Self-Tuning Query Scheduling for Analytical Workloads

Benjamin Wagner André Kohn Thomas Neumann
Technische Universitiat Miinchen Technische Universitidt Miinchen Technische Universitidt Miinchen
benjamin.wagner@tum.de andre.kohn@tum.de thomas.neumann@tum.de
ABSTRACT Scheduler E3 Our Scheduler B8 PostgreSQL
Most database systems delegate scheduling decisions to the operat- € 10%
ing system. While such an approach simplifies the overall database g :
design, it also entails problems. Adaptive resource allocation be- -g
comes hard in the face of concurrent queries. Furthermore, incorpo- D 01—
rating domain knowledge to improve query scheduling is difficult. g £
To mitigate these problems, many modern systems employ forms of g - ’
task-based parallelism. The execution of a single query is broken up o 10%=

into small, independent chunks of work (tasks). Now, fine-grained
scheduling decisions based on these tasks are the responsibility of
the database system. Despite being commonplace, little work has
focused on the opportunities arising from this execution model.

In this paper, we show how task-based scheduling in database
systems opens up new areas for optimization. We present a novel
lock-free, self-tuning stride scheduler that optimizes query latencies
for analytical workloads. By adaptively managing query priorities
and task granularity, we provide high scheduling elasticity. By
incorporating domain knowledge into the scheduling decisions, our
system is able to cope with workloads that other systems struggle
with. Even at high load, we retain near optimal latencies for short
running queries. Compared to traditional database systems, our
design often improves tail latencies by more than 10x.

CCS CONCEPTS

« Information systems — Online analytical processing en-
gines; Autonomous database administration.

KEYWORDS

Database Systems; Query Scheduling; Parallelism; Self-Tuning

ACM Reference Format:

Benjamin Wagner, André Kohn, and Thomas Neumann. 2021. Self-Tuning
Query Scheduling for Analytical Workloads. In Proceedings of the 2021
International Conference on Management of Data (SIGMOD °21), June 20—
25, 2021, Virtual Event, China. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3448016.3457260

1 INTRODUCTION

Analytical database systems have to face complex workloads. These
are particularly challenging when heterogeneous requests arrive
in parallel and the system operates under high load. In these cases,
many systems struggle to retain competitive query performance.
For the user, this has severe repercussions. The system becomes
less responsive, taking longer to provide the desired insights. Even
worse, query performance becomes unpredictable. When running

SIGMOD 21, June 20-25, 2021, Virtual Event, China

© 2021 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
2021 International Conference on Management of Data (SIGMOD °21), June 20-25, 2021,
Virtual Event, China, https://doi.org/10.1145/3448016.3457260.

Short Running Long Running
Query Type
Figure 1: Query latencies at high load. The workload consists
of 75% short and 25% long running queries. The systems are
run at 95% of their maximum sustainable load for 20 min-
utes. The relative slowdown is measured with respect to the
isolated query latency within each system.

the same request at different times, the user should observe similar
latencies. This is not always possible. High system load will in-
evitably impact query durations. Nevertheless, performance should
degrade as gracefully as possible. Our experiments show that this is
not the case: in traditional systems, latencies of the same query of-
ten vary by more than 50x. In this paper, we show how fine-grained
control over CPU resources solves these problems. This is exem-
plified in Figure 1. At high load, our novel scheduler provides far
better overall performance and significantly shorter tail latencies
than PostgreSQL. This is especially true for short running requests,
which benefit most from our contributions.

Database systems like PostgreSQL transfer scheduling responsi-
bilities to the operating system (OS) [20]. They create individual
OS threads or processes for every new connection and execute the
incoming requests in an isolated fashion [5]. Additional threads
may be spawned to employ intra-query parallelism. The maximum
number of concurrent OS threads is often bounded in order to not
oversubscribe the system. Other examples for such systems include
IBM DB2 [6] and Microsoft SQL Server [14].

Many modern database systems deviate from this classic ap-
proach. Their parallelization scheme closely resembles task-based
parallelism. Each query is split into a set of independent tasks,
which can be executed in parallel by different OS threads. This
inverts the scheduling responsibilities. In these systems, the OS
threads are not statically bound to a query anymore. Rather, they
can dynamically execute tasks from different queries. This neces-
sitates a scheduling policy within the database, dictating which
task to pick next. In some systems, this user-space scheduling pol-
icy works in symbiosis with the OS scheduler. An example is SAP
HANA, which employs an adaptive number of OS threads that pick
tasks from different queries [22, 23].

Other systems like HyPer and Umbra relieve the OS from almost
all scheduling decisions [8, 16]. On startup, they spawn as many
OS threads as there are CPU cores. Since these threads do not block

https://doi.org/10.1145/3448016.3457260
https://doi.org/10.1145/3448016.3457260
https://doi.org/10.1145/3448016.3457260

when executing tasks, this maximizes performance. The system is
not oversubscribed and context switches are kept to a minimum.
The task-based parallelization scheme is realized through so-called
morsels. A morsel represents a fixed set of tuples in the context of an
executable pipeline and is the smallest unit of work during query
execution [11]. For example, a morsel might read ten thousand
tuples from a base relation, apply a filter predicate and insert the re-
maining tuples into a hash-table. Since morsels of the same pipeline
can be executed in parallel, this enables both intra- and inter-query
parallelism. At the same time, it enforces that all tasks picked by
the OS threads are independent. It does not matter whether other
threads execute tasks from the same pipeline concurrently.

General-purpose task schedulers like the one of Intel TBB are
mainly focused on maximizing throughput [7]. Meanwhile, the
database system should focus on objectives like fairness or query
responsiveness. When implementing its own task scheduler, the
database system can make smart scheduling decisions by exploiting
domain knowledge. For example, the system might execute tasks
from short running requests preferentially in order to retain low
latencies at high load. Additionally, the granularity of spawned tasks
can be changed adaptively to improve execution characteristics.

In this paper, we present a novel lock-free, self-tuning stride
scheduler that we built into the task-based database system Umbra
[16] in order to seize these opportunities. Our three primary con-
tributions are the following: in Section 2 we present our scheduler
design. Section 3 then focuses on morsel-driven database systems.
We show how a morsel-based task structure can be used to make
scheduling more robust and predictable. Finally, Section 4 adds
self-tuning capabilities to our scheduler. By simulating its own exe-
cution based on the tracked workload, the scheduler transparently
optimizes its hyperparamters to improve latency characteristics.

Our contributions enable predictable and high query perfor-
mance for database systems with a task-based parallelization scheme,
even as load increases. For short running queries, we improve the
mean slowdown over traditional systems by more than 4.5x, with
an even stronger effect on tail latencies. Resource intensive requests
do not slow down lightweight queries anymore.

2 SCALABLE TASK SCHEDULING

In database systems with task-based parallelism, the task picked
by an OS thread is dictated by a user-space scheduling policy. This
policy has to be highly scalable in the face of parallel hardware and
provide fine-grained control over CPU resources. In this section,
we present a novel, lock-free implementation of stride scheduling.
It provides the strong theoretical guarantees of classic stride sched-
uling, while minimizing the communication cost between different
threads, since almost all scheduling decisions can be made on a
thread-local basis. This section focuses on the implementation de-
tails of our scheduler. Section 3 then shows how the scheduler can
be made robust in the context of morsel-driven database systems.

2.1 Background

Stride scheduling [30] is a classic priority scheduling algorithm.
Assume we are given tasks t1, t2, . . ., t, with corresponding integer
priorities pq, p2, . . ., pn. Each task gets assigned a stride S; = (p;) .
If all tasks arrive at the same time, stride scheduling becomes sim-
ple. Every task is mapped to a pass P;, which is initially set to zero.

The scheduling decisions now proceed in the same way: the task
with the minimal pass gets picked and executes one time slice of
work. The pass then gets updated to P; + S;. For example, if t; has
a priority of 5 and f has a priority of 10, the stride of ¢t is twice as
large as the stride of t,. This implies that ¢, gets scheduled twice as
often as t;. Thus, stride scheduling provides proportional-share re-
source allocation. Task t; obtains p; /Y], py of the computational
resources. In this context, the pass of a task serves as an abstracted
notion of execution time that takes the priority of the task into
account. Stride scheduling is fair if all tasks have the same priority.
Stride scheduling requires some minor modifications to work
with a set of dynamically changing tasks. If a task is added to
the scheduler at an arbitrary point in time it requires an initial
pass value. For this, the scheduler maintains a global stride Sg =
2, pr)~! as well as a global pass Pg. After every scheduled
time slice, the global pass gets incremented by the global stride.
The global pass can now be used to compute the initial pass value
for a new task. Intuitively, the global pass represents the timestamp
of the scheduler. If a task has a pass lower than the global one, it
has not yet received the resources it is entitled to. Tasks that have a
larger pass than the global one have received too many resources.
Stride scheduling can easily be extended to work in a non-
preemptive setting. If a task t; consumes a fraction f of its allocated
time slice, the pass gets updated to P; + fS;. In the same way the
global pass gets set to PG + fSg. Here, f may be larger than one.

2.2 Scheduling in Umbra

We now provide an overview of the scheduling concepts in Umbra,
the OLAP system into which we built our scheduler. Umbra is an
ACID-compliant database built to provide high performance be-
yond main-memory [16]. Umbra uses code generation to efficiently
evaluate queries [15]. Figure 2 visualizes Umbra’s task structure.
Every executable pipeline is turned into a so-called task set. A
task set contains an arbitrary number of independent tasks which
can be executed in parallel by different OS threads. Task sets of
the same query may be subject to ordering constraints. Within the
figure, the blue pipeline of the left algebra tree has to be finished
before the orange one can start. This is because the build side of the
join needs to be materialized before probing can commence. This is
enforced by putting all task sets of a query into a so-called resource
group, which stores the task sets in an ordered fashion. A task set
within a resource group may only be started once all previous task
sets have been finished. As an added benefit, resource groups allow
us to track resource consumption at query granularity. This will
later be a crucial detail when prioritizing short running queries.
Resource groups and task sets allow us to reason about query
execution at a high level of abstraction. We now want to drill down
into the structure of the tasks being executed on OS threads. Umbra
uses morsel-driven parallelism to handle intra- and inter-query
parallelism [11]. Morsels are the smallest units of work during
query execution. Each morsel processes a set of tuples within an
executable pipeline. Different morsels of the same pipeline can be
executed in parallel by different OS threads. Morsel-driven database
systems like HyPer implement a 1:1 mapping between scheduler
tasks and executable morsels [11]. Our design breaks up this rigid
dependency. Every task may consist of an arbitrary number of
morsels. Within Umbra, tasks are not created statically during

Task Set 1 Morsel State:
g Finished
Running o
Task 1 Task 2 [Pending
RG 1

Task Set 2

Task Set 3

Task 3

B

Task 4 Task 5

Task 6 Task 7 Task 8

C

Worker Threads

Figure 2: In Umbra, each pipeline is mapped to a task set. Every task set contains several tasks which are made up of morsels.
Each worker thread is pinned to one task. Task sets of the same query are wrapped into a resource group (RG).

query compilation. Rather, tasks and morsels are carved out at
runtime. This allows us to dynamically change the task structure
based on runtime observations. To keep presentation simple, this
was omitted in Figure 2. A more detailed discussion will follow in
Section 3, which uses the flexibility of tasks to improve scheduling.

Tasks are executed by OS threads. On startup, Umbra creates as
many OS threads as there are CPU cores. We also call these threads
worker threads. The worker threads are only responsible for exe-
cuting scheduler tasks. This design minimizes context switches and
prevents oversubscription. Since we study analytical workloads
that fit in main-memory, worker threads do not block. The sched-
uling logic of a single worker is simple. It picks one of the active
task sets, carves out a task and then executes it. Since tasks from
the same task set can be executed in parallel, the workers do not
have to be aware of concurrent scheduling decisions.

2.3 Thread-Local Scheduling

Stride scheduling provides strong deterministic scheduling guar-
antees. However, this alone is insufficient on modern hardware,
since excessive synchronization between threads becomes detri-
mental with a rising number of CPU cores. The database should
spend most of its time on query processing, which implies that
the scheduling overhead must be negligible. This section therefore
presents a novel, task-based implementation of stride scheduling,
which scales well with an increasing number of worker threads.
Our design can perform all scheduling decisions on a thread-local
basis. Workers are only notified of changes to the active task sets.
This minimizes the synchronization overhead between threads and
allows for high scheduling performance.

Compared to classical stride scheduling, our implementation
maintains an upper bound on the number of active resource groups.
In Umbra, this is set to 128, but our design allows for an arbitrary
upper limit. This limit is only reached when the system is severely
oversubscribed. In these cases, we tolerate graceful latency degrada-
tion in order to bound the memory consumption of the system. The
resource groups of newly arriving queries are put into a preceding
wait queue until a free slot becomes available within the scheduler.

We now discuss the core building blocks of our scheduler design.
While we focus on stride scheduling, our approach can be easily
modified to work with other scheduling algorithms. This only re-
quires altering the thread-local scheduling logic. The remaining
infrastructure can stay in place. For example, we implemented non-
deterministic lottery scheduling [29] besides stride scheduling in
less than 100 lines of C++ code.

Thread-Local Decisions. Our scheduler maintains a global array of
slots which are bound to active resource groups. Each slot stores a
pointer to the currently active task set of the resource group. When
a task set of a resource group finishes and a new one becomes
active, it is put into the same slot again. This simplifies scheduling
considerably, since priorities are tied to resource groups and not
task sets. If task sets of the same resource group could be put into
different slots, this would require more complicated bookkeeping.
Other than that, all scheduling metadata is stored in a thread-
local fashion. This includes a bitmask tracking the currently active
slots within the global resource group array, as well as a mapping
from slots to priorities and pass values. Additionally, each worker
thread stores its own global pass. This is shown in Figure 3.

Global Slot Array

C [1s1] [1s2])

Active Slots Active Slots
CEENEEENED) T 1Jof1]0)
Priorities Priorities
C AT 2]) C T 2])
Pass Values Pass Values
(_Joeo] TJos]) (The] TJes])
Running Global Pass Running Global Pass
TS1 0.33 TS2 0.66
@D C=)) (@D Cis)

Worker Thread 1 Worker Thread 2

Figure 3: Scheduling with two resource groups (blue and or-
ange). Only the active task sets (TS) are stored globally.

If the global slots and the local activity mask of a worker are in
sync, scheduling is simple. The worker picks the active slot with
minimal pass value. Afterwards, it performs an atomic read on the
global slot array to obtain a pointer to the current task set. It can
then pick a task, track the execution time and update its thread-
local pass values accordingly. This protocol is very lightweight. All
of the core scheduling decisions can be performed independent of
the other threads. Most notably, a worker picking a task does not
have to know if other threads are working on the same task set.
Furthermore, the global slot array is only being written to when a
new task set becomes active. These writes are relatively infrequent,
which does not lead to excessive cache invalidations.

Changing the Active Task Sets. The cost of picking a task for execu-
tion is minimized by keeping almost all information local to each
worker thread. Nevertheless, some communication is required to

Global Slot Array Global Slot Array

® s I ©)

(OsafTs2] [Ts3)

Worker Thread 1

Worker Thread 2 Worker Thread 1

Worker Thread 2

Global Slot Array
® (@salTs2] [Ts3)
Worker Thread 1 Worker Thread 2

Change Mask Change Mask Change Mask

Change Mask

Change Mask Change Mask Resource Group 1

(JoJoJo)| [(]oJoT0) @TJoJoJo)| (GToJ0T0) (0JoJoJo)| (GToJ0]0) s —(@s2)
Return Mask Return Mask Return Mask Return Mask Return Mask Return Mask R G 2
(0JoJoJo)| |[(@T0oToT0) (0T1JoT0) 0[1]0]0 (0JoJoJo)| |(@[3T0T0) esource Group
Active Slots Active Slots Active Slots Active Slots Active Slots Active Slots TS3
GQTaTo[D| |[ATo[D @JoTo[D| [C@leTo]D GIaTo[D| [C@leTolD
- - - - - - Resource Group 3
Running Running Running Running Running Running
-

Figure 4: The change and return bitmasks within each worker are used to incorporate changes to the active task sets (TS).

keep the different threads in sync. A worker has to be able to detect
the following three events:

(1) Atask set in one of the global slots was finished. The worker has
to disable the corresponding local slot. It cannot be guaranteed
that the slot will contain a new task set soon.

(2) The initial task set of a new resource group was assigned to
one of the global slots. The worker needs to pick an initial pass
value and priority for the resource group. It also has to set the
slot to active in its local activity bitmask.

(3) A new task set of an active resource group was inserted into
the corresponding global slot. The worker has to reactivate its
local slot and set an initial pass value. Since priorities are bound
to resource groups, the worker can retain the slot priority.

We handle event (1) optimistically. When a task set runs out of work,
its global slot gets marked as inactive by tagging the contained
pointer. Thus, we do not have to notify the worker threads when a
task set was finished. Instead, the slot remains active in each local
activity mask. When a slot gets chosen for execution, the worker
has to read the pointer in the global array anyways. It only disables
the slot locally if the value indicates that it is not valid anymore.

For events (2) and (3), such an approach is undesirable since it
requires periodic checks of all inactive slots. This makes it hard
to guarantee high responsiveness. Instead, each worker maintains
two atomic bitmasks for updates to the active task sets. When a
worker inserts a new task set into one of the global slots, these
bitmasks get updated accordingly for all workers. On event (2) we
update the first bitmask. On event (3) we update the second one.
From now on, we will call the first bitmask the change mask and
the second one the return mask. When talking about both masks,
we use the term update masks.

Pushing updates into these bitmasks is simple. Assume we want
to indicate that the k’th global slot has received the initial task set
of a new resource group. For this we set the k’th bit in the change
mask of each worker thread to one. We can set the target bit with-
out changing the state of any other slot by performing an atomic
fetch or of the change bitmasks and the value 2k=1 This way,
multiple threads can push state updates into the local worker state
without coarse grained synchronization. Similarly, each worker can
easily pull updates into its local scheduling state. It first performs
an atomic exchange of its update masks with zero. This resets the
change and return mask to reflect that the worker was notified of
all outstanding global changes. The original mask values can now
be used to incorporate the state updates. The worker has to extract
the indices of set bits in the old mask values. For the slots at these
indices, the local scheduling state gets adjusted accordingly. This
can be done efficiently by repeatedly counting the leading zeros and

then shifting the value by this number. This is supported through
clz and shl instructions on all modern hardware platforms.

Before picking a task for execution, each worker synchronizes
with its local update masks to encompass new task sets in its sched-
uling decision. If there are no outstanding changes, this update is
cheap. Cache invalidations are avoided since there were no atomic
writes to the local update masks since the last read. Furthermore,
no changes to the local scheduling state are required. An example
is shown in Figure 4. In the second image, two new tasks sets have
been inserted into global slots. These updates have already been
pushed into the update masks of both workers. Note that we use
the return mask to reflect that TS2 comes from an existing resource
group, while we update the change mask to notify the workers of
TS4. Since the workers are currently executing a task of TS3, they
were not yet able to pull the updates into their local scheduling
state. In the third image, the first worker has now synchronized
itself with its update masks. Worker two is still pinned to its task in
TS3 and has not yet incorporated the updates. Thus, two workers
do not have to be in sync with respect to their active task sets.

Despite using atomic bitmasks, our scheduler can cope with an
arbitrary number of slots that is not bound by the width of atomic
instructions on the target architecture. In Umbra we maintain a
slot limit of 128. Each update mask is made up of two atomic eight
byte integers. This works since we do not require a complete oper-
ation on the bitmask to be atomic. It is sufficient if individual steps
in an operation satisfy atomicity constraints. This way it is still
guaranteed that no update to the bitmask is lost.

Task Set Finalization. Once a task set is done we have to activate
the next task set in the resource group (if one exists). This may
only happen once all tasks of the original task set have been fully
processed. We call this step task set finalization. To increase flex-
ibility, we also allow task sets to run additional finalization steps
once they are done. Examples are the shuffling of partitions during
sorting, or the merging of partial aggregates during grouping.

A worker thread is notified if it tries to pick a task from a task
set with no remaining work. At first glance, it might appear as if
we could start finalization as soon as this happens. However, this
approach is insufficient since we have to guarantee that all other
threads finished their outstanding work. Other workers might still
be pinned to the task set, executing the last remaining tasks. In this
case, we would start finalization too soon. Our scheduler avoids this
scenario by introducing a lightweight finalization phase for each
task set. When a worker picks a slot for execution, it publishes this
decision in a global state array. This happens before the atomic read
of the global slot. The finalization phase of a task set is started once

a worker notices that the task set is exhausted. The first worker to
notice this coordinates the finalization phase.

The coordinating worker has to ensure that the last thread fin-
ishing work on the task set invokes the finalization logic. First, the
coordinator marks the global slot as invalid by tagging the pointer
to the task set. This way, any worker that chooses the slot from now
on will disable it instead of trying to pick a task. Afterwards, the
coordinating worker iterates through the global state array to find
the workers that are still pinned to the task set. For each of them, it
exchanges the slot information in the state array with a dedicated
finalization marker. All worker threads that are marked this way
have to explicitly deregister at the task set once they finish their
current task. This is done through an atomic finalization counter in
each task set. The coordinating worker increments the finalization
counter by the number of workers for which it successfully set the
finalization marker. When a worker finishes executing a task, the
worker checks if the task’s global state field contains the finalization
marker. If this is the case, it decrements the finalization counter
of the owning task set by one. Since this might happen before the
coordinating worker finished iterating through the state array, the
finalization counter can temporarily become negative. The worker
that sets the counter to zero invokes the finalization logic. This
enforces that it was the last thread working on the task set. If the
worker thread that performs finalization does not find a successive
task set within the resource group, it attempts to a obtain a new
resource group from the global wait queue.

This finalization phase is very lightweight. The overhead during

each scheduling decision is limited to updating the global state array.
As long as a worker does not pick a task set undergoing finalization,
its writes to the global state array are uncontended. Furthermore,
we ensure that finalization affects as few workers as possible. Only
those threads that are pinned to a task set when it runs out of work
take part in the finalization phase. If there are many active task sets,
this will only be a fraction of the total workers.
Coping With High Load. As system load increases, letting all work-
ers pick arbitrary tasks becomes suboptimal. Since pipelines do not
scale perfectly with respect to the number of concurrent workers,
it is inefficient to have multiple workers pick tasks from the same
task set. We mitigate this by restricting which threads may work
on certain task sets. As soon as half of the slots are occupied, we
linearly decrease the number of workers into which we push task
set updates. Once all slots are full, each task set is only pushed
into a single worker, eliminating all contention within pipelines. In
addition, this also reduces the overhead during task set updates.

3 ROBUST MORSEL SCHEDULING

Section 2 presented a lock-free stride scheduler that we built into
Umbra. The scheduler is designed for database systems with a
task-based parallelization scheme. This section presents further
optimizations for systems utilizing a morsel-based task structure.
In a first step, we show how morsel-driven parallelism can be
made robust. Classic morsel-driven parallelism entails an extreme
variance in task granularity, which leads to undesirable schedul-
ing artifacts. The scheduling overhead becomes unpredictable and
workers can be blocked for a long time. Section 3.1 presents a solu-
tion to this problem. By normalizing the execution time of tasks, we
enable predictable scheduling overhead and high responsiveness.

In a second step, we exploit database domain knowledge to
optimize latency characteristics for mixed analytical workloads. We
use this term to refer to workloads consisting of analytical queries
with a high variance in query duration. For example, our evaluation
in Section 5 samples from TPC-H queries at scale factor 3 and 30.
Through query priorities, our stride scheduler provides fine-grained
control over relative resource consumption. Rather than having the
user assign priorities to each request, the system should be able to
choose smart query priorities without any user input. Section 3.2
shows how adaptively decaying priorities enable the transparent
prioritization of short running requests. While our design profits
from the novel task structure introduced in Section 3.1, it can also
be applied to other systems with task-based parallelism.

3.1 Adaptive Morsel Execution

In HyPer, there is a one to one correspondence between morsels and
scheduler tasks. Every time a worker picks a task, it executes one
morsel of work. Leis et al. recommend fixed morsel sizes, providing
a trade-off between scheduling overhead and responsiveness [11].

However, this approach suffers from high variance with respect
to the morsel durations. The code generated for different pipelines
can vary considerably in complexity. A pipeline consisting of a sim-
ple selection and hash table insert will spend less time on each tuple
than a pipeline performing complex string matching and several
hash table probes. For the scheduler, this implies that the granular-
ity of different tasks varies considerably. While stride scheduling
can in principle cope with this scenario, it is still undesirable in
practice. A small fixed morsel size leads to extremely short task
durations, resulting in high scheduling overhead. If the fixed morsel
size is too large on the other hand, workers are blocked for a long
time, making the system less responsive. This is presented in Figure
5a. Here, we compare the execution traces of TPC-H queries 13 and
21 at scale factor one. All morsels have a fixed size of 60 thousand
tuples. However, morsel durations differ by more than 30x.

As we have seen, the classic approach to morsel scheduling is
static in two dimensions: (1) it relies on fixed morsel sizes and (2)
it utilizes a static mapping between morsels and scheduler tasks.
To overcome the limitations of this design, we introduce a novel,
adaptive framework for executing tasks. The scheduler defines a
target duration t;,4x. When a worker picks a task, the task tries to
schedule morsels that exhaust this target duration as precisely as
possible. This approach replaces the static nature of the previous
design with a dynamic runtime policy. A task may (1) use adaptive
morsel sizes depending on the current pipeline throughput and (2)
execute multiple morsels. This way, it becomes possible to execute
several morsels without increasing scheduling overhead. After all,
the scheduler is not aware of the underlying task structure. Through
this, the scheduling pressure becomes predictable. In Umbra, we
empirically set ;4 to 2ms to balance scheduling overhead and
responsiveness. Since we measured that each scheduling decision
takes less than one microsecond, this caps the overhead at 0.05%.

Depending on the execution progress of the pipeline, different
strategies are employed in order to exhaust the target duration.
This is achieved by transforming each pipeline into a state machine.
The current pipeline state dictates how morsels are chosen. Our
design relies on the dynamic nature of morsels and tasks outlined
in Section 2.2. Since morsels are carved out from the set of tuples

I s s s s i

s s o e A

oo [[[T 1 1P
g ML T T 1 T T &
| (NI (T O

I OO (] .

A R o 7 d

D AR MU

0 10 20 30 40

(a) Static morsel sizes (60k tuples/morsel).

MLTCCTTCTH (IR [T ST
ML (T

Q13

Thread

%
=
g

Time [ms]
(b) Adaptive morsel sizes (1ms/morsel).

Figure 5: Adaptive morsel sizes lead to predictable execution profiles. The morsels are colored at pipeline granularity.

at runtime, it is possible to dynamically fill a scheduler task with
multiple morsels of different sizes.

Default State. When a pipeline is in its default state, it tries to pick
a single morsel that completely exhausts the target duration t;qx.
Such an approach is feasible as soon as we have a reliable through-
put estimate T, measured in tuples per second. In this case, the
pipeline picks a morsel of size T - tinqx tuples. Since the execution
time is roughly proportional to the number of tuples being pro-
cessed, this size ensures that the morsel takes approximately tpqx
to execute. Once the morsel is done, we know its real execution
time ¢. The measured throughput T = (T - tmax)/t is then incor-
porated into the estimate in order to maintain fresh throughput
statistics. Given the old throughput estimate T as well as & € [0, 1],
we set the new throughput estimate T’ = aT + (1 - a) - T. Thus, the
update of the throughput estimate is based solely on the measured
throughput of the morsel. In Umbra, we choose « = 0.8, since we
want to give a lot of weight to the most recent measurements.

Startup State. This approach works well once we have an initial
throughput estimate. However, obtaining such an estimate is non-
trivial. Statically picking an initial size is undesirable. Similarly
to picking all morsel sizes in a static fashion, this can result in
extremely long running morsels, blocking the progress of other
queries. As a solution, we introduce an initial startup state for each
pipeline. This state is responsible for providing a first throughput
estimate. When a worker thread picks a task of a pipeline in this
state, it executes exponentially growing morsels until the target
duration is exhausted. We first run a morsel containing Cy tuples, for
which we measure the execution time #. In Umbra, we empirically
set Cp = 16. Cp has to be chosen sufficiently small to ensure that
to < tmax- All successive morsels are scheduled in the same way.
Assume we already executed i morsels with sizes Cy, ..., Ci—1. We
now want to schedule a morsel of size C; = 2 - C;—1. We can expect
this morsel to take roughly 2 - t;_1 to execute. Since we should not
exceed the target duration f;4x, the morsel is only scheduled if
2ti—1 < tmax— Zli;:lo t. Once we cannot execute additional morsels,
the pipeline switches from its startup state to the default state. The
measured throughput of the final startup morsel is used as initial
throughput estimate.

Optimizations. We implement two additional enhancements to im-
prove execution characteristics. In addition to the two pipeline
states presented above, we introduce a shutdown state. The remain-
ing execution time of a pipeline can be estimated through the num-
ber of remaining tuples and the current throughput estimate. If

our scheduler has W worker threads, the shutdown state is entered
once the predicted remaining time of the pipeline drops below
W - tax- In this case, we aim for a “photo finish” of the worker
threads to avoid stragglers. Given the estimated remaining time
t and a minimum morsel duration t,,i,, we schedule morsels of
duration max(%, tmin) until we exhaust the target duration t4x,
or the pipeline runs out of work. The second optimization concerns
tasks that do not support adaptive morsel sizes. These still have to
be treated efficiently, since some tasks may just not be suited for
high adaptivity. If we detect at runtime that a task executes morsels
that only consume a fraction of the target duration, we allow it to
execute further morsels until ¢4y is exhausted. This also enables
the piecewise and efficient adoption of adaptive morsel sizes.

Evaluation. Execution traces utilizing our adaptive morsel frame-
work are shown in Figure 5b. We use the same queries as in Figure
5a. For each pipeline, the startup and shutdown phase are darkened
out. The image also shows the nested morsels of tasks in the startup
and shutdown phase. Since they are transparent to the scheduler,
they can be short running without causing additional overhead.
We can nicely see the exponentially growing nested morsels at the
beginning of each pipeline. We can also observe that the shutdown
phase leads to a precise photo finish, reducing the latency of query
13 compared to static morsel sizes.

Overall, our design ensures that query processing produces pre-
dictable execution traces. For this, we utilize domain knowledge of
the database to alter the task structure within the scheduler. This
is fundamentally different from general purpose schedulers that
have to cope with arbitrary workloads. By setting the target dura-
tion tmayx, the database can balance responsiveness and scheduling
overhead. Through the flexible nature of morsel-driven parallelism,
scheduling in database systems becomes robust.

3.2 Adaptive Query Priorities

Stride scheduling paves the way for adaptive workload manage-
ment in modern database systems. By changing the priority of
different queries, we obtain fine-grained control over their rela-
tive resource consumption. For example, a query of a data analyst
running business critical investigations could be granted a higher
priority than requests used for non-critical accounting.

However, using these capabilities to their full extent is not easy.
In general, a user should not have to deal with the intricacies
of workload management. Instead, the system should allocate re-
sources in a way that yields desirable latency characteristics without

user input. In this section, we show how this can be achieved for
mixed analytical workloads. We utilize adaptive query priorities to
transparently treat short running requests in a preferential fashion.
Our approach requires no user input and assigns priorities solely
based on runtime characteristics of the given queries.

We first want to discuss how we can quantify “desirable” la-
tency characteristics. Since the user provides no priority input, we
assume that all queries are of equal importance. Under this assump-
tion, we propose that query scheduling should be guided by two
fundamental principles.

(1) Query latencies should remain predictable under load.
If the system receives two queries at the same time, the shorter
query should finish first. We now formalize this requirement. Given
a query ¢, we define the base latency Lp(q) as the latency of ¢ when
executed in isolation. A workload W consists of tuples (g;, ¢;), where
qi is a query with arrival time ;. We can interpret a scheduling
policy P as a mapping from a workload W to a latency function Pyy.
Here, Py encodes the latency of each query in W when utilizing P as
a scheduling policy. Thus, given a workload W and (g1, t), (g2, t) €
W, it must hold that Lg(q1) < Lg(g2) = Pw(q1) < Pw(q2).

(2) Query latencies should be kept as low as possible. Let
% denote the set of scheduling policies that satisfy principle (1).
Given a workload W, we define a cost function

Py (q)

P sRYV:P .
Jw Lg(q)

1)

(g.t)eW

The database scheduler should utilize a scheduling policy P for
which fyy (P) is close to minpegp fiy (P). We thus want to minimize
the mean relative slowdown of queries. However, other cost func-
tions could be considered as well.

If the database respects both of the above principles, it can
achieve predictable and high query performance. While fair sched-
uling does respect invariant (1), it is not optimal with respect to
principle (2). Often, short running queries can be prioritized with-
out noticeably altering the latency of other, long running requests.
Assume we are executing two types of queries. The short running
ones make up 90% of the workload and take 10ms to execute. Mean-
while, the long running requests take 1s. Even if we treat all short
requests preferentially, this amounts to less than 10% of the overall
workload being prioritized. As a result, the long running requests
are not slowed down significantly. At the same time, we improve
the latency characteristics for nine out of ten queries. Compared to
fair scheduling, this leads to lower cost in Equation 1.

We propose adaptive query priorities in order to transparently
prioritize short running requests. Similar to scheduling with multi-
level feedback queues [9], the priority of a query depends on the
amount of CPU resources it received so far. Remember that we
wrap each query into a resource group which is then passed to
the worker threads. When a resource group is registered at one
of the workers, it is assigned an initial priority pg. The more time
the worker spends on the resource group, the lower its priority
becomes. Specifically, we update a resource group’s priority after it
has received a fixed quantum ¢ of CPU time from the worker thread.
Given its old priority p;, the new priority p;41 is calculated as

max(pmin, Api) i > dstart-

The priority update is governed by three hyperparameters. The
parameter dgsqr; defines how soon a resource group’s priority starts
to decay. The speed of this decay is regulated by A € [0,1]. Fi-
nally, priorities must never drop below ppmin > 0. This ensures
that queries never starve. These parameters should be chosen such
that the cost function (1) is minimized. Good parameter values are
workload dependent, we present a self-tuning optimizer in Section
4. This design benefits from our previous contributions in two main
ways. (1) Through our lock-free scheduler design, all priority up-
dates happen in a thread-local fashion. (2) By setting the update
quantum ¢ to the target task duration ¢4y introduced in Section
3.1, priority decay usually happens after every scheduled task. This
way, priority updates are highly regular across resource groups.

Compared to fair scheduling, our approach leads to more skewed
relative performance differences. This however is necessary in
order to achieve significantly better performance for short running
requests. Nevertheless, we still guarantee invariant (1). The priority
decay of two queries arriving at the same time is identical. Thus,
they receive comparable resources and the shorter one finishes first.

i i<d
pist = {Pl s < dstart @)

Custom Priorities. Adaptive query priorities provide desirable work-
load characteristics when there is no additional information on the
importance of queries. However, additional information may be
available in some scenarios. There are two simple ways to extend
adaptive query priorities to incorporate this knowledge.

(1) It is possible to use our adaptive priority design by default,
while still allowing the user to specify a static priority for a subset
of queries. For example, especially important queries could have
the static non-decayed priority pg. In this case, they are always
treated in the same way as a new query which has just arrived.

(2) Priorities can also be attached to users. The user priority then
influences the decay parameters for all queries of this user. Both the
initial priority po and the minimum priority p,,i, are scaled by the
user priority. This way, different users are prioritized differently.
However, each user still benefits from adaptive query priorities.

4 SELF-TUNING SCHEDULER

Section 3.2 showed how decaying query priorities can be used to
improve the latencies of short running requests. In this section,
we extend our scheduler by making it self-tuning. It dynamically
changes the decay parameters in order to maximize query per-
formance. This enables the database to make smart scheduling
decisions for arbitrary analytical workloads, without relying on
any user input. This is achieved as follows: our scheduler tracks the
workload over a fixed interval. By simulating its own execution,
it then finds parameter values that optimize the latencies of the
tracked queries. This procedure is repeated periodically in order to
adapt to workload changes. We now study this process in detail.

Motivation. For the previous parameters introduced in the paper,
finding sensible choices that work well across workloads is simple.
An example is the task target duration ty,,x. Here, we chose 2ms
to balance responsiveness and scheduling overhead. This choice is
independent of the actual workload. Sadly, this is not possible for the

decay parameters. Given a mixed workload consisting of queries
taking 10ms and 100ms, it is possible to decay aggressively after
a few milliseconds in order to prioritize the short requests. If we
choose the same parameters for queries taking 1s and 10s however,
all requests will quickly reach the minimum priority p;n. The short
running queries are not being treated preferentially anymore. In this
case, we want to significantly increase the decay onset dszqr;. The
burden of picking scheduling parameters should not be offloaded
to the user. Finding smart parameters for a static workload is hard
already, and workloads may fluctuate heavily over time.

Optimization Problem. Using the notation of Section 3.2, finding
good decay parameters can be formulated as a constrained opti-
mization problem. In order to maintain progress guarantees, we
fix the initial priority pg = 10% and enforce a lower priority bound
Pmin = 100. We define the parameter space

S ={(A4 dstart) | A € [0,1],dstart 2 0}.

For some s € S, let P(s) denote the stride scheduling policy with
the priority decay parameters in s. Given a workload W, we try
to find parameters that minimize the mean relative slowdown of
queries by solving

(P(s)w (@)

Ls(q) ®

argmin
SES (qrew

Tuning Process. For a database system, knowing the workload W in
advance is usually not feasible. But if the workload is well-behaved
over a short period of time, this can be mitigated effectively. The
scheduler can track the queries being executed for a fixed duration
t;. It can then use the tracked workload to solve the optimization
problem in Equation 3. If the workload does not change drastically
after tracking has finished, this will still yield reliable decay pa-
rameters. We have to ensure that the system remains responsive
with respect to workload fluctuations. For this, we define a refresh
duration t, > t;. For all k € N, a tracking run is started after k - ¢,.
Each tracking run is used to update the decay parameters.

We require tracking and optimization to be very lightweight.
The system should only spend a fraction of its overall resources on
finding optimal scheduling parameters in order to not impact query
latencies. This becomes possible through our thread-local scheduler
design. Since the workload is symmetric across worker threads, it is
sufficient to only track execution on a single worker. Optimization
can then be performed by considering the scheduling problem
on a single thread with the reduced workload. This minimizes
both tracking and optimization cost, especially on modern, highly
parallel hardware. Measurements of the tuning overhead under
increasing core counts are shown in Section 5.3.

A complete iteration of the tuning process is depicted in Figure
6. For some k € N, the iteration is started at time k - t,. We first
attach a lightweight tracker to one of the worker threads. This does
not impact the regular scheduling flow outlined in Section 2. The
tracker only logs the execution time spent on each of the active
resource groups. Once the interval #; is exhausted, the tracking
worker will not execute any more tasks. Instead, it uses the tracked
workload to perform parameter optimization. This does not impact
the other workers, which can still execute active tasks. Once opti-
mization is done, the new parameters are pushed into all workers.

Worker Thead 2 Worker Thread 2 Worker Thread 2
Parameters Parameters Parameters
(A=09 [dstart=17) (A=09 J[dstart =T7) (A=08 J[dstart =4)
Execute Execute Execute

Worker Thread 1 Worker Thread 1 Worker Thread 1

Parameters Parameters Parameters
(=09 [daw:=T7) (=09 [daart=17) (A2 =038 [duarr=4)
Execute & Track Tune Execute
(Tracker)1 (Optimizer)
t = kt, t=kt,+t t=kt,+t+e€

Figure 6: The k’th tracking and optimization run. Additional
work is restricted to a single thread.

The scheduler can now operate without any tuning overhead until
a new tracking run is started at time (k + 1) - ¢,.

Self-Simulation. For parameter optimization, we have to be able
to evaluate the cost function in Equation 3. Given scheduling pa-
rameters s € S and the tracked workload W, the system simulates
the execution of W with the scheduling policy P(s). This yields
simulated query latencies (P(s))yw, which can be used to efficiently
evaluate the cost function. This simulation can be kept very light-
weight. Adaptive morsel execution as outlined in Section 3.1 leads
to highly regular execution traces. The simulator can thus keep a
discretized notion of time, performing a simple loop over equally
spaced scheduling decisions in the tracking interval. During each
iteration, it picks an active query based on the simulated policy
P(s). This also leads to predictable simulation performance across
different parameter sets and workloads.

Optimizer. Due to the discrete nature of scheduling, the optimiza-
tion problem presented in Equation 3 is non-continuous. Thus,
classic approaches to numerical optimization cannot be applied
easily. Instead, we perform a directional search commonly used
in derivative free optimization [1]. Given a workload W after the
k’th tracking run, we pick a set of starting values s € S.If k = 0,
we set Ag = 0.9. For any k > 1, we use the optimal decay param-
eter of the previous tracking run as the starting value. We then
choose multiple values dsqr+ as the minimal values that ensure
that 5%, 10%, . . ., 35% of the tracked morsels are executed without
decay. This can be computed by sorting the tracked queries by their
duration. Heuristically, these parameter choices provide decent la-
tency characteristics. For each chosen value dg/qr;, Wwe now refine
the decay Ay through a local search procedure. We define an initial
step width ap = 1 and search directions D = {0.05, —0.05}.

During the k’th iteration of the local search procedure we evalu-
ate the cost function at all points in (dszars, (Ag—1 + #_1D)) N S. If
all points yield larger cost than (dszars, A1), we set A = Ag_; and
ar = 0.5 ap_;. Otherwise, we set A to the value with the smallest
cost and update a; = 1.5 - a;_;. Finally, we choose the best of all
refined starting values.

While this optimization method may appear somewhat crude,
we found that it works well in practice. We also tried a multivari-
ate directional search procedure, but found that choosing dsqrs
heuristically provides more stable parameter choices. We leave the
evaluation of more sophisticated optimizers to future work. In order
to obtain deterministic optimization costs, we always perform a
total of 7 search steps for each starting value. By choosing t; = 20s

and t, = 60s on a system with 20 threads, finding optimal param-
eters takes between 20ms and 100ms, consuming less than 0.01%
of the total processing time. Overall, this provides a lightweight
self-tuning scheduler design which can adapt to workload changes.

5 EVALUATION

In this section, we experimentally evaluate our design of a self-
tuning stride scheduler. Section 5.1 presents the experimental setup
used throughout the following benchmarks. The evaluation itself
is split into three parts. In Section 5.2, we compare our implemen-
tation to other scheduling algorithms that we built into Umbra.
Since these experiments take place in the same query engine, they
allow for an isolated comparison of the different algorithms. As
such, these experiments are the main focus of our evaluation. Sec-
tion 5.3 investigates the overhead when running our scheduler on
systems with high core counts. Finally, Section 5.4 sets our contri-
butions into the context of other database systems. In contrast to
the previous experiments, dissecting the benefits that arise from
query scheduling becomes significantly harder. After all, database
performance is influenced by many complex factors.

5.1 Experimental Setup

Our stride scheduler is designed to work well for mixed analytical
workloads, consisting of queries with a high variance in execution
time. In order to create a challenging experimental setup, we send
a variety of queries into the system at different time points. As the
workload should exhibit fluctuations between periods of low and
high load, we calculate the spacing of queries by sampling from
an exponential distribution with expected value 1/A. This way, we
can control the expected arrival rate of A queries per second. This
is similar to [2] - by not spacing the queries uniformly, we obtain
dynamic workload fluctuations with bursts of queries arriving in
short succession. To obtain a mixture of long and short running
analytical requests, we sample from TPC-H queries at SF3 and SF30.
Throughout the evaluation, picking queries at SF3 is three times
more likely than picking queries at SF30. This is done in order to
obtain a more interesting workload. By choosing short running
queries preferentially, we reduce the expected query duration. This
enables us to increase A without oversubscribing the system. Note
that while 3/4 of the queries are short running, they only require
about 1/4 of the total time being spent on query execution.

We can alter the database load by choosing different values for
the expected arrival rate A. By calculating the mean query duration
d, we can obtain a load factor of @ by choosing A = « - d~1. If we,
for example, target a load of 0. 95 and obtain a mean query duration
of 100ms, we would choose A = 9.5.

When scheduling queries for an extended period of time, we will
mainly consider load factors in the range o € [0.8,1]. If the load
factor is very small, there will only be a few active queries at any
point in time. This reduces the impact of the scheduling algorithm.
If we choose a load factor & > 1 however, schedulers will quickly
suffer from arbitrary performance degradation. After all, the system
is permanently oversubscribed. Note that while we do not evaluate
the systems under sustained oversubscription, load factors which
are close to one will still lead to temporary oversubscription. We
do evaluate the scheduling algorithms in these contexts.

Our self-tuning parameter optimizer uses tracking duration t; =
20s and refresh duration ¢, = 60s. The main experiments in section
5.2 and 5.4 are run on a Linux 5.3 system with an Intel Core i9-7900X
(10 cores, 20 hardware threads) and 128GB of main memory.

5.2 Comparison Within Umbra

We now compare different scheduling algorithms in Umbra. Since
we want to focus on the runtime characteristics of the different
algorithms, all queries are pre-compiled. This will later be relaxed
in Section 5.4, where we run end-to-end experiments with different
systems. As a baseline, we implemented a FIFO and a fair scheduler.
The fair scheduler is based on our lock-free stride scheduler, the
only difference being that it uses fixed priorities. As such, the fair
scheduler also benefits from the lock-free design presented in Sec-
tion 2. For reference, we also include Umbra’s original scheduler.
It tries to minimize workers switching between task sets while
remaining as fair as possible. It maintains a queue of the active
task sets and balances worker threads uniformly across them. If
there are n active task sets and w workers, every task set will obtain
either |n/w| or [n/w] workers.

We evaluate the system under sustained load a. As outlined in
Section 5.1, this is governed by the expected arrival rate of queries
per second. We schedule queries for a total of five minutes. Even at
the lowest load a = 0.8 this results in roughly 3000 queries.

oA
103:— ah 4 Scheduler
—_ F erars " .
E [padedededdeded Ak Akl —= Tuning
RS Akl Ry T
R -e- Fair
§ -~ Umbra
e 0
- Fifo
S, ol
810 E Query Type
s I
8 _M -=- SF3
[| -4 SF30
———a———-—a—a—a—a—i—i
0.80 0.85 0.90 0.95 1.00
Load

Figure 7: Query latencies under increasing load. The work-
load consists of queries at SF3 and SF30 running simultane-
ously. We break down latencies at scale-factor granularity.

Figure 7 shows the latency development of queries when increas-
ing the database load. For each scheduler, we plot the geometric
mean of the query latencies at SF3 and SF30 at load « € [0.8,1].
Note that the two lines for each scheduler do not come from differ-
ent experiments. Rather, they represent a different set of queries
within the same experiment.

Our self-tuning stride scheduler outperforms all other schedulers
for both short and long running queries. For short running requests,
it is able to retain near optimal latencies, even under high load. The
geometric mean of the query latencies at SF3 only deteriorates by
roughly 17% when moving from load 0.8 to 1.0. The latencies for fair
scheduling meanwhile get worse by 63%. This results in a 2x latency
improvement at full load. Keep in mind that the fair scheduler we
use for comparison already provides competitive performance, as
it builds upon our lock-free scheduler design from Section 2. These

TPC-H Q1

Scheduler BE Tuning B Fair B3 Umbra E3 Fifo

TPC-H Q3

TPC-H Q6

TPC-H Q11

TPC-HQ18

—

o
>
[

- 74

o o
N w
\ [

Latency [ms]

_.
04
[
|
™

aP L el ™
ﬁ*ﬁ r E ﬁﬁ-‘-’- 1 =+T+$

SF3 SF 30 SF3

SF30 SF3

SF30 SF3 SF30 SF3 SF30

Scale Factor
Figure 8: Detailed latency characteristics for selected TPC-H queries at load 1.0. For each scheduler, all data points are taken
from the same experiment. In other words, all queries are running simultaneously within the same workload.

benefits can thus be attributed to our self-tuning infrastructure.
Comparing this to the original Umbra scheduler, we are able to
improve the geometric mean of the query latencies at SF3 by more
than 4.5x at full load. Since these queries make up three out of four
requests, this significantly improves the user experience. On top of
that, we consistently outperform fair scheduling when considering
the long running queries at SF30. At load 0.8 we already obtain a
15% improvement with respect to the geometric mean. At full load,
we are able to achieve an improvement of almost 2x. At first glance,
this might be somewhat surprising. After all, we try to optimize
the priority decay in order to treat short running requests in a
preferential fashion. This effect is driven by two main factors. First,
the latencies of TPC-H queries at SF30 differ by up to an order of
magnitude. Thus, the very short running requests at SF30 are still
being treated preferentially. Second, even the latency characteristics
of the long running requests are improved slightly. This is mainly
due to short running queries quickly leaving the system. This leads
to fewer active queries at any given time, which reduces scheduling
overhead and cache pressure, since workers stick to long running
requests more often.

We can also observe that FIFO scheduling is extremely undesir-
able for mixed analytical workloads. For short running requests, we
consistently outperform FIFO scheduling by more than 5x. At load
a > 0.95, the performance difference grows to more than 10x. This
is because at high load, the latency of short queries is dominated
by their wait time in the preceding FIFO queue.

We now want to turn our attention to the latency distributions
of individual queries. Figure 8 breaks down the results at full load
based on query type and scale factor. We restrict ourselves to five
representative TPC-H queries. The other queries behave similarly.

We first want to study Q1 and Q3. When executed in isolation
at SF3, both of them are short running. As such, we can expect our
scheduler to treat them preferentially. Compared to fair scheduling,
we are able to improve the mean relative slowdown over the base
latency by 6.8x and 2.8x for Q1 and Q3, respectively. Even at full load,
the queries only suffer an average performance penalty of roughly
50% compared to isolated execution. Furthermore, tuning has a
significant impact on the tail latencies of short running requests.
We can improve the maximum slowdown by 5.6x for Q1 and 4.2x
for Q3. Even under high load, the database is able to retain near
optimal latencies for these queries. This leads to far more predictable
performance. In addition, we are able to slightly improve mean and
tail latencies for the long running requests. While Q18 behaves

similarly, tuning has a weaker impact. This can be attributed to the
higher base latency compared to Q1 and Q3.

Q6 and Q11 are both very short running. Interestingly, the posi-
tive effects of our tuning scheduler are now more noticeable at SF30.
This is because the longer running queries at SF30 will now have,
on average, more overlap with other concurrent requests. Thus,
they are able to benefit more strongly from preferential treatment.
For both requests we are able to improve the mean slowdown by
more than 3.4x. For Q11, we can reduce the maximum slowdown
by 2.7x. This factor grows to 4.5x when looking at Q6.

Finally, we can see that Umbra’s original scheduler suffers from
reduced performance and an extremely heavy latency tail for short
running requests. This leads to unpredictable system performance.
Once there are more active queries than there are workers, some
requests will receive no CPU time over extended periods of time.
This especially affects short running queries. For those, we are able
to improve latency tails by more than an order of magnitude.

5.3 Scheduling Overhead

We now investigate the scheduling overhead on systems with higher
core counts. The experiments in this section are run on a four socket
machine with Intel Xeon E7-4870 v2 CPUs. In total, the machine
has 60 physical cores, 120 virtual cores and 1TB of RAM.

Figure 10 breaks down the scheduling overhead when increasing
the core count. At core count n, we schedule 50 - n queries at the
same time. For each query, we randomly sample from TPC-H SF3
and SF30 in the same way as in Section 5.2. We then measure the
overhead of the different phases until all queries finished success-
fully. We also disable the optimizations at high load outlined at
the end of Section 2.3. The numbers thus represent the worst-case
overhead. We can see that the total scheduling overhead is negli-
gible. For low core counts it is around 0.05%. It drops to roughly
0.02% when utilizing 120 cores. This is because the relative tuning
overhead drops significantly. After all, we restricted this phase to a
single core. Meanwhile, the overhead for updating the masks to in-
corporate new queries increases linearly with the number of cores.
When utilizing all 120 cores the overhead induced by this phase is
roughly 0.005%. The same holds for the local work of each thread
when incorporating these updates into its scheduling state. As we
add more cores, the query throughput increases almost linearly.
This also leads to more state updates. Finally, we can see that the
finalization phase causes almost no overhead.

Scheduler —e- Tuning -¢- Umbra

MonetDB -e- PostgreSQL | Query Type -== SF3 -A- SF30
c10%e

. 10°
'W1 Osé_ _.A-‘A"A i 5102:7 _§ E
E g s 275
3 g I B 102]
<10 = — L .| 2
2L @ 10' e r ‘f
c =101 »
S o €10°F A3
o E R Ao
E10 Eé . 8 F g25/ ‘..A--A---A""“"“'""“"""" AA
8 ®© 10 g‘_) r g
(O] g C 400" e S——
102k t g 10 E};:A. 21133*:'1 0.0 L A h b bk hA
0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0
Load Load Load Load

Figure 9: Latencies for different systems under increasing load. The workload consists of queries at SF3 and SF30 running
simultaneously. We break down latencies at scale-factor granularity. Queries per second are identical for Tuning and Umbra.

Phase M Finalization Bl Local Work [l Mask Updates [l Tuning

1 20 40 60 120

Cores
Figure 10: Scheduling overhead with increasing core count.

80

100

5.4 Comparison to Other Systems

We now evaluate the performance of our self-tuning scheduler
compared to other systems. Designing a fair experiment in this
case is significantly harder than before. Query latencies under load
are not only determined by the scheduling policy. Rather, they are
closely intertwined with the design of the execution engine. We
found that for many TPC-H queries, PostgreSQL only saturates a
small subset of the available cores. If we utilize the same metrics
as in Section 5.2, this will lead to skewed performance results.
PostgreSQL will be heavily underutilized at the calculated full load.
Instead, we require a metric that captures how query performance
deteriorates as the system approaches oversubscription. We say
that the system becomes oversubscribed once the mean slowdown
of queries within a workload exceeds 50. We define this point as
full load @ = 1.0. This value directly corresponds to an expected
arrival rate Apqx. For an arbitrary load a’, we can compute the
target arrival rate a’ - Amgx-

Since a good scheduler should leverage both intra- and inter-
query parallelism to maximize performance, we measure the slow-
down with respect to the single-threaded base latency of a query.
This way, a system can actually achieve average values below one
at moderate load. Nevertheless, this metric does not necessitate ad-
vanced intra-query parallelism in order to retain solid performance.
Even a system that does not offer any intra-query parallelism can
retain low query latencies at high load, as long as it distributes
queries amongst the available cores in a smart way.

Compared to the previous experiments, we do not pre-compile
queries in Umbra anymore. This is done to not give Umbra an un-
fair advantage over the other systems. We evaluate our scheduler
against MonetDB (version 11.33) and PostgreSQL (version 11.7). In
contrast to our design, both systems bind OS threads directly to

queries. Scheduling is mostly left to the operating system. Mon-
etDB and PostgreSQL perform best when the number of concurrent
queries is limited [12, 31]. Otherwise, resource contention reduces
the system throughput. We thus limit the maximum number of
concurrent queries to 20 for PostgreSQL and 64 for MonetDB. For
PostgreSQL, this is done through PgBouncer. For MonetDB, we
impose the query limit in our own code on top of its Python con-
nector. For reference, we also include Umbra’s original scheduler
outlined in Section 5.2. Each experiment is run for 20 minutes in
Umbra and MonetDB. For PostgreSQL, we increase the duration
to 30 minutes to account for its lower base performance. This way,
each experiment schedules more than 1.5 thousand queries.

Figure 9 presents an overview of the latency characteristics of
the different systems as they approach full load. We can see that our
self-tuning scheduler consistently provides the best performance.
On top of that, we can cope with the highest scheduling pressure.
We execute 84% more queries per second than MonetDB. For Post-
greSQL, the difference grows to 10x. At low load, our scheduler has
a higher relative slowdown for short running queries than for long
running ones. This might be surprising since we prioritize short
running requests. The effect is caused by code generation, which
is not parallelized. For the short running queries, code generation
makes up a larger fraction of the overall latency. As a result, long
running requests benefit more from hardware parallelism.

In this section, we do not focus on load factors beyond 0.96. At
load 1.00, all systems are oversubscribed and suffer from arbitrary
performance degradation. By only going up to load 0.96, we give
all schedulers some leeway before becoming oversubscribed. This
differs from the experiments in Section 5.2, where we we used a
different metric to investigate factors up to 1.00.

When moving from load 0.70 to 0.96, the mean slowdown of
queries at SF3 increases by 2x for MonetDB and almost 30x for Post-
greSQL. Meanwhile, performance of our self-tuning scheduler only
deteriorates by 18%. At load 0.96, we improve the mean slowdown
for these requests by 4.5x compared to MonetDB. For PostgreSQL,
this factor grows to more than 65x. The effect on the 95th percentile
slowdown is even stronger. At load 0.96, we outperform MonetDB
by 7.1x and PostgreSQL by more than two orders of magnitude with
respect to the queries at SF3. For the long running requests at SF30,
we still provide the best performance. But since our self-tuning
scheduler prioritizes short running requests, the improvement is
not as strong. Nevertheless, we are the only system able to retain a
mean slowdown below 1.0 for both query types at load 0.96.

Scheduler ‘ Tuning ﬁ Umbra E MonetDB ‘ PostgreSQL

TPC-H Q3 TPC-H Q6

R I
RS I K
101;—) F e '

€ 100k $ E— é‘
0T+ =
S 10 L
210 ¢ E
@ TPC-H Q11 I TPC-HQ18
> . E
g 10 ¢ 3
o 3 s : E ¢
10" :$ F e i . .

3 3 | =m
1005— ++ + e +% +*é
107 =

SF 3 SF 30 SF 3 SF 30

Scale Factor
Figure 11: Detailed latency characteristics for selected TPC-
H queries at load 0.96. For each system, all data points are
taken from the same experiment.

Figure 11 shows a detailed latency breakdown at load 0.96. The
graph corroborates our previous findings. We again analyze the
mean slowdown, since this is the metric our self-tuning scheduler
optimizes for. We first focus on the short running requests at SF3.
Here, we are able to improve the mean slowdown over MonetDB by
at least 3.5x (Q6). This factor grows to 6.4x for Q11. For PostgreSQL,
we are able to improve the mean slowdown for all queries by more
than 30x. We can again see that the improvements with respect to
the maximum slowdown are even more pronounced. For MonetDB,
the improvement ranges from 5.9x in Q18 to more than 90x in
Q11. For PostgeSQL, we consistently improve latency tails by more
than 30x. The effect is again most noticeable for Q11, where the
improvement exceeds two orders of magnitude.

We also improve mean and maximum slowdown for the requests
at SF30. For the resource intensive Q3 and Q18, our tuning scheduler
still provides slightly better latency characteristics than MonetDB.
Both systems outperform PostgreSQL. For the two other requests,
the benefits of our tuning scheduler are extremely noticeable. Com-
pared to MonetDB, we improve the mean slowdown of Q11 by more
than 8.5x and the maximum slowdown by 14.5x. This is because
the queries are extremely short running, even at SF30. As a result,
our tuning scheduler treats these requests preferentially.

Overall, we have shown that our self-tuning scheduler is able to
significantly outperform traditional systems at high load. For short
running requests, the benefits are especially strong. This leads to
predictable and high query performance.

6 RELATED WORK

Scheduling of analytical queries has not been studied extensively in
the context of database systems. The work of Leis et al. on morsel-
driven parallelism provides the foundation of our contributions
[11]. However, they primarily focus on optimizing the latencies of
isolated requests on NUMA-systems. Psaroudakis et al. investigate
task scheduling in SAP HANA [22, 23]. They implement a dynamic
worker count in order to improve performance when dealing with

blocking tasks in mixed OLAP/OLTP workloads. Furthermore, par-
titionable operations are provided with a concurrency hint based
on the number of free worker threads. This is used to reduce task
granularity as system load increases. How to make good use of
this hint is left to the different operators, however. Our design of
adaptive morsel sizes introduces a principled approach for altering
task granularity in database systems. It allows for highly dynamic
changes in the overall scheduling behaviour.

Existing user-space task schedulers are often designed to maxi-
mize system throughput for HPC scenarios [7, 26]. These schedulers
make it hard to exploit domain knowledge in order to improve work-
load characteristics. Furthermore, general-purpose task schedulers
benefit less from the adaptive task structure outlined in Section 3.1.

Scheduling of large analytical jobs has been studied extensively
in the context of cluster computing [27, 28]. However, the sched-
uling problem being investigated is a different one. In this paper,
we focus on how fine-grained work in a single node database can
be distributed amongst the available CPU cores. In comparison,
scheduling in large clusters is concerned with distributing more
coarse grained tasks amongst the available nodes. One prominent
example is Spark [4, 32]. Recent work by Kraska et al. proposes to
use a reinforcement learning based scheduler to improve latency
characteristics [10] . Such an approach makes progress guarantees
for active queries extremely hard. Instead of trying to learn an
optimal scheduling policy, our design optimizes hyperparameters
within the constraints of a fixed scheduling policy.

While we focus on analytical workloads, scheduling transac-
tional requests in database systems poses different challenges. Here,
query performance often deteriorates due to excessive aborts and
high lock contention. Performance can mainly be improved by
restricting which queries are executed concurrently [21, 24].

Similar to our work, both [10] and [24] implement self-tuning
capabilities in their scheduler. Nevertheless, the utilization of ob-
served workload characteristics in order to improve scheduling
decisions is not a recent idea [17, 25]. To the best of our knowledge,
we are the first contribution to show how self-tuning capabilities
can be used to improve scheduling for analytical database systems.

In a more broad context, our work on scheduling falls into the
important area of workload management within database systems.
This is a wide ranging field incorporating topics like workload clas-
sification, admission control and resource management for memory
and /O [2, 3, 13, 18, 19].

7 CONCLUSION

This paper showed how task-based parallelism can be utilized to
improve the performance of modern analytical database systems.
Our lock-free implementation of stride scheduling uses domain
knowledge to improve scheduling decisions. This is especially at-
tractive for morsel-driven database systems, for which we showed
how the task structure can be made more robust. By making our
scheduler self-tuning, we enabled it to make smart scheduling deci-
sions for arbitrary mixed analytical workloads. This was achieved
by adaptively optimizing hyperparameters based on the tracked
workload. While traditional systems suffer from unpredictable and
high query latencies at high load, our self-tuning scheduler alle-
viated these problems. It retained near optimal latencies for short
running requests, while significantly improving latency tails.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their detailed comments
which significantly improved the paper. We also thank Jana Giceva
and Viktor Leis for their invaluable feedback.

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 725286). Hl *

REFERENCES

(1]
(2]

(3]

[10]

(1]

[12]

[13]

[14

[15]

[16

Andrew R Conn, Katya Scheinberg, and Luis N Vicente. 2009. Introduction to
Derivative-Free Optimization. Vol. 8. Siam.

Dominik Durner, Viktor Leis, and Thomas Neumann. 2019. On the Impact of
Memory Allocation on High-Performance Query Processing. In Proceedings of
the 15th International Workshop on Data Management on New Hardware.
Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet L Wiener, Armando
Fox, Michael Jordan, and David Patterson. 2009. Predicting Multiple Metrics
for Queries: Better Decisions Enabled by Machine Learning. In 2009 IEEE 25th
International Conference on Data Engineering. IEEE, 592-603.

Panagiotis Garefalakis, Konstantinos Karanasos, and Peter Pietzuch. 2019. Nep-
tune: Scheduling Suspendable Tasks for Unified Stream/Batch Applications. In
Proceedings of the ACM Symposium on Cloud Computing. 233-245.

Joseph M. Hellerstein, Michael Stonebraker, and James Hamilton. 2007. Architec-
ture of a Database System. Foundations and Trends in Databases 1, 2, 141-259.
IBM. 2019. The DB2 Process Model. https://www.ibm.com/support/
knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.admin.perf.doc/doc/
€0008930.html

Intel. 2007. Intel Threading Building Blocks. https://software.intel.com/sites/
default/files/m/d/4/1/d/8/tutorial.pdf

Alfons Kemper and Thomas Neumann. 2011. HyPer: A Hybrid OLTP&OLAP
Main Memory Database System Based on Virtual Memory Snapshots. In IEEE
27th International Conference on Data Engineering. 195-206.

Leonard Kleinrock and Richard R Muntz. 1972. Processor Sharing Queueing
Models of Mixed Scheduling Disciplines for Time Shared Systems. Journal of the
ACM (JACM) 19, 3 (1972), 464-482.

Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H Chi, Jialin Ding, Ani Kristo,
Guillaume Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan. 2019.
Sagedb: A Learned Database System. In 9th Conference on Innovative Data Systems
Research, CIDR.

Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
Driven Parallelism: a NUMA-Aware Query Evaluation Framework for the Many-
Core Age. In Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data.

MonetDB Mailing List. 2012. MonetDB Maximum Concurrent Limit.
//www.monetdb.org/pipermail/users-list/2012-February/005430.html
Microsoft. 2017. SQL Server Resource Governor. https://docs.microsoft.com/en-
us/sql/relational-databases/resource-governor

Microsoft. 2020. Thread and Task Architecture Guide. https://docs.microsoft.
com/de-de/sql/relational-databases/thread-and-task-architecture-guide
Thomas Neumann. 2011. Efficiently compiling efficient query plans for modern
hardware. The Proceedings of the VLDB Endowment 4, 9, 539-550.

Thomas Neumann and Michael J Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In 10th Conference on Innovative Data Systems

https:

[17

(18

[23

[24

[25

[26

[27

[28

[30

[31

[32

]

]

Research, CIDR.

Thu D Nguyen, Raj Vaswani, and John Zahorjan. 1996. Using Runtime Measured
Workload Characteristics in Parallel Processor Scheduling. In Workshop on Job
Scheduling Strategies for Parallel Processing. Springer, 155-174.

Stefan Noll, Norman May, Alexander Béhm, Jan Miihlig, and Jens Teubner. 2019.
From the Application to the CPU: Holistic Resource Management for Modern
Database Management Systems. IEEE Data Engineering Bulletin 42, 1, 10-21.
Oracle. 2019. Managing Resources with Oracle Database Resource Man-
ager. https://docs.oracle.com/en/database/oracle/oracle-database/19/admin/
managing-resources-with-oracle-database-resource-manager.html
PostgreSQL. 2019. Architectural Fundamentals. https://www.postgresql.org/
docs/12/tutorial-arch.html

Guna Prasaad, Alvin Cheung, and Dan Suciu. 2020. Handling Highly Contended
OLTP Workloads Using Fast Dynamic Partitioning. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 527-542.
Iraklis Psaroudakis, Tobias Scheuer, Norman May, and Anastasia Ailamaki. 2013.
Task Scheduling for Highly Concurrent Analytical and Transactional Main-
Memory Workloads. In Proceedings of the Fourth International Workshop on Ac-
celerating Data Management Systems Using Modern Processor and Storage Archi-
tectures.

Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader Sellami, and Anas-

tasia Ailamaki. 2015. Scaling Up Concurrent Main-Memory Column-Store Scans:
Towards Adaptive NUMA-aware Data and Task Placement. The Proceedings of

the VLDB Endowment 8, 1442-1453.

Yangjun Sheng, Anthony Tomasic, Tieying Zhang, and Andrew Pavlo. 2019.
Scheduling OLTP Transactions via Learned Abort Prediction. In Proceedings of
the Second International Workshop on Exploiting Artificial Intelligence Techniques
for Data Management. 1-8.

Warren Smith, Valerie Taylor, and Ian Foster. 1999. Using Run-Time Predictions
to Estimate Queue Wait Times and Improve Scheduler Performance. In Workshop
on Job scheduling strategies for Parallel Processing. Springer, 202-219.

Peter Thoman, Kiril Dichev, Thomas Heller, Roman Iakymchuk, Xavier Aguilar,
Khalid Hasanov, Philipp Gschwandtner, Pierre Lemarinier, Stefano Markidis,
Herbert Jordan, et al. 2018. A taxonomy of task-based parallel programming
technologies for high-performance computing. The Journal of Supercomputing
74, 4, 1422-1434.

Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Ma-
hadev Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth
Seth, et al. 2013. Apache Hadoop YARN: Yet Another Resource Negotiator. In
Proceedings of the 4th annual Symposium on Cloud Computing.

Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. 2015. Large-scale cluster management at Google with
Borg. In Proceedings of the Tenth European Conference on Computer Systems.
Carl A Waldspurger and William E Weihl. 1994. Lottery Scheduling: Flexible
Proportional-Share Resource Management. In Proceedings of the 1st USENIX
conference on Operating Systems Design and Implementation.

Carl A Waldspurger and E Weihl W. 1995. Stride Scheduling: Deterministic
Proportional-Share Resource Management. Technical Memorandum MIT/LC-
S/TM528.

PostgreSQL Wiki. 2014. Number of Database Connections.
postgresql.org/wiki/Number_Of_Database_Connections

Matei Zaharia, Mosharaf Chowdhury, Michael] Franklin, Scott Shenker, Ion
Stoica, et al. 2010. Spark: Cluster Computing with Working Sets. Proceedings of
the 2nd USENIX Conference on Hot Topics in Cloud Computing.

https://wiki.

https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0008930.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0008930.html
https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.admin.perf.doc/doc/c0008930.html
https://software.intel.com/sites/default/files/m/d/4/1/d/8/tutorial.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/tutorial.pdf
https://www.monetdb.org/pipermail/users-list/2012-February/005430.html
https://www.monetdb.org/pipermail/users-list/2012-February/005430.html
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor
https://docs.microsoft.com/en-us/sql/relational-databases/resource-governor
https://docs.microsoft.com/de-de/sql/relational-databases/thread-and-task-architecture-guide
https://docs.microsoft.com/de-de/sql/relational-databases/thread-and-task-architecture-guide
https://docs.oracle.com/en/database/oracle/oracle-database/19/admin/managing-resources-with-oracle-database-resource-manager.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/admin/managing-resources-with-oracle-database-resource-manager.html
https://www.postgresql.org/docs/12/tutorial-arch.html
https://www.postgresql.org/docs/12/tutorial-arch.html
https://wiki.postgresql.org/wiki/Number_Of_Database_Connections
https://wiki.postgresql.org/wiki/Number_Of_Database_Connections

	Abstract
	1 Introduction
	2 Scalable Task Scheduling
	2.1 Background
	2.2 Scheduling in Umbra
	2.3 Thread-Local Scheduling

	3 Robust Morsel Scheduling
	3.1 Adaptive Morsel Execution
	3.2 Adaptive Query Priorities

	4 Self-Tuning Scheduler
	5 Evaluation
	5.1 Experimental Setup
	5.2 Comparison Within Umbra
	5.3 Scheduling Overhead
	5.4 Comparison to Other Systems

	6 Related Work
	7 Conclusion
	References

