join between the surrogate key
(sk) of the parent and the ancestor key (ak) of the child node. In the
pseudocode this kind of join is abbreviated with a function call to
joinSkAk (line 13).

IIIL. The third example starts at node C. In this case, the predeces-
sor U is less than the parent P (line 14). In this case, we will move
up to the next ancestor which is in this case the grandparent of
node C. In the pseudocode, we will enter the while loop once again
and now we meet the first condition and therefore again construct
a join between a surrogate and an ancestor key.

IV. - V. The fourth example demonstrates the third case since the
predecessor of C, which is R, is greater than the parent of C, which
is P. This tells us that the next required node is located in a sibling
subtree from the current node. The fourth example only requires one
node from the sibling subtree, which fulfills the first subcondition
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(line 17). We will construct a join between two ancestor keys and
therefore call the joinAkAk function. The fifth example does the
same as the fourth. Again, the predecessor of F, which is R in this
example, is greater than the parent of F.

VI. Example VI works with three nodes. We start by building the
list of required nodes where all nodes are added in preorder traversal
order. Then, we start at the back with node L. The predecessor of L
equals the parent of L, so we call joinSkAk. Then, we will replace the
chain nodes C and L with the join node we just built (line 2). Next,
we move to the preceding element in the chain C now represented
by the newly generated join. We compare C’s predecessor P with its
parent U. P is greater than U, so we increment the parent distance
and continue with the grandparent which is U. Now, we again
construct a join between a surrogate and ancestor key.

VIL. For the last example, we start with node F and compare the
predecessor L with the parent U. L is greater than U, but this time
we see that the next predecessor P is still greater than U, so we
know that we need more than one element from the left sibling.
In this case, we will construct a subtree for the left sibling and
then return to the node F again when we reach the ancestor of the
current node. In our algorithm, we do this with a recursive call to
the build function (line 21). If we reach the parent of node F (1imit
in line 10), we stop and return the constructed subtree. In our case,
the recursive call will start with node L. The predecessor P to parent
comparison C tells us that we need to move up to the grandparent
where we call the joinSkAk function. Then, we continue with node
P and again call joinSkAk since U is the predecessor and parent of
P. Now, since we reached the parent of F, we return to the outer call
and continue with node F again. The constructed subtree with the
final node U is the new predecessor representing U. Since U is the
parent of node F, we call once again the joinAkAk function. This
approach allows us to scan the list of required nodes only once and
therefore finishes in linear time. If node U is not required, we would
perform a join between two ancestor keys by calling joinAkAk
with the final node of the subtree.

5 Implementation

In this section, we describe the modifications required for existing
database systems to support nested Parquet files and how they can
be smoothly integrated with the existing code base.

Changes in Our Implementation. We built our nested Parquet
support on top of the existing Parquet file scanner in Umbra [34].
Inside the Parquet Scanner we add the computation of ancestor
and/or surrogate keys. These generated keys are treated by our
Parquet Scanner like standard columns in most parts, but have a
specialized way to retrieve them. Since generating the surrogate and
ancestor keys is cheap and only introduces minor overhead, which
we show in Section 6.6, we do not store them in the database, but
instead recompute them for every query. Our SQL dialect provides
all nested columns by their names. During the semantic analysis,
we then generate the required joins as described in Section 4.

Required Changes for Other Systems. To integrate nested
Parquet files with our approach, existing systems have to be modi-
fied and extended in three places. First, the database system needs
to support a nested SQL syntax, if it does not support it already for
other nested data formats. Second, during the semantic analysis
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phase the nested SQL syntax must be translated into appropriate
relational algebra, incorporating the necessary joins. The database
engine then perceives the Parquet file as a collection of relational
tables. Third, the Parquet scanner must be extended to compute
ancestor and/or surrogate keys when needed. Importantly, the main
path of the Parquet scanner implementation remains untouched, en-
suring that the performance of Parquet files without nested columns
is unaffected.

Optimizing Computation of Ancestor Keys. For ancestor
keys, we scan the repetition level of some column of the requested
node. Since it does not matter which column we choose, we pig-
gyback the scanning of the repetition level on the scan of the first
required column that is needed anyway. For every ancestor key we
need, we track the nesting level of the respective ancestor. When-
ever the repetition level value is smaller or equal to this nesting
level, we increment the ancestor key.
def computeAncestorKey(rowGroup,page,offset,blockSize):

ancestorKey = -1
for (r = 0; r < rowGroup; r++)
ancestorKey += numValuesParentColumnChunk(r)
for (p = 0; p < page; p++)
ancestorKey += getAncestorKeyJumps(p)
for (o = 0; o < offset; o++)
ancestorKey += repLevel <= parentlLevel
for (i = 0; i < blockSize; i++)
ancestorKey += repetitionLevel <= parentLevel
ancestorKeyBuffer[i] = ancestorKey

Listing 3: Pseudocode for efficiently computing ancestor keys

In Listing 3 we formalized the computation of the ancestor keys
in pseudocode. The function takes as input parameters the index
of the row group, the index of the page, as well as the offset in
the page and the size of the block we want to process. In the first
step, we need to get the ancestor key of the first row in this row
group. Afterwards, we can incrementally determine the following
keys. To get to the first ancestor key, we do not have to scan all
previous row groups, but instead, we can base the computation on
information from the Parquet file metadata: Row groups are used
in Parquet files to split the data into horizontal partitions. For each
row group, the Parquet metadata footer tracks the number of rows
per column inside the row group. This information is important
especially for nested data since the total number of rows we have
for a repeated column is different from the number of rows of an
atomic column. The first ancestor key of a certain row group equals
the row number of the first parent row in this row group. To get
the row number of the first parent element, we can sum up the row
counts of all preceding row groups (line 4). This works since all
nested data is stored along with their respective ancestor rows in
the same row group.

To reach the correct page inside the required row group, we
cannot use any metadata of the parent level since the spread of
rows over pages does not have to align with the nested rows. This
means that if the parent level stores 1,000 rows on the first page,
it does not imply that the nested column chunk stores all nested
rows belonging to these first 1000 rows on a single page as well.
Therefore, the repetition levels of all previous pages leading to the
required page have to be scanned (line 6). This information cannot
be obtained from the metadata footer. Inside the required page,
we compute the number of increments until we reach the offset
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(line 8) and then we start gathering the ancestor keys for the block
and store them in a preallocated array (line 11). This approach
parallelizes trivially over row groups since we can easily compute
the starting ancestor key per row group. For more fine-grained
parallelization below row group level, which we do in our multi-
threaded implementation, we compute the increments per page
only once, and all following threads can reuse the result.

Leveraging the Query Optimizer. While the changes to the
scanner were only minor, there are a lot of benefits we get from
extending and relying on an existing scanner implementation. An
efficient scanner implementation can evaluate predicates already
during the scanning process and therefore can largely reduce the
amount of data we have to read for selective queries.

The join tree can be fed into the standard query optimizer which
is then able to treat filter predicates over an array like predicates
over atomic values. If possible, the query optimizer can push the
predicates down to the scanner which is then able to apply early
predicate evaluation as usual. In Figure 7, we visualize the query
plans for an example query on the artificial social media dataset to
emphasize the impact that the query optimizer can have. The query
returns all posts that have a comment including the word “fun”.
Figure 7a shows the unoptimized query plan that the initial join
tree construction will generate. At first, the posts and comments
nodes will be joined, and afterward, the predicate is evaluated. Due
to the simple nature of the constructed query plans, established
techniques, such as predicate push down can be applied: The query
optimizer will push the selection down to the comments scan. As-
suming that the cardinality of comments that contain the word “fun”
is lower than the total number of posts that exist in the dataset,
the query optimizer can also switch the probe and build sides of
the join operator. All of this works because our approach produces
relational joins over relational data, meaning every RDBMS can
take advantage of it.

Pages of Parquet files have optional fields for the page’s current
minimum and maximum value, called ColumnIndex [7]. Since these
are generated independent of the nesting depth of the column
chunk, the query engine can — as usual — use these for pruning
by determining if the page can contain any matches. This logic is
already implemented and since we move the nesting out of the
Scanner logic, we can evaluate those predicates as usual on the
atomic values without the scanner being aware that the column is
in fact, an array.

Optimizing Data Locality with Merge Joins. Surrogate keys
are row numbers and therefore sorted by design. Nested elements
are sorted by their parent elements which makes them also sorted
by the ancestor key columns. For our Parquet node joins this means
that the join partners are sorted by the join keys. However, many
query engines would choose a hash join by default since they are
unaware of the sorting, which reduces data locality.

Intuitively, the best approach to join two lists already sorted by
the join key would be a merge join. Extensive work on comparing
hash joins to sort-merge joins [11, 28] shows sort-merge joins are
usually slower than hash joins due to their expensive sort phase.
However, in our case, we can skip the sort phase and only do the
merging step which makes merge joins a strong contestant.

Unlike the classical sort-merge join, where the left and right sides
are scanned in parallel, our approach has to generate the join keys

Rey et al.
i\ c.text LIKE '%fun%' / X
/ N \ i' Posts
Posts Comments Comments

(a) Unoptimized Query Plan (b) Optimized Query Plan

SELECT "posts.text"

FROM 'socialmedia.parquet'

WHERE "posts.comments.text" LIKE '%fun%';
Figure 7: Query plan optimization for an example query over
the nested social media Parquet file. Posts and Comments are
perceived as separate relational tables.

at the same time. For an efficient multi-threaded implementation,
we materialize the left input with the generated join keys first and
then scan the right side. We materialize each sorted chunk from
the left and store its key range in an index. For each sorted chunk
from the right, we find the matching region to its first tuple in this
index. We then skip to the correct offset and sequentially scan both
chunks in parallel to find matching tuples. When we reach the end
of a left-side chunk, we move to the succeeding chunk, continuing
until the right-side chunk is fully processed.

Using this approach, our merge-join implementation achieves
slightly better performance than hash joins for small build sides and
outperforms hash joins when the hash table exceeds the CPU cache
capacity, as visualized in Figure 8. We demonstrate the relative
speedup of merge joins over hash joins for two different dataset
sizes: one that fits into the CPU caches and one that exceeds them.
For the smaller dataset, the performance is similar, but for the larger
dataset, merge joins are more efficient. However, the difference is
not as large as one might expect. This is because hash joins also
benefit from the sorted inputs. In our case, when probing with the
elements of an array, cache misses only occur whenever the first
child of a parent is probed. Subsequent elements read the same
cached hash table entry, minimizing cache misses.

In Figure 8 we vary the array sizes from 1 to 20 to validate this
effect. Especially in the out-of-cache case, hash joins perform worse
for very small arrays. But the gap narrows substantially for larger
arrays. While hash joins are not prohibitively slower, especially with
large arrays, we chose to use merge joins in our implementation
as they consistently offer slightly better performance. However,
this optimization is not crucial and one could achieve most of the
speedup of our approach without implementing a new join type.

6 Evaluation

For the evaluation, we integrated our approach into Umbra, a
fully fledged database system which supports processing Parquet
files without nested data. We compare our join-based approach
to DuckDB [35], Trino [42], and AsterixDB [3], all of which na-
tively support nested Parquet files. The difference between their
approaches and our is that they interpret the nested Parquet files
as nested data and base their computations on nested scans over
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Figure 8: Speedup of merge joins compared to hash joins.
The Parquet file contains an integer column and an integer array
column. In the query, the integer column is joined with the elements
of the corresponding integer array. The colors represent the length
of the integer array.

File | Nesting | Node | Tuples at | Max Tuple
Dataset Size | Depth | Count Root Count
Synthetic 80 MB 1-6 1-6 | 10M-10 10M
DBLP 516 MB 1 9 6 M 13M
TPC-HSF 1 290 MB 5 5 5 6M
TPC-HSF10 | 2.6 GB 3 3 1.5M 60 M
Twitter 6.4 GB 3 153 7M 13M
XMark 555 MB 3 38 1 600 K

Table 1: Properties of utilized datasets

the data. This is the bottleneck of the built-in approaches. When
nested columns are retrieved with their outer layers in one pass,
this limits the degree of parallelization for inner layers. The pro-
cessing in parallel blocks is fixed by the blocksize that is chosen for
the outermost required layer. Not only in terms of parallelization,
but also for predicate pushdown or grouping, we have a lot more
freedom by processing all levels separately and joining them as late
as possible. We also generate manually split files to demonstrate
how well these other query engines could perform if they used our
approach.

All experiments were conducted multi-threaded on an Intel Xeon
Gold 6338 CPU with 32 physical cores and 64 logical cores running
at 2.0 GHz. The server has 256 GiB of main memory, and all Parquet
files were stored on a local Samsung 850 Pro SSD with 2 TB of
storage space. All queries where executed 10 times, with the fastest
execution time recorded.

For the experiments, we use five datasets. Table 1 lists the differ-
ent specifics of all datasets that we found useful for interpreting the
results. For the nesting depth, we only take those nested columns
into consideration that are repeated. The node count indicates the
number of normalized Parquet nodes when splitting nested Par-
quet files with our approach. To show the range of tuple counts at
different levels, we list the tuple count of the root node as well as
the tuple count of the node with the most elements. All nodes will
at least have the same number of tuples as level 0.

6.1 Impact of Nesting Depth

In the first step, we want to compare the robustness of the different
systems to see if they maintain a stable performance independent of
the nesting level. We work with a synthetic dataset that has varying
numbers of nesting levels. At each level, we store only one integer
column with randomly generated values. To ensure the same result
set size across all datasets, we maintain a constant number of tuples
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at the deepest nesting level. For the base dataset with no nested
column, we have 10 million integers. For the dataset with one level
of nesting, we store 1 million tuples, each containing an integer
and an integer array with ten elements. This results in a total of
10 million integers across all nested arrays. For every additional
nesting level, we use the same approach: We divide the number
of tuples at the top level by ten and add a new nesting depth by
creating an additional array of length ten for every entry at the
currently deepest level.

We ran four different queries on the dataset. The first query
accesses the innermost attribute, which always requires a scan of
10 million rows. In the second query, we retrieve two attributes
from neighboring levels, resulting in one join operator in our query
tree that joins a dataset of 1 million tuples with a set of 10 million
tuples. In our third query, we again retrieve two attributes, but this
time we increase the nesting level distance between them. For the
final query, we do a full table scan by querying the attributes from
all levels, leading to one additional join for every added nesting
level. To keep the output size small, we added aggregates in all
queries on top of the scans.

Figure 9 shows the query throughput for all systems visualiz-
ing both the absolute throughput and the relative slowdown as
column nesting depth increases. For all queries, our implementa-
tion is significantly faster than the others. In the first graph, we
query a column from seven different levels, where each result set
contains the same number of tuples. Since the column values are
stored identically for all seven levels, the execution time should
be constant. In our system, we see that our approach allows us
to directly access the required column without dealing with any
sort of nesting and therefore we have no performance differences.
Both DuckDB and Trino have additional internal computations
that grow with increasing nesting depth. DuckDB has a significant
performance drop comparing no nesting and only one nesting level
of 50x. Afterwards, the performance decreases linearly. For query
2, the normalized performance numbers are less significant but still
our approach overall shows a more stable performance whilst for
the other systems there is a performance drop.

In query 3, the execution time of our system is a bit worse for
the first two cases whereas for the rest it is again near constant.
The reason for it is that we need more tuples on the root level to
produce the same number of output tuples. Therefore, the build
side is bigger and needs a bit more maintenance. The other systems
again experience a performance drop. For AsterixDB, we cancelled
the execution of the last case because it did not terminate under 15
minutes. For the last query, which essentially is a full table scan, all
systems show a decline in performance. This behavior is expected,
as each new column from an additional level introduces another
join operation to the query plan. One might assume that, in this
scenario, the traditional nested scans would outperform our join-
based approach. However, despite the increased complexity from
adding joins for every level, our relative throughput is still more
stable and, in terms of absolute numbers, remains significantly
faster. Even for the last case where the dataset contains six nesting
levels for which we need five joins, we are 10x faster than Trino
and even 45x faster than DuckDB. In AsterixDB, we again cancelled
the last case because it did not terminate under 15 minutes.
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Figure 9: Throughput of queries on synthetic datasets with varying nesting levels for four different queries.The top graph
visualizes the throughput in queries per second. The graph on the bottom shows the relative throughput of the queries (normalized to the

first/least nested version).

6.2 Evaluation Datasets

In addition to the benchmark on the synthetic dataset, we also did
benchmarks with four more realistic datasets:

The TPC-H benchmark includes a dataset with several flat rela-
tions. For our use case, we worked with two versions of the dataset.
We used the dataset with scale factor one to nest five of their rela-
tions that are connected with one-to many relations into one nested
relation: We nested lineitems into orders, orders into customers,
customers into nations, and nations into regions. For the scale fac-
tor ten, we only nest three of their relations: lineitems into orders
and orders into customers. From the TPC-H queries, we selected
those that only run on the nested relations. Queries 1 and 6 only
read from the lineitem relation. The others originally join multiple
relations together. We removed these join predicates since those
implicitly hold due to the nested representation. Queries 4 and 12
contain one join, query 3 contains two joins and query 10 contains
three joins, which is why we only use it for the SF 1 version.

The Twitter benchmark, developed as part of the JSON tiles
paper [21], uses a dataset of 7 million tweets from June 1, 2020 [10].
We converted the dataset to the Parquet format and evaluated the
five queries on it. Three queries access a single node, while the
other two access two nodes each, resulting in one join.

The XMark benchmark [37] was built to evaluate XML engines
with queries written in XQuery. We generated the dataset in XML
with the scale factor 10 and transformed it to Parquet. From its 20
XQuery queries, we used all except 6 queries that focus on XML
specifics. Most of the queries only query attributes of one level.
Only queries 2, 3, and 4 query attributes from two levels.

The nested DBLP dataset was generated to evaluate JSON and
XML DODBMSs [43]. Since the dataset only contains arrays with
basic unnested types, the maximum nesting depth is one. Most of
the queries only differ in the filter predicate but not in the used
fields and nesting level. The benchmark consists of nine queries.
Five queries only query the root node. The other four queries group
publications by authors and therefore require two levels.

6.3 Impact of Optimizations

In Section 3 and Section 5, we discuss several optimizations for
our nested Parquet scanner. To evaluate the impact of these opti-
mizations individually, we added them one by one to our baseline

+ merge joins
+ skip levels

+ optimizer

optimizations

baseline
T T T

0 5 10 15
throughput (queries per second)

Figure 10: Performance improvements of optimizations on
the entire benchmark set from Table 1. Query optimizer, skip
levels, merge joins instead of hash joins.

and evaluated all benchmarks for each configuration. The first and
most impactful optimization is enabling the query optimizer. Since
we abstracted the nesting from the query engine, this optimization
is effectively “free”. The query optimizer treats the nested data as
joins and applies existing optimization techniques without requir-
ing additional adaptations. Another optimization adds the ability
to compute ancestor keys for arbitrary ancestors. This optimization
does not add a significant improvement for our workload, because
most of the benchmarks do not query nodes that are not direct
ancestors. For the five queries in our benchmark that benefit from
this optimization, the speedup is significant. We recommend to use
this optimization, because it is rather straightforward to implement
and offers significant benefits for level-skipping queries. In our last
optimization we replace hash joins with merge joins. This change
results in only minor improvement, consistent with our findings
from the microbenchmarks in Figure 8, especially as array sizes
increase. Since arrays in our workloads are mostly longer than one
or two elements, the benefits of this optimization are minimal.

6.4 System Comparison

To evaluate how our approach performs on real-world data, we ran
the queries of the different datasets on all four systems. Figure 11
shows the speedup of our implementation compared to the native
implementations of DuckDB, Trino, and AsterixDB. For all datasets,
our approach achieves significant speedups of 10x to 100x for nearly
all queries. On the TPC-H dataset with scale factor one, all queries
show speedups over 100x compared to DuckDB. For Trino, the
speedups range from 10x to 100x. In AsterixDB, only two queries
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Figure 11: Speedup of our approach implemented in our own
system over DuckDB and Trino. The colors depict the number
of generated joins in the query.

completed within 15 minutes, both with speedups exceeding 1000x.
At scale factor ten, the speedups are smaller due to the reduced
number of nesting levels in the dataset (see Section 6.2). Our system
is at least 10x faster than DuckDB and Trino and 100x faster for
AsterixDB for most of the DBLP queries. The XMark benchmark
contains the most queries out of all four benchmarks. Our system
outperforms DuckDB and Trino with a speedup range between 10x
and 100x for most of the queries. For AsterixDB, its even between
100x and 50,000x. The Twitter dataset has the biggest file size. For
Trino, we get speedups around 8x for all queries. For DuckDB all
except one query are more than 10x faster in Umbra. The exception,
query 2, operates on columns from the top-level therefore no joins
or complex nesting techniques are required which would differen-
tiate the executions. In AsterixDB, the Twitter queries are around
100x slower than in Umbra.

6.5 Our Approach in Other Systems

After comparing the built-in approaches of our system with Trino,
DuckDB, and AsterixDB, we now take a look at how the other
systems would perform if they used our explicit nesting approach.
To evaluate our approach in other systems, we split the nested
Parquet files into flattened files for every normalized node that
our algorithm would generate. In addition, we added an additional
column to each flattened file for the surrogate key as well as ad-
ditional columns to store ancestor keys for all ancestors up to the
root node. Then, we compare the built-in versions to scan nested
Parquet files to join queries on our manually flattened files. In Fig-
ure 12, we formalized one of the queries of the Twitter benchmark
in the SQL syntax of DuckDB. The goal of the query is to find all
users who used the hashtag “COVID” in one of their tweets. We
can use the built-in functions contains and transform to scan the
hashtags arrays. The second version is the manual version using
our manually flattened files in DuckDB. To join the hashtags with
the corresponding users, we retrieved the correct flattened Parquet
files that contain the users and the hashtags and join them based
on the equality of the user’s surrogate key and the hashtag’s parent
key, which we highlighted in yellow.

In Figure 13, we visualized the speedup of our approach over
the built-in versions. For all systems, our approach is faster than
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-- DuckDB --

SELECT DISTINCT user.ID

FROM 'twitter.parquet' t

WHERE list_contains(list_transform(
entities.hashtags, x -> x.text), 'COVID');

-- Manual Version in DuckDB --
SELECT DISTINCT "user.id"
FROM 'twitter_0.parquet' to, 'twitter_3.parquet' t3
WHERE t0._sk = t3._ake AND
"entities.hashtags.text" = 'COVID';

Figure 12: Query 4 over Twitter dataset formalized in
DuckDB: Find users that used the hashtag “COVID”.
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Figure 13: Speedup of manually joined normalized datasets
over built-in versions of DuckDB, Trino, and AsterixDB. The
colors depict the number of generated joins in the query.

the built-in versions for almost all queries. Note, that performance
changes can origin from avoiding nested data, but also from changes
in the structure of the Parquet file. Overall, DuckDB benefits the
most from our approach, but all systems can achieve great speedups
with our approach. We color-coded the number of joins that are
required for the manual versions. The dark blue ones mark queries
where we introduced three joins. Most of the queries are very simple
and therefore require no or only one join.

The only queries where we are not able to outperform the built-
in versions of DuckDB and Trino, are the DBLP queries. The DBLP
dataset has only one nesting level and therefore has the lowest
complexity. It is expected that in this case the difference between
the two approaches is the least visible.

In AsterixDB, the DBLP and TPC-H queries for scale factor 10
are generally slower using our join-based approach compared to
AsterixDB’s built-in methods. However, for TPC-H scale factor 1,
only two built-in queries terminated in under 15 minutes; the others
only terminated for the normalized approach. In contrast to Trino
and DuckDB, AsterixDB is not a relational database management
system and therefore not optimized for relational data processing.

Memory Consumption. In Figure 14, we visualize the memory
consumption to see if there is a trade-off between performance and
memory usage. We reran all queries from Figure 13. For all four
systems, the memory usage stays low for our join-based approach.
For Trino, DuckDB and AsterixDB we also measured the memory
consumption when using their built-in approaches. For all queries,
all three systems have a similar memory usage. For DuckDB and



SIGMOD’25, June 22-27,2025, Berlin, Germany

100 - apporach

[as) nested

g [ join-based

5 "] =
o0

: ; %
= .

Z ] = :

=

< :

o

g 0.1 Q

=

L'mlbra Duc;(DB 'D';no

system
Figure 14: Memory usage of nested approaches of DuckDB,
Trino, and AsterixDB and (manually) joined-based ap-

proaches of Umbra, DuckDB, Trino, and AsterixDB.

T
AsterixDB

AsterixDB, the memory usage of the join-based approach is even
better than for the built-in approach. The outliers of Trino’s nested
approach are the TPC-H queries for scale factor 10 where 30 GB
of memory are required to process a file that is smaller than 3 GB.
For AsterixDB, the outliers stem from the TPC-H queries with
scale factor 1 where we only have five rows on the outer level and
6 million rows on the innermost level. This imbalance seems to
produce large intermediate results for the AsterixDB engine.

Challenging Queries. We performed two microbenchmarks
to evaluate if built-in approaches can outperform our approach.
Figure 15 shows the speedup of our approach over the built-in
methods for different selectivities using the dataset from Figure 9,
with one nesting level and a predicate on the outer level. Nested
approaches can skip inner level scans when the outer level pred-
icate is false, but since we scan both levels separately, we cannot
skip inner-level values. Still, our approach benefits from selective
predicates by reducing the join build side. In Trino, the built-in
approach outperforms ours for extremely selective queries, though
the performance difference is minor. For DuckDB and AsterixDB,
our approach remains faster, even with very selective queries. The
reason for this is that to correctly retrieve the nesting, the repetition
levels of all rows still need to be scanned. Our approach could be fur-
ther optimized for selective queries by using “sideways information
passing”, where higher-level scans inform lower-level scans about
qualifying row groups or ancestor key values. The granularity of
this information should depend on the selectivity of the predicate.

In Figure 16, we visualize the impact of nesting depth on the
speedup of our approach over the built-in approaches. Every ad-
ditional nesting level, adds an additional join operator to our plan.
For all three systems we can see that the speedup of our approach
does not get smaller with growing nesting depth, for DuckDB and
AsterixDB it even gets bigger. The reason for this behavior is that
built-in approaches need to also deal with more complexity when
the nesting depth grows, which seems similar to the complexity of
adding another join for Trino and DuckDB.

6.6 Impact of Key Generation

In the previous subsection, we discussed the potential of our ap-
proach in other systems. The only aspect we do not consider is the
overhead of computing the surrogate and parent surrogate keys
required for joining multiple levels in a query. To demonstrate that
this computation has only a minor impact on the overall execution
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time, we also run the manual normalization version in our system
and compare the results with the execution times when we use
our built-in approach. This comparison only includes queries that
contain at least one join.

In Figure 17, we visualize the relative runtime of our approach
compared to the baseline where we join on manually rewritten
Parquet files. For all datasets, we can see that the slowdown is
minor. Compared to the speedup our approach has over the built-in
approaches of other systems, it still pays off massively. The colors
denote the number of joins that were generated and with every
join, additional keys have to be generated. The DBLP and XMark
datasets are the smallest and their queries are equally or even
slightly faster than the built-in version. For the Twitter dataset and
the TPC-H dataset the overhead is more noticeable. Specifically,
for the TPC-H benchmark, the queries experience a slowdown of
1.2x at scale factor 1 and 1.8x at scale factor 10. This increased slow
down originates from differences in how the data is stored inside
the Parquet files, rather than from the key computation. At scale
factor 10, the normalized dataset uses 10x smaller pages than the
nested dataset, enabling more effective parallelization.

To demonstrate the scalability of the ancestor key computation,
we present the execution times for the largest table scan for queries
3,4, and 12 at scale factor 1 and 10 in Table 2. These queries retrieve
various columns from the lineitem relation with the ancestor key
computation introducing varying slowdowns depending on the
queried columns. For instance, query 3 involves retrieving two more
expensive columns compared to query 4. Therefore, the impact of
the additional ancestor key column is stronger for query 4. Despite
this variability, the slowdown factor does not increase with scale;
it even slightly decreases between the two scale factors.
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7 Related Work

We identified two relevant areas of related work. We start with
examining related work focusing on processing of nested data in
RDBMSs. Then, we discuss how other binary, columnar formats
handle nested data.

Processing nested data in RDBMSs There is a plethora of
work on how nesting in relational formats can be expressed in
RDBMSs. Especially for XML processing and later for JSON files as
well. This work focuses on converting nested data into a relational
format for storage in the database system. In contrast, our approach
directly processes nested Parquet files without an initial ETL phase.
Therefore we cannot choose how the data should be mapped into
the relational representation.

Still, we want to discuss their approaches since often they trans-
form the nested file formats into flattened relational representa-
tions that are similar to how the data is stored in Parquet files.
Existing work on storing XML in database systems mostly stems
from the late 90s and early 2000s and can be split into two cate-
gories. Either it is mapped with schema-oblivious or schema-based
approaches [13, 26]. The schema-oblivious approaches create re-
lations based on the tree structure[19, 22, 24]. Since the schema
is always defined in Parquet files, we compare our work only to
existing schema-based approaches.

Work that matches ours closest inlines child elements with their
parents if they can occur at most once and create new relations for
repeated child element types [19, 38]. Their mapping is equivalent
to how Parquet files handles nested data. However, unlike our
approach, they must store a copy of the data in these relations
explicitly. To keep the amount of generated data low, they only store
references to direct parent nodes, whereas we compute ancestor
keys dynamically for the required ancestor nodes, allowing us to
skip unnecessary intermediate nodes.

There is further work on optimizing the storage layout of XML in
database relations like using data and usage statistics to optimize the
generated relational schema [17], as well as constraint-preserving
approaches [18, 40]. Parquet files are predominantly used in data
lakes, where direct querying of data without a costly initial loading
phase is essential. Therefore, we chose not to change the layout
of the data stored in the Parquet file, making these approaches
inapplicable to our context.

Durner et al. [21] focus on processing JSON files. Unlike our
work, they cannot efficiently process the files in situ. They material-
ize common schema parts into multiple chunks to be able to query
the data efficiently which they call JSON tiles. Their columnar for-
mat has no explicit normalization process for repeated/array fields.
Instead, they extract every array index into a separate column.

Steed, presented by Wang et al. [45], is an analytical database
system designed for tree-structured data formats with both a row
and columnar data layout. For the columnar data, they utilize the
Dremel schema. They optimize for simple accesses with at most
one repeated node along the path. For those cases, they choose
a flat in-memory data layout which allows them to skip the FSM
algorithm. Still, if more than one node is repeated, they use the
baseline FSM algorithm of the Dremel encoding.

Nesting in binary columnar formats. Apart from Parquet,
Apache ORC [4] and Apache Arrow [6] are the two other major
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binary columnar file formats. While Arrow is an in-memory format,
ORC has similar objectives as Parquet. Still, Parquet is the most
commonly used binary columnar format [14, 27].

ORGC, like Parquet, is considered an on-disk file format. In con-
trast to Parquet, it encodes nesting by storing the number of repeti-
tions per record or parent tuple. The encoding of the ORC format
as repetition counts is easily compressible and therefore a good fit
for on-disk file formats. Melnik et al. measured for Google datasets
that the ORC format produces on average 13 % smaller files com-
pared to Parquet [33]. On the other hand, the ORC format cannot be
processed as efficiently as Parquet because it requires the reading
of all ancestors of the accessed level. In contrast, for Parquet, it is
sufficient to read the accessed level directly.

The in-memory format Arrow encodes nested data structures by
storing offsets to child element arrays. While this allows for faster
direct access, it makes compression more challenging, aligning it
well with in-memory processing purposes. However, similar to the
ORC format, reconstructing nested structures still requires reading
multiple levels. In contrast, Parquet enables skipping levels during
FSM construction based on the repetition level encoding, which we
also support with the on the fly ancestor key construction.

The Arrow library also provides support for reading Parquet files
by transforming data into its own in-memory representation. This
Parquet reader offers useful features, such as only reading specific
columns and defining filter predicates that are evaluated while read-
ing the data. However, these features are limited to top-level fields
and cannot directly access subfields within nested structures [8].

In a follow-up work of the original Dremel paper [32], Afrati
et al. look at filter and aggregate queries on Dremel encoding and
how these can be optimized [1]. While we work with what they
call a “fully flattening” approach where normalized nodes with the
same parent are joined with all tuples of neighboring nodes (cross
join), they work with a semi-flattening approach where every tuple
only appears once in the result set. Our approach could be extended
to achieve the same result by introducing an additional outer join
checking the row numbers for equality.

Alkowaileet et al. [2] present an extension of the Dremel encod-
ing that allows changes to the schema and even columns with two
or more different types. They use LSM-based document stores to
store the data. Their extension to the Dremel encoding also uses
one column to encode definition levels and delimiters for repeated
values. Nevertheless, our approach would still be applicable.

Smith et al. [39] present Trance which is a framework to pro-
cess nested data in spark. They store the nested collections in their
system as flat collections and use relational queries to query the
flat representation. Inner collections are stored separately, which is
similar to how we interpret nested data inside Parquet files. While
we directly query the data inside the Parquet file by just reinter-
preting it, they do not talk about a specific data format but instead
store them explicitly in their own system.

8 Conclusion

In this work, we present a new algorithm for nested Parquet files
that scans data orders of magnitude faster than the established algo-
rithm that is based on a finite state machine. We demonstrate that
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existing query engines can scan Parquet files much faster when us-
ing manually normalized files. Furthermore, we fully implemented
our approach in an existing state-of-the-art database system. This
enables our system to scan nested Parquet files almost as fast as
non-nested data. It is easy to integrate into existing systems for
two reasons. First, the algorithm’s implementation is orthogonal to
the scanning logic of non-nested Parquet files. Second, it leverages
existing primitives of query engines such as joins and query opti-
mizers. In conclusion, we show how systems can achieve drastic
speedups when scanning nested Parquet files.
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