
On Another Level: How to Debug CompilingQuery Engines
Timo Kersten

kersten@in.tum.de
Technical University of Munich

Thomas Neumann
neumann@in.tum.de

Technical University of Munich

ABSTRACT
Compilation-based query engines generate and compile code at
runtime, which is then run to get the query result. In this process
there are two levels of source code involved: The code of the code
generator itself and the code that is generated at runtime. This can
make debugging quite indirect, as a fault in the generated code was
caused by an error in the generator. To find the error, we have to
look at both, the generated code and the code that generated it.

Current debugging technology is not equipped to handle this
situation. For example, GNU’s gdb only offers facilities to inspect
one source line, but not multiple source levels. Also, current debug-
gers are not able to reconstruct additional program state for further
source levels, thus, context is missing during debugging.

In this paper, we show how to build a multi-level debugger for
generated queries that solves these issues. We propose to use a time-
travelling debugger to provide context information for compile-time
and runtime, thus providing full interactive debugging capabilities
for every source level. We also present how to build such a debugger
with low engineering effort by combining existing tool chains.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.
KEYWORDS
Relational Query Execution, Code Generation, Debugging

ACM Reference Format:
Timo Kersten and Thomas Neumann. 2020. On Another Level: How to
Debug Compiling Query Engines. In Workshop on Testing Database Systems
(DBTest’20), June 19, 2020, Portland, OR, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3395032.3395321

1 INTRODUCTION
With the advent of in-memory databases, high-bandwidth solid
state drives, and recently also persistent memory [11], high-perfor-
mance relational query execution engines compile machine code for
query execution. This approach creates optimal code for each query
and thus makes best use of available computing resources [12].
Consequently, code generating execution engines are able to make
the most of the large available bandwidth.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DBTest’20, June 19, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8001-0/20/06. . . $15.00
https://doi.org/10.1145/3395032.3395321

Conventenional
debuggers can only

Runtime System
Query

Executable
 100
1010
01

Code Generator
Г

σ
S

R
Query Plan

Code
Generation

Runtime
Compile Time

Our multi-level debugger
provides context by connecting
code generation AND
query execution

inspect code generation
OR

inspect query execution

 100
1010
01

Figure 1: Compiling relational engines process queries in
two steps: Code generation and execution. Conventional debuggers
can only attach to one step, so that debugging execution misses lots of
context information. Our multi-level debugger provides this context.

Query execution in a compiling query engine is done in a two-
step process (cf. Figure 1). First, the engine generates code for the
query plan. Second, the machine’s processors execute this code to
compute the query result [15]. For the developer of a compiling
engine this two-step process can become a challenge. When, during
development, they find their computation results are wrong, they
need debugging tools to efficiently triangulate the cause of the fault.

Conventional debuggers support the search of errors by allowing
the developer to stop the execution at any point. The developer can
then inspect the program state, view the value of variables, explore
data structures, and examine the call-stack to decide whether the
observed behavior is as expected or already affected by an error. To
make this process efficient, the debugger should show the developer
a full view of the program state in the source language and the
format that the developer wrote it. In other words, the debugger
should present the state in terms the developer is familiar with.

In a compiling query engine, however, this integrated experi-
ence is not possible with a regular debugger. A compiling engine
splits the query execution into the two phases shown in Figure 1:
Compile time, which generates code for a query plan and compiles
it to machine instructions, and runtime, which runs the machine
instructions to produce the query result. To debug this two-level
setup, most toolchains already offer the means to step through
either the code generator or the runtime code. However, the link
between the generated code and the source code that generated it,
is missing. Without the link the developer is missing most of the
query context.

Currently, there are two limitations that cause this disconnect:
First, current debuggers are not built for this kind of debugging.
GDB, for example, supports only to stop at one position in the ma-
chine code and map that position to one source location. There
is currently no support to handle a second source location that

https://doi.org/10.1145/3395032.3395321
https://doi.org/10.1145/3395032.3395321

DBTest’20, June 19, 2020, Portland, OR, USA Kersten et al.

1 select count(*)
2 from
3 RotatingTomatoes rt,
4 MovieDatabase mdb
5 where
6 rt.name = mdb.name and
7 rt.rating = mdb.rating and
8 mdb.reviews > 10;

(a) Query – How many movies receive the
same rating in both sources?

Г

rt

mdb

σ

(b) Execution plan.

Figure 2: Example query with execution plan.

generated the first source location. Second, as generating code and
running it is a two-step process, there is a lifetime issue between
multiple source locations. When the debugger stops a multi-level
program, it can map the current program state to a source line on
the first level. Mapping also to a second source line that generated
the first source line is difficult, because the second source line was
executed much earlier in time. That means that the current program
state does correspond to the first source line, but not to the second.
Therefore, the debugger can’t use the program state to inspect the
call-stack and variables for the second source line. To this day, we
are not aware of any debuggers that fully bridge this gap.

In this paper, we present how to build amulti-level debugger that
can reconnect an arbitrary number of source levels and fully inspect
the program state at any level. This allows us to provide the required
context at any point in the program and thus significantly boost
developer productivity. Our solution is built in large parts from
existing debugging technology, so implementing it for any mature
compiler-debugger toolchain is only a small development effort.
We propose to use a time-travelling debugger to bridge between
generated code and generating code and to use unique markers
during code generation to reliably perform the connection.

We show that our approach is feasible by implementing it for the
Umbra database system [16]. During the development of Umbra’s
query engine the multi-level debugger setup has proven immensely
useful.

2 INTERACTIVE DEBUGGING
Locating the root cause of a failure in a relational query engine

works much the same as in any other large code base. A developer
first tries to isolate the smallest scenario that exhibits the erroneous
behavior. Then, they create and refine hypotheses about the cause
of the failure and accept or reject them based on observations. This
way they trace back from the observably wrong behavior to the root
cause. To execute that process efficiently the developer requires
debugging tools that can stop the program at a location and observe
variables, data-structures, the call-stack, etc.

To show how this process can be applied to a relational query
engine and to introduce our proposed tooling, we use a running
example: Assume that there are two sources of movie ratings, Ro-
tating Tomatoes and the Movie Database. Our example query in
Figure 2a counts how many movies receive the same rating in both
sources. Also, it only considers movies with more than 10 reviews
in the Movie Database. Unfortunately, our example database system

1 Tuple JoinOperator::next()
2 hashTable.buildFrom(leftChild)
3 # Probe with tuples from right side
4 while(right = rightChild.next())
5 for(left in hashTable.find(right))
6 yield left.concat(right)

(a) The join operator in a Volcano-style in-
terpreter retrieves tuples from left and right
child, passes matches to parent.

Г

rt

mdb

σ

next()

next()

next()

next()

(b) Tuple passing between
operators by next() calls.

Figure 3: Control flowofVolcano-style query processing and
implementation of the hash join operator.

returns a wrong result for this query. It returns 𝑐𝑜𝑢𝑛𝑡 = 0, even
though through inspection of the data set we found a movie that
fulfills the criteria.

As a first step to find the fault, we check whether the database
frontend works correctly. We find that it produces the reasonable
execution plan shown in Figure 2b. Therefore, we decide to search
for the error in the execution of that plan (as opposed to in the
creation of the plan).

In the remainder of this section, we discuss the process and in-
formation required for a debugging workflow to find such errors.
First, we examine how to debug an execution engine that is built
as a Volcano-style interpreter. Here we show how debugging an ex-
ecution engine should work and which context should be available.
Second, we contrast that workflow with debugging an execution en-
gine built with code generation. We show that context information
is lost between compile-time and runtime and propose a solution
to reconstruct it for debugging purposes.

2.1 How Debugging Should Work:
Volcano-style Interpreter

Conventional debuggers are already well suited to debug query
execution engines that are built as Volcano-style interpreters. In
this section we show how the debugging workflow works and the
context information that is available.

In a Volcano-style interpreter, the execution plan is represented
in an object-oriented fashion as tree of operators [9]. These oper-
ators execute the query plan and are, thus, also well suited for
conventional debugging. Figure 3b shows such an operator tree for
the example plan. The execution of the plan is coordinated through
a small iterator interface between operators. Each operator calls
next() on its child operators to receive the next tuple. When the
call returns, the operator performs its own work and passes the
tuple on. In this manner, tuples are passed between operators until
the query result is computed.

This happens, for example, in the next() implementation of
the hash join operator in Figure 3a. First, the operator builds a
hash table for all the tuples from its left child operator. Second,
the operator iterates all the tuples from the right child. For each, it
searches matching tuples in the hash table and passes any matches
on to the parent operator.

When a developer searches for an error, e.g., for the query plan
in Figure 3b, they can attach a debugger to the database executable.

On Another Level: How to Debug CompilingQuery Engines DBTest’20, June 19, 2020, Portland, OR, USA

1 void JoinOperator::consume(ConsumerScope scope)
2 # probe side consume
3

4 hashTable.find(keys, scope, entry -> {
5 ConsumerScope nestedScope(scope)
6 unpack(leftValues, entry, nestedScope)
7 parent.consume(nestedScope)
8 })

(a) Code-generator for join hash table lookup.

Г

rt

mdb

σ

consume()

consume()

consume()

(b) Control flow with produce-
consume in the last pipeline.

1 ...
2 block2:
3 %2 = load double %col, %localTid
4 %3 = fptosi i64 %2
5 %4 = sitofp double %3
6 %5 = cmpne double %4, %2

7 condbr %5 %block3 %block1
8 block3:
9 %6 = crc32 i64 5961697176435608501, %3

10 %7 = crc32 i64 2231409791114444147, %3

11 %8 = rotr i64 %7, 32
12 %9 = xor i64 %6, %8
13 %10 = call i64 TextRuntime::hash(%4924, %9)

14 %11 = call ptr HashTable::lookup(%ht, %10)

15 %12 = isnotnull ptr %11

16 condbr %12 %block4 %block1

(c) Snippet code generated for the example query.

Figure 4: Code generation with produce-consume fuses all operators of a pipeline into one function.

They can set a breakpoint, e.g. in the hash join operator, so that the
debugger stops right in the operator code. By using the debugger’s
stepping features they can follow a single tuple through multiple
operators. At any point when the debugger stops at a breakpoint
the developer is able to inspect variables and data structures that the
operator uses for query processing. This lets the developer check
whether the actual query execution still matches their expectation.
Furthermore, the debugger allows to unwind the call-stack and thus
not only inspect the current operator, but also operators higher up
in the query plan. That context helps to understand the current step
and allows the developer to decide whether the current program
state is still ok or already affected by the error.

Recall that in the example query an error causes 𝑐𝑜𝑢𝑛𝑡 to be zero.
A good starting point for debugging might be to set a breakpoint
in the hash join in Line 5. Once the debugger stops there, we could
inspect the hashTable and check whether it contains any tuples. If
so, we can also look at some of those tuples and check if the placed
data is ok. In case it is, we could then decide to step into the hash
table’s find function and investigate further. A debugging work-
flow as just described is already well supported by conventional
debuggers, e.g., gdb, lldb, Visual Studio debugger, etc.

2.2 Debugging Code Generating Engines
In contrast to Volcano-style interpreters, compilation-based en-
gines execute a query plan in a two-step process. This results in
high query execution speed, but also entails that the previously
described debugging workflow—stepping through the operators—is
not possible.

2.2.1 Background: Code Generation and Execution. In the first
step—called compile time—the execution engine generates code for
the query plan and compiles it to machine code. In Umbra we gener-
ate a custom intermediate representation, modelled after LLVM IR,
that we call Umbra IR and which we will use in our example. The
architecture we use for code generation is the produce-consume
method [15]: To generate code for an operator tree the topmost
operator calls produce() on its child operators. The response from
the child operator is that eventually it calls back the operator’s
consume() function and passes an input tuple. Here, the operator
has access to the input tuple and generates code to process it. After

the code generation, the code is passed to a compiler to produce
natively executable machine code.

When again applying this to the example of a hash join we get
the implementation of Figure 4a. The consume() function gets a
scope in which it can find all the values that previous operators
produced. It uses these to generate a hash table lookup with the
join keys. In this example, the hashTable takes care of generating
code for hashing the keys, lookup, etc. All matching hash table
entries are then passed to the lambda function in Lines 5 to 7. Our
implementation then takes the values from the found entry, puts
them into a nested scope, and passes them on to the next operator. In
contrast to interpretation based engines, we traverse the operator
tree during code generation and, instead of directly processing
tuples, we produce code to process tuples.

As the second step—called (query) runtime—the generated code is
executed to process tuples and compute the query result. In this step
all the effort invested at compile time pays off through high-speed
execution of native code.

2.2.2 Missing Debug Context at Query Runtime. Due to this two-
part process, the debugging situation in a code generating query
engine is very different. We can use a conventional debugger to
place breakpoints in the generated code, e.g., in Umbra we can place
breakpoints in Umbra IR, step through the IR program and inspect
the values. Figure 4c shows an excerpt of code that the hash join
operator generates for the example query. Here, we could set a
breakpoint Line 3 where data is loaded from memory. By stepping
to the next line with the debugger, we can then trace the execution
and print values, but we can only guess which operator generated
the instructions and what the values mean.

Generally, this method can work for an expert developer who
knows the code generator very well and is familiar with what
the generated code usually looks like and which patterns usually
occur. In that case, stepping through Umbra IR only helps to find
the most obvious programming mistakes. However, if the fault is
caused by a more complex interaction of operators, the IR quickly
becomes a confusing place. The experience of debugging Umbra
IR that is generated from a query plan is very much similar to
stepping through x86-assembly that was generated from C++, but
without any debug information to link the assembly to C++ source
lines. Furthermore, newcomers to a code generating project lack the

DBTest’20, June 19, 2020, Portland, OR, USA Kersten et al.

experience to read and understand the rather low-level intermediate
representation and it can represent a high entry barrier.

2.2.3 Reconstructing Context. What this situation calls for is that
the developer gets context information about the operator that
generated the code and which specific purpose it serves. All that
context is available in the code generation phase. Unfortunately,
due to the two-step process, the context information is at query
runtime no longer available to a conventional debugger. In this
situation we believe that the debugging experience can be greatly
improved by providing developers with the necessary context when
debugging generated code. Ideally, the same information about
context, operators, and variables as when debugging a Volcano-
style interpreter should be available.

To make this possible and supply the necessary context at query
runtime, we propose to build a multi-level debugger. The required
components are a time-travelling debugger and unique identifiers
that map instructions in the generated code back to the code genera-
tion. The time-travelling debugger allows us to record the program
execution and to replay code generation as often as necessary. With
unique identifiers we can navigate to the generation of specific in-
structions in the replay. That is, we can stop the replay when, e.g.,
instruction 5 (Line 6) is appended to the program.

To put it all together, during query runtime we can set break-
points and step through generated code with a conventional de-
bugger. If at any line of generated code we need to understand
which operator generated it and why, we use the time-traveling
debugger to replay the recording of the code-generation process up
to exactly where the line is generated. This reconstructs the exact
program state during code generation and we can inspect it with
all the usual debugging tools so that we can explore all the required
context.

2.2.4 Debugging the Example Query. We can use this approach to
debug the example query:We set a breakpoint in the generated code
(as previously) in Line 3 of Figure 4c. The debugger breaks at that
position and we start stepping line by line to reach the bottom part
of the snippet where the instructions seem related to a hash table
lookup. Unfortunately, execution does not reach to that point. The
conditional branch in Line 7 always branches to %block1 and thus
never continues to %block3. At this point, we need to decide whether
that behavior is ok, but we don’t understand why the branch is
there and what the comparison in Line 6 should accomplish.

In order to get the missing context information we start an
additional debugger session with the time-travelling debugger and
replay to the point where Line 6 is generated. By unwinding the
call-stack from there, we observe that the join operator is currently
performing a hash-table lookup (Line 4 in Figure 4a). Next, we
go down in the call-stack and learn that the hash table currently
collects the join keys to compute a hash from them. But why are
there two floating-point conversions in the code? We inspect the
join keys that are just being hashed and learn that they are of type
string and double! A short check of the other side of the join reveals
that those join keys are of type string and integer.

Going down one more stack frame into the function that collects
keys for hashing, we learn that the rating value is casted from double
to integer in order to compute the hash for the equality comparison.
The cast implementation performs one cast to integer and another

cast back to double. Only when the round-trip cast gives the same
value as the original double value for rating there can be a join
partner from the left side. Otherwise, the double value is outside the
domain of integers. From the current position on the call-stack we
also learn that Line 6 is generated for the comparison of round-trip
casted value to the original value and that the comparison result
is stored in a variable named outsideDomainIndicator. We can
then use the time-travelling debugger session to step forward and
follow the uses of outsideDomainIndicator. This way, we learn
that the hash table uses it to skip the lookup. The current code
performs a lookup when the value is outside the domain, however,
it should be the other way around. This is easily fixed, e.g., by
negating the indicator.

We have seen in this process, that generated code can be rather
low-level and piecing together what it should accomplish can be
like solving a puzzle. Thus, the ability to connect the generated
code back to the code generator is an invaluable tool to debug
complicated cases.

3 EVALUATION
In this section we check the following hypotheses:

• Creating a multi-level debugger using time-travelling debug-
gers is feasible.

• The effort to implement such a solution is low.
• The runtime overhead of the time-travelling debugger is
acceptable for database system development.

3.1 Multi-level Debugging for Umbra
We implemented the proposed solution for Umbra [16], our code-
generating database system. Umbra is written in C++ and generates
Umbra IR as intermediate representation. We use the LLVM com-
piler framework to generate optimized machine code from Umbra
IR. Our existing infrastructure uses LLVM’s debug information
mechanisms to attach debug information to the machine code. This
already enables us to use a debugger, e.g., the GNU debugger gdb,
to stop the program at query runtime, step through the generated
code, and print variables from Umbra IR.

To extend this setup for multi-level debugging, we employ Mo-
zilla’s RR debugger [17]. RR is a deterministic time-travelling de-
bugger based on gdb. It can record a program execution, in this
case how Umbra processes a query, and replays it any number of
times exactly as during the recording. During a replay it offers
all features of gdb, e.g., breakpoints, printing and stepping. We
chose RR because it is readily available and light-weight, but other
time-travelling debuggers may also be used for this.

As RR is based on gdb we extended RR through gdb’s Python in-
terface. We implemented a goto-instruction command. It takes
one instruction identifier (from the generated code) as argument
and replays execution to the point where the instruction is gener-
ated. The command’s core is a temporary conditional breakpoint:

1 gdb.execute("tb IRProgram.cpp:972 if ip == " + instructionId)

This sets a breakpoint at the source location where instructions are
appended to Umbra’s intermediate representation. The condition
on the breakpoint ensures that the debugger only stops when the
requested instruction is generated (otherwise it would stop at every
instruction).

On Another Level: How to Debug CompilingQuery Engines DBTest’20, June 19, 2020, Portland, OR, USA

Figure 5: GDB on the left, stepping through generated code. RR on the right, providing context from the code generator

With this tooling we can run two debug sessions side-by-side
as shown in the screenshot in Figure 5. In the left panel, we use
gdb to step through the execution of generated code. In the right
panel, we used the goto-instruction command to navigate to the
source code that generated the code in the left panel. Note that the
full context of the generated code is available in the time-travelling
session on the right. In the shown example it is possible to un-
wind the call-stack and reach the implementation of the hash-join
operator. It is also possible to go down in the stack to lower abstrac-
tion layers of the code generator and observe which instruction
is generated. At all positions in the code we can print variables
and inspect data structures. Additionally, the debugger offers the
ability to step forwards and backwards through the code generation
process. This implementation shows that the concept is feasible and
in our experience it proved useful for the development of Umbra.

3.2 Implementation Effort
To estimate the effort to build a multi-level debugger, let us note
that implementing the core functionality—the goto-instruction
command—only takes 11 lines of Python code. It already gives users
the ability to replay to the generation of a specific instruction and
provides all the necessary context.

Additionally, we added a convenience feature that, after replay-
ing to the point where one instruction was generated, unwinds the
call-stack to the first operator translator. That code location gives a
quick overview of where the translation process currently stands
and the developer finds operator objects there to inspect.

We can also control RR from other programs to show context in-
formation. An http interface exposes the goto-instruction com-
mand so that it can be triggered from outside RR. For example it can
be controlled from a gdb session that debugs the query runtime or
from a text editor where a developer inspects the generated code.

When also accounting for these additional features, the Python
plugin to RR has 74 lines of code. After the initial investigation
and development of the core ideas for the multi-level debugger, the
implementation took less than a week of work. Given this short
time and how short the implementation is, we conclude that the
overall effort to build such a tool is rather low.

3.3 Runtime Overhead
In the default setup our multi-level debugger uses RR to record
the whole process of query execution. It records query parsing,

optimization, code generation, compilation, and execution. In order
to be able to replay that exact behavior, RR must record also all the
data that is loaded from disk, thus write a copy of it into a recording
file. Obviously, in the context of a database system this can amount
to large volumes of data, which ultimately impacts the recording
and replaying speed.

For example running TPC-H query 1 at scale factor 1 with Umbra
generates 467MB of recorded data. The runtime without recording
is 1 second, wheres with recording it is 10 seconds, so the introduced
overhead is a factor of 10x slow-down. This large overhead may be
acceptable for some tricky debugging cases, where the full power
of RR’s deterministic replay features are actually helpful.

However, we find that if we want to use the multi-level debugger
as a fast-paced tool that is quick to provide feedback to developers
it is sufficient to only create a recording of the code generation
process with RR. Afterward we start a new debugging session
with the conventional debugger gdb to step through the execution
quickly and use the previous recording to provide context. That
approach generates a smaller recording of 254MB and only takes
2 seconds. In the majority of cases we found the latter technique
to be adequate, as the two program runs perform the exact same
operations. Thus the RR recording supplies accurate information
at a low runtime overhead.

4 RELATEDWORK
4.1 Debugging Relational Code Generators
In a comparison of interpreting and compiling query engines we
observed that a major difference between the approaches is that
interpreters are debuggable with conventional tools [12].

Kohn et al. propose as an approach to debug compiling query en-
gines to collect information about the call-stack at compile time [13].
This information can then be used in a purpose-built debugger. It ex-
ecutes the generated code with a virtual machine, can step through
it, and uses the collected call-stack information to provide context
from compile time. Consequently, the available context is limited
to the collected information. It is not possible to inspect variables
and data structures from compile time. In contrast, our approach is
more comprehensive, as all context that is available at compile time
is also available for debugging. It is even possible to step through
compile time code while debugging runtime code. Furthermore,
our approach is easier to build as it reuses available tools and when
those are improved it is directly reflected in our debugger.

DBTest’20, June 19, 2020, Portland, OR, USA Kersten et al.

Another approach to debugging compiling query engines is pre-
sented by Tahboub et al. with the LB2 system [20]. Although LB2’s
primary goal is not ease of debugging, it offers an elegant way
around the two-phase problem of code generators. LB2 uses exten-
sions to the Scala compiler to instantiate a (somewhat) Volcano-
style interpreter and also a code generator for relational queries
from the same source base. That means that implementing an op-
erator once yields an interpreter and a compiler. Conveniently,
debugging can thus be performed mostly in the interpreter with
conventional debuggers. This approach is an excellent idea, how-
ever, the reported code generation times of LB2 are on average 300×
longer than those we observe in Umbra. Thus, for reasons of prac-
ticality, we stay with our C++ and LLVM based approach instead
of switching to Scala, and make use of our multi-level debugger.

4.2 Time Travel Debuggers
Recording program execution and replaying the exact execution de-
terministically was an active research field for at least two decades.
The proposed record and replay techniques are powerful, yet the
user must consider certain trade-offs between available techniques.
Engblom provides a comprehensive overview and classification [7].

One group of techniques works in user-space and replays ex-
ecution at the machine level, thus they are simple to deploy. Pin-
Play [18], iDNA [4], UndoDB [1] and TotalView ReplayEngine [8]
use binary instrumentation to track data coming in from outside
the bounds of recording. RR [17], on the other hand, intercepts sys-
tem calls to record their effects and traps certain non-deterministic
instructions. As this approach does not account for inter-thread
data races, RR forces execution to use only a single thread at each
point in time, thus slowing execution of highly parallel programs.

Other approaches to record and replay include extending lan-
guage runtime environments [2], frameworks [5] or libraries [10],
OS Kernel support [3, 14, 19], and replayable virtual machines [6,
21]. However, these solutions are too intrusive or heavy-weight for
a multi-level debugger.

5 FUTUREWORK
Our current multi-level debugger implementation with RR already
serves us well, yet certain aspects can still be improved. Using RR
snapshots for the goto-instruction command may enable us to
jump to instruction creation instead of replaying from the start. Fur-
thermore, to reduce the overhead of RR, especially when handling
large databases, it may be interesting to move code generation to a
separate process and only record that.

6 CONCLUSION
We showed that debugging compiling query engines with the cur-
rently available tools can be a lengthy and involved process. We
identified that the main issue of debugging code generators is that
at query runtime essential context information from query compile
time is missing. This makes debugging a relational code generator
a daunting task for newcomers and experts alike.

As a solution, we proposed to build a multi-level debugger that
supplies the necessary context. It facilitates a more efficient de-
bugging process and also can also serve as an exploratory tool for
beginners. We showed how to build a multi-level debugger from

existing technology with low engineering effort and proved its
feasibility as Umbra’s debugger.

ACKNOWLEDGMENTS
This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 725286). We
thank Andy Pavlo for the idea of describing our debug tools here.

REFERENCES
[1] [n.d.]. UndoDB. https://undo.io. Accessed: 2020-02-18.
[2] Bowen Alpern, Jong-Deok Choi, Ton Ngo, Manu Sridharan, and John M. Vlissides.

2001. A Perturbation-Free Replay Platform for Cross-Optimized Multithreaded
Applications. In IPDPS-01, San Francisco, CA, USA, 2001. 23.

[3] Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven D. Gribble. 2010. Deterministic
Process Groups in dOS. In OSDI 2010, October 4-6, 2010, Vancouver, BC, Canada,
Proceedings, Remzi H. Arpaci-Dusseau and Brad Chen (Eds.). USENIX Association,
177–191.

[4] Sanjay Bhansali, Wen-Ke Chen, Stuart De Jong, Andrew Edwards, Ron Murray,
Milenko Drinić, Darek Mihočka, and Joe Chau. 2006. Framework for instruction-
level tracing and analysis of program executions. In Proceedings of the 2nd inter-
national conference on Virtual execution environments. 154–163.

[5] Brian Burg, Richard Bailey, A. J. Ko, and Michael D. Ernst. 2013. Interactive
record/replay for web application debugging. In UIST’13, St. Andrews, UK, 2013.
ACM, 473–484.

[6] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M.
Chen. 2002. ReVirt: Enabling Intrusion Analysis Through Virtual-Machine Log-
ging and Replay. In OSDI 2002, Boston, Massachusetts, USA, December 9-11, 2002,
David E. Culler and Peter Druschel (Eds.). USENIX Association.

[7] Jakob Engblom. 2012. A review of reverse debugging. In Proceedings of the 2012
System, Software, SoC and Silicon Debug Conference. IEEE, 1–6.

[8] Chris Gottbrath. 2008. Reverse debugging with the TotalView debugger. In Cray
User Group Conference. Citeseer, 5–8.

[9] Goetz Graefe and William J. McKenna. 1993. The Volcano Optimizer Generator:
Extensibility and Efficient Search. In ICDE. 209–218.

[10] Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu, Zhilei Xu, Ming Wu, M. Frans
Kaashoek, and Zheng Zhang. 2008. R2: An Application-Level Kernel for Record
and Replay. In OSDI 2008, December 8-10, 2008, San Diego, California, USA, Pro-
ceedings. USENIX Association, 193–208.

[11] Gabriel Haas, Michael Haubenschild, and Viktor Leis. 2020. Exploiting Directly-
Attached NVMe Arrays in DBMS. In CIDR 2020, Amsterdam, The Netherlands,
January 12-15, 2020, Online Proceedings. www.cidrdb.org.

[12] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo, and
Peter A. Boncz. 2018. Everything You Always Wanted to Know About Compiled
and Vectorized Queries But Were Afraid to Ask. PVLDB 11, 13 (2018), 2209–2222.

[13] André Kohn, Viktor Leis, and Thomas Neumann. 2019. Making Compiling Query
Engines Practical. IEEE Trans. Knowl. Data Eng. (2019).

[14] Oren Laadan, Nicolas Viennot, and Jason Nieh. 2010. Transparent, lightweight
application execution replay on commodity multiprocessor operating systems.
In SIGMETRICS 2010, New York, New York, USA, 14-18 June 2010. ACM, 155–166.

[15] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. PVLDB 4, 9 (2011).

[16] Thomas Neumann andMichael J. Freitag. 2020. Umbra: ADisk-Based Systemwith
In-Memory Performance. In CIDR 2020, Amsterdam, The Netherlands, January
12-15, 2020, Online Proceedings. www.cidrdb.org.

[17] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll, and
Nimrod Partush. 2017. Engineering Record and Replay for Deployability. In
USENIX ATC 17. USENIX Association, Santa Clara, CA, 377–389.

[18] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie.
2010. PinPlay: a framework for deterministic replay and reproducible analysis
of parallel programs. In CGO 2010, Toronto, Ontario, Canada, April 24-28, 2010.
ACM, 2–11.

[19] Sudarshan M. Srinivasan, Srikanth Kandula, Christopher R. Andrews, and
Yuanyuan Zhou. 2004. Flashback: A Lightweight Extension for Rollback and
Deterministic Replay for Software Debugging. In 2004 USENIX, June 27 - July 2,
2004, Boston, MA, USA. USENIX, 29–44.

[20] Ruby Y. Tahboub, Grégory M. Essertel, and Tiark Rompf. 2018. How to Architect
a Query Compiler, Revisited. In SIGMOD. 307–322.

[21] Min Xu, Vyacheslav Malyugin, Jeffrey Sheldon, Ganesh Venkitachalam, and Boris
Weissmann. 2007. ReTrace: Collecting Execution Trace with Virtual Machine
Deterministic Replay. InWorkshop on Modeling, Benchmarking and Simulation,
June, 2007.

https://undo.io

	Abstract
	1 Introduction
	2 Interactive Debugging
	2.1 How Debugging Should Work: Volcano-style Interpreter
	2.2 Debugging Code Generating Engines

	3 Evaluation
	3.1 Multi-level Debugging for Umbra
	3.2 Implementation Effort
	3.3 Runtime Overhead

	4 Related Work
	4.1 Debugging Relational Code Generators
	4.2 Time Travel Debuggers

	5 Future Work
	6 Conclusion
	Acknowledgments
	References

