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Hierarchical Data /

/
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I Hierarchical Data: Rooted, labeled tree
I XML, HTML
I File System
I Abstract Syntax Tree
I Bills of Materials
I . . .

I Siblings are either ordered (e.g., XML) or
unordered (e.g., file systems)

I Greatly affects the complexity of various
algorithms

I We aim at supporting both
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Diff’ing Hierarchical Data /
I Task: Given two hierarchies A and B , determine an edit script

that transforms A into B
I An edit script is a sequence of edit operations
I Various types of edit operations possible:

I Leaf insertion/deletion/relocation
I Subtree deletion/relocation/copy
I . . .

I A cost-minimal edit script is an edit script whose operations
have the minimal cost

I Finding a minimal script is computationally hard
⇒ Approximations required for scalability
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Applications of Hierarchical Diffs /

I Version Control
I XML/HTML Warehousing
I Source Code Revision Control

I Change visualization
I Synchronization

I File Systems (cf. delete/insert versus move)

I Tree differencing in general
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The Edit Mapping /

I Given trees A and B , an edit mapping m is a function
V (B) 7→ V (A) mapping corresponding nodes

I Given an edit mapping, inferring an edit script is simple
⇒ Finding a good edit mapping is the hardest part

I Good mapping maps as many nodes as possible
I Good mapping maps the “right” nodes
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⇒ Rest of this talk: How to find a good mapping fast
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The Problem /

I Finding an exact solution (minimal edit script) is
computationally hard

I Exact approaches do not scale at all
I Most existing contributions approximate the minimal edit script

I Finding a good approximation is still hard
I Elaborated solutions: O(n2) or worse runtime complexity
I Simple solutions: O(n log n) complexity but not robust
⇒ No robust and scalable solutions exist

I Tailoring the problem definition makes the problem even
harder

I Ordered versus unordered
I Varying types of edit operations

(e.g. no copy, no subtree move,. . . )
⇒ All to be supported by our algorithm
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Simple Mapping Strategies /

I Bottom-up hash mapping
I Start from the leaves and calculate subtree hashes
I Map nodes with the same hash
⇒ Problem: Changing, adding or removing leaf makes mapping

fail for all subtrees including the leaf
I Top down mapping

I Start from the root and match as long as nodes are equal
⇒ Simple renaming of inner nodes prevents matching of all nodes

below this node

I Both strategies only work as long as subtrees are equal
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= unmatched
= changed

⇒ Solution: Match subtrees that are similar
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Tree Similarity: P,Q-Grams /
P,Q-Grams are used for computing tree
similarity

I “p-grams for trees”
I Idea: Cut trees a into small excerpts

Pa = p1, p2, . . .(grams)
⇒ More grams equal ⇔ subtrees more

similar
I Symmetric bag distance

Dbag(a, b) = |(Pa \ Pb) ∪ (Pb \ Pa)|
measures dissimilarity

I If trees are equal, then Dbag(a, b) = 0
I Structure:

I chain of p ancestors (stem)
I q leaves (base)
I Dummy elements (*) for missing

ancestors
⇒ Capture ancestry and sibling relationsips
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Generating P,Q-Grams /

I p,q-grams are generated by sliding a window over the children
of a node

I p,q-grams from subtrees can be reused for overall construction
time of O(n)
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The Problem with Similarity Mapping /

Similarity mapping:
I Use a distance function D(a, b)

I Symmetric bag distance Dbag(a, b) in case of p,q-grams

I For an unmapped subtree a from A, map the subtree b from B
with smallest D(a, b)

I Problem: Even if computing D(a, b) is fast — say O(1) — we
still have to compare all unmapped subtrees in A with all in B
⇒ O(n2) complexity /
⇒ Solution: Avoid comparing all pairs! ,
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Feature Vectors /
I For each unmatched subtree a, compute a d -dimensional

feature vector va
I Desired property: D(a, b) ≈ D(va, vb) = ||va − vb||
⇒ Euclidean distance is approximation of dissimilarity
⇒ Similar subtrees have close feature vectors in euclidean space!

I Choose d meaningfully!
I Too high ⇒ curse of dimensionality
I Too small ⇒ too much loss of information
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Matching with Feature Vectors /

I For each unmapped subtree a in A, compute va

I Insert each va into an index structure
I k-D tree, hierarchical k-means clustering, or k-means locality

sensitive hashing
I For each unmatched subtree b in B find nearest neighbor a in

index and match nodes if similar
I D(va, vb) only approximation
⇒ False positives possible!
⇒ Pick k (const) nearest neighbours, choose best or none
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Random Walk Similarity /

I Open challenge: How to compute feature vector va?
I Computation of all vas must be in O(n log n)
⇒ single va computation must be in O(log n)
I Vectors must possess similarity condition: D(a, b) ≈ ||va − vb||

I Solution: Random Walk Similarity (RWS)
I va is the endpoint of a special pseudo-random walk in

d -dimensional space
I RWS’s properties make it a very good choice for feature

vectors
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Generating RWS Feature Vectors /

1. Generate p,q-grams
2. Hash each p,q-gram pi to hi

3. From each hash hi , generate a point vi on the d -dimensional
unit sphere
⇒ vi is step of length 1 into “random” direction

4. Add up all vi to get va
⇒ va corresponds to a d -dimensional random walk
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Random Walk Similarity: Properties /

Mathematical Properties of RWD(a, b) = ||va − vb||2:
I E [RWD(a, b)] = Dbag(a, b) = z

I Var [RWD(a, b)] = 2z(z−1)
d

⇒ More dimensions ⇒ better approximation
⇒ More similar points ⇒ better approximation
⇒ Equal subtrees a and b: RWD(a, b) = 0

⇒ RWD is useful approximation for bag distance!
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Approach Overview /

Creating an edit script between trees A and B :

1. Perform simple top down and hash matching
⇒ Match nodes cheaply if possible

2. Generate RWS feature vectors for all unmapped subtrees in A
and store into index

3. Probe index for all unmapped subtrees in B , use best candidate
4. Generate edit script from mapping
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Evaluation /

Experiments:
I XML data, randomly altered
I HTML data from news websites, snapshotted every 20 minutes

Baselines:
I XyDiff as best O(n log n) approach (only simple matching)
I DiffXML as an O(n2) approach and prominent open source

tool
Results:

I Robustness (1/max number of edit operations) increased by
order(s) of magnitude

I Average quality (1/avg number of edit operations) increased
by order(s) of magnitude

I Runtime comparable to simple matching (≈ doubled)
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Evaluation /

Number of emitted edit operations after performing 10 leaf node
changes
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Conclusion /

I Using similarity for tree differencing increases edit script
quality and robustness drastically

I The random walk similarity measure can be used for rapidly
finding similar subtrees

I The runtime cost in comparison to simple matchings is
bearable

I Note that random walk similarity is always applicable when the
objects to be compared can be decomposed into small excerpts

⇒ approach not limited to trees, various other applications
possible!
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Questions /

Thank you for your attention!

Any questions?
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