ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

Leveraging Traceability between Code and Tasks
for Code Review and Release Management

Nitesh Narayan, Jan Finis, Yang Li
Institute of Computer Science
Technical University of Munich
Boltzmannstrasse 3, 85748 Garching, Germany
{narayan, finis, liya} @in.tum.de

Abstract—The software maintenance process relies on trace-
ability information captured throughout the development of a
software product. Traceability from code to software engineer-
ing artifacts like features or requirements has been extensively
researched. In this paper, we focus on traceability links between
code and tasks. Tasks can be further linked to other artifacts
such as features or requirements. In this paper, we present an
approach for (semi-) automatic creation of traceability links
between code and tasks. The core idea is to let the developers
create the links themselves while they use a version control
system. We use these traceability links to improve the processes
of code review and release management. A prototype based
on this work has been implemented and integrated into the
model-based CASE tool UNICASE. We applied the developed
prototype in the open-source project UNICASE itself and
report about our significant experiences.

Keywords-traceability; code review; release management;
patch; branch.

I. INTRODUCTION

Software configuration management (SCM) is the dis-
cipline of managing the evolution of large and complex
software systems to assist software development and main-
tenance processes [1]. According to the IEEE standard [2],
SCM covers several activities such as identification of
product components and their versions, audit, review, as
well as change control (by establishing procedures to be
followed when performing a change). Practicing SCM in
a software project has several benefits, including increased
productivity, better project control, identification and fixes
of bugs, and improved customer satisfaction [3]. Especially
in projects with increased complexity, efficient handling
of SCM requires tool support. Standard SCM tools exist
for various activities e.g. version control systems (VCS).
However, other SCM activities still lack proper tool support
because of the involved traceability challenges, especially
the review of changes during a code review and the building
of a software product during release management. In this
paper, we present an approach for (semi-) automatic creation
of traceability links between code and tasks to improve
the processes of code review and release management by
providing tool support. Tasks represent a unit of work, which

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

Alexander Delater
Institute of Computer Science
University of Heidelberg

Im Neuenheimer Feld 326, 69120 Heidelberg, Germany

delater @informatik.uni-heidelberg.de

describe changes to be performed to the code or new devel-
opments and they are used in many software development
projects. In the remainder of the paper, we use the term
work item instead of task to avoid misunderstandings with
the term task used in requirements engineering.

The paper is structured as follows: in Section II, we
provide background information. In Section III, we describe
the processes of code review and release management and
benefits from using traceability links between code and work
items. The approach is presented in Section IV and the
prototype implementation is shown in Section V. In Section
VI, we describe our experiences in using the prototype in the
open-source project UNICASE. Related work is presented
in Section VII and a discussion and future work conclude
the paper in Section VIII and Section IX, respectively.

II. BACKGROUND

Traceability links between requirements and work items
have previously been researched in the MUSE model
(Management-based Unified Software Engineering) [4],
which integrates the system model and the project model.
The system model describes the system under construction,
such as requirements, features, use cases or UML artifacts.
The project model describes the on-going project, such as
work items, the organizational structure, sprints or meetings.
The MUSE model is implemented in the model-based CASE
tool UNICASE [5] [6], which we use to implement our
approach.

The presented approach in this paper is dealing with
the (semi-) automatic creation of traceability links between
work items and code. Previous studies have shown that
links between system elements and project elements provide
useful information for the work (by shortening the naviga-
tion paths of the developers) and that based on such links
system elements are kept more up-to-date [7]. Thus, we
are extending the MUSE model by introducing traceability
to code. Various development activities can benefit from
the traceability links between requirements, work items and
code. In this work, we concentrate on code review and
release management activities.

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

III. CODE REVIEW AND RELEASE MANAGEMENT

This section explains the processes of code review and
release management. We discuss how these two processes
could be improved by using traceability links between
requirements, work items and code. Furthermore, we specify
requirements for an approach improving these two processes.

A. Code Review

Code review is a process where a team member reviews
code written by another member to ensure quality and
consistency, as well as to share knowledge in a software
development project. It assists in improving the quality by
identifying defects at an early stage. However, code review
by its nature is a labour-intensive process. This is further
affected by the lack of effective tool support. The problem
is not overwhelming tool complexity, as the goals of such a
tool are rather simple. Goals of such a tool are:

o Enable the reviewer to quickly transfer the changes to
be reviewed to his local workspace as well as highlight
the changes so that s/he can review the interplay of the
changes with the entire code base.

o After the code review, it should allow the reviewer to
add a review summary to the associated work item.

A specific question during requirements validation is to
ensure that the implementation of every requirement or
feature is reviewed. Thus, one needs to be able to associate
changes in the code to its corresponding work item in
the project management documents. Therefore, work items
themselves are associated to a requirement or feature as well
as to the changes in the code. This requires extended tool
support to aid the code review process.

B. Release Management

Another important activity in SCM is the release man-
agement process. This process involves deciding on which
configuration a product is released and which features it
includes. During the release management it needs to be
verified that the code, from which the release is actually
built, includes all features or requirements the release should
embody.

Most of the existing literature fails to highlight this
activity and its importance in release management. Van
der Hoek et al. [8] even describe the release management
as a “poorly understood and underdeveloped part of the
software process”. Instead, it is generally assumed that a
configuration of code already exists and that it contains all
required content. Thus, two important aspects are:

o Is the implementation of each feature or requirement,
which are part of this release, included in the code? Is
the implementation not finished, or finished but only
stored in the local workspace of the implementor?

o Are there any other changes in the code e.g. undocu-
mented bug fixes or accidentally introduced changes?

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

If it can be validated which features or requirements are
included in the code of a release, the release management
process can further benefit from extended functionalities
provided by the tool. For example, assembling the code for
the release autonomously. By specifying the base version of
code and a set of features or requirements to be included
into the release, the system should be able to merge the
implementation of all features or requirements into the code,
ignoring already included features or requirements.

Other activities can also benefit from tracking the changes
in the release. During release management, there is a need
to capture a list of features and included bug fixes in the
form of a change log for every release. This log is usually
shipped with the product and/or published to inform users
about changes. However, the change log could be assembled
automatically as it is possible to identify the list of features
or bug fixes implemented in the code.

C. Leveraging Traceability between Code and Work Items

For the purpose of improving the processes of code review
and release management, we capture all changes made to the
code in a so-called change package. The change package is
created by accumulating the changes a developer performs
in the code within the context of a certain work item. Hence,
every change package is associated with only one work item.

During a code review, the reviewer needs to quickly trans-
fer all changes to be reviewed to his/her local workspace.
Suppose the reviewer has to review some changes in the
code. For this task, s/he gets assigned a work item to be re-
viewed. The original work item was linked by a developer to
a change package containing all changes that s/he performed
to the code. So, while viewing the work item, the reviewer
could quickly apply all the changes in the change package
to his/her local workspace. After applying the changes, the
reviewer could start immediately with the code review. The
code review process would be improved due to automatic
transfer of all changes to the local workspace and reduced
setup time. Previously, these tasks had to be performed
manually.

For the release management process, the base version of
code and a set of features or requirements to be included
into the release need to be specified. Using our approach, it
is possible to merge all the change packages for every work
item associated with the selected features or requirements
over the base version of the code, ignoring already included
change packages. Furthermore, it needs to be validated
whether a change package is already included in the given
code. Additionally, one could assemble the change log for
the release automatically, as it is possible to identify the
set of features, requirements or bug fixes implemented in
the code. The release management process would benefit
from automated assembling of code and change log creation.
Previously, these tasks had to be performed manually, as
well.

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

D. Requirements

Based on the ideas above on how to improve the processes
of code review and release management, we have identified
the following three requirements for a change package:

1) Change package creation: A change package must be
producible from the current changes the developer has
in his/her workspace.

2) Change package application: A change package must
be applicable to a given set of code files.

3) Change package validation: It must be possible to
validate if the changes in a package are already applied
to a given code configuration.

In the following section, we discuss how to satisfy these
three requirements to improve the processes of code review
and release management.

IV. APPROACH

This work proposes an approach to (semi-) automatically
establish traceability links between code and work items.
Our approach links the exact changes which were made in
the code to a work item. We assume that developers only
work on one work item at a time and do not switch between
different work items. The core idea for (semi-) automatically
creating traceability links is letting the developer build the
links himself/herself while using a VCS within the project.
Whenever s/he finishes the implementation of a work item,
the developer does not immediately commit the changes to
the repository. Instead, before the commit, s/he orders the
system to create a change package containing all changes in
the code and associate it to a work item (see Figure 1).

Finish Implemen- . .
tation of Work ltem Changes in Code II Commit to VCS

|
, -

! Create Acsrs]grr:]g;e

i Fc,:;cir;gz g Package to
. 9 Work Item

: A

|

Figure 1. Process of creating Change Packages

The following subsections describe the proposed approach
in detail with regard to two different ways of change package
representation: a patch and a branch.

A. Patches as Change Packages

A patch is a file containing a set of changes between two
versions of the code. The changes are stored in a specified
format (e.g., unified diff) which allows to apply the changes
contained in them to files (e.g., code), thus reproducing
the patched version. Patches can be created and applied by
almost all VCSs and even without a VCS, common programs
like diff and patch under Unix can be used to create

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

patches. The following mechanisms are used to fulfill the
requirements for a change package:

1) Change package creation: A change package is cre-
ated by creating the patch file.

2) Change package application: A change package is
applied by applying the patch.

3) Change package validation: This is where patches
reach their limits: It is rather difficult to check if a
patch is already included in a given code. If the code
was not changed afterwards, a simple check for the
changes in the patch file can yield a result. However,
if the code was changed afterwards (which is the more
common case), comparing the content and the changes
in the patch will not yield a result. Thus, relying only
on a comparison of the patch content with the current
file content is not suitable.

While the first two requirements are straightforward, the
last requirement is challenging. There exist several possible
approaches to implement the last requirement. For example,
one is keeping a list of patches applied onto the code and
linking this list with the version history in the repository. The
problem with this approach is that it only works if all patches
are applied using the system which tracks their application.
If a patch is applied using common tools like the patch
Unix command or the commands provided by the used VCS,
this patch will be un-tracked.

A prototype for the patch representation of change pack-
ages was implemented. It is based on Subversion. Because
it only uses the functionality of patch creation, it can also
be adapted to other VCSs. The prototype currently does not
support the check whether a patch is contained in the current
version of the code. Therefore, the patch-based approach
can only support the code review process, but not the release
management process.

B. Lightweight Branches as Change Packages

VCSs ensure that no changes, besides the ones introduced
by commits (and reliably logged), are done to the repository.
Thus, a good approach for providing change package vali-
dation is to make them reside directly in the repository. By
tying the representation closer to the repository, more of its
tracking features can be leveraged.

The obvious choice for a change package representation
which resides in the repository is a branch. A branch
represents changes done to the code since the revision from
which the branch started to diverge. The three required
properties could be implemented for branches as follows:

1) Change package creation: A branch is created and
changes are committed to this branch.

2) Change package application: A branch can be applied
onto another branch of the repository by merging it
into the other one.

3) Change package validation: By checking the revision
graph, it can be deducted whether a branch has been

10

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

merged into another one (see details below). However,
the repository has to support a revision graph to allow
this approach.

The basic idea of checking if a change package is already
merged into a given branch is using the revision graph
and performing a backward search (i.e., a search from a
revision into the direction of its predecessor revisions). The
search starts from the head revision of the given base branch
which is to be checked for included change packages. If
a revision identifying a change package branch (hereinafter
called indicator revision) is found, a positive answer is given.
If the search does not yield the indicator revision of a change
package, a negative answer for this package is given. The
representation of the indicator revision depends on the VCS.
If the branch head of a merged-in branch is kept, this branch
head can be used as indicator revision and stored in the
change package. Otherwise, for example, the first commit
on the branch can be used.

A drawback of this approach is that it restricts the VCS
to be used. First, the VCS must support branches. This is no
big restriction as most modern VCS do support this feature.
The next limitation is more severe: The VCS must support
a revision graph which reveals all predecessors of a revision
which was created by merging. Subversion, for example,
is not able to deliver this information and is therefore
unsuitable for this approach. Finally, the branches must be
lightweight: Since one change package is represented by one
branch, numerous branches will exist concurrently in the
repository. A branch is considered lightweight, if a large
number of branches can be created without reducing the
performance of the system and without taking too much
space in the VCS. Additionally, the creation and merging
of branches should be fast and the merge algorithms used
should be sophisticated. It must be able to resolve most
conflicts automatically, because this is cumbersome and
error-prone.

One system that actively advertises its ability to maintain
a large number of lightweight branches is Git. It also
incorporates the use of sophisticated merge algorithms which
reduce the amounts of conflicts propagated to the user. Thus,
Git was chosen for the prototype implementation of the
lightweight branch representation of change packages. In
contrast to the patch-based prototype, the branch-based one
is able to support all required three requirements. Thus, the
branch-based approach can support both processes of code
review and release management.

V. PROTOTYPE

A prototype of the presented approach has been imple-
mented and integrated into UNICASE. After performing
changes to the code, the developer selects a work item for the
created change package (see Figure 2). For the code review,
a reviewer gets assigned a work item to be reviewed. S/he
can easily apply the linked change packages to his/her local

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

= Choose work item l =R X
Select project: | MyUnicaseProject | Select user:
Choose a work item to attach the change package to. v
e
Matching items:

E‘;P <« create new BugReport = >
°<< create new Issue > >
'.ﬂ/f‘<< create new Actionltem > »
':_'}»Actionl
‘E’;p << create new BugReport > »
oy
'\\?_,' oK] [Cancel
Figure 2. Choosing a Work Item to associate to a Change Package

workspace. This process is eased in UNICASE by providing
user-specific change notifications [9]. Once the developer
finishes his/her work, the reviewer gets notified whether s/he
can start with the review process. After the review, s/he can
add a review summary to this work item and share it with
the developer.

==

£ '/ \.‘
2
@ 1.0

2 Release Checking Report

Release Checking Report

I, There are warnings in the release, Check the ‘problems’ tab for details,

Ovenview | f Release Content | /i) Problems | (% Changelog

External Release 1.1

Release progress: 2 of 4 work items reselved (50%).
1 0 change packages already merged

4 change packages not merged
#8 0 change packages erroneous

Build progress:

Release status: Iy The release can be built, but has warnings

Figure 3. Release Management Support in Prototype: Overview

2 Release Checking Report

Release Checking Report 72 -wl\l
Iy There are warnings in the release. Check the "problems’ tab for details. /—)

Overview | B3 Release Content
External Releasel.1
% Add Face Recognition
= Face_Recognition
&F Bug 0815
B bug_0815 fived
Cf,\ Refactor Core Classes
5‘9 CoreClassesRefactored
5'/‘ Review Legacy Code

1, Problems | 2| Changelog

8 legacyCodeReviewed

{2 already merged 5 not merged (# error

Figure 4. Release Management in Prototype: Release Content

In Figures 3-5, an insight into the prototype implementa-
tion in UNICASE for the support of the release management

11

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

= Release Checking Report

Release Checking Report P

[]

1%, There are warnings in the release, Check the ‘problems’ tab for details. /—)
!

J

Changelog

| 1 Overview | # Release Content | /4 Problems|

This changelog is assembled by taking
the short description of all change packages:

External Release1.1:

- Added face recognition

- Bug 0815 has been fixed

- The core classes were refactored

- The legacy code has been reviewed and adapted

Figure 5. Release Management Support in Prototype: Changelog

is provided. The tool is able to show the progress of the
build process as well as all already merged, not merged
or erroneous change packages (see Figure 3). The release
content tab shows all included work items in this particular
release and their linked change packages (see Figure 4). The
change log is automatically created (see Figure 5).

VI. APPLICATION OF PROTOTYPE

We used the prototype during one sprint (4 weeks) in
the development of the UNICASE project. In the following,
we report on the processes of code review and release
management with and without using the prototype as well
as our experiences.

A. Code Review

The code review process without using the prototype was
as follows: a developer got assigned a work item describ-
ing his/her work for implementation. After implementation,
the developer created manually a patch file containing all
changes. Then s/he send the patch via e-mail to a reviewer
for code review. The reviewer downloaded the patch and
applied it manually to his/her local workspace. Afterwards,
the reviewer had to find the work item belonging to the
patch. After the reviewer had reviewed all changes and
agreed to all performed changes, s/he committed the changes
to the VCS. Finally, the reviewer had to write a review
comment to the work item indicating that the changes have
been reviewed and applied.

The code review process with using the prototype was as
follows: a developer got assigned a work item describing
his/her work for implementation. After implementation, the
developer selected the assigned work item (see Figure 2). If
no work item existed for the performed changes, e.g., for a
hot fix, the developer just created a work item on demand.
After that, the changes were committed to the VCS in a
separate branch. A change package was created containing
a link to a branch and it was linked to the selected work item.
The developer marked the work item as done and assigned
a reviewer to it. The reviewer was automatically notified

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

that new code changes were waiting for review using user-
specific change notifications [9] in UNICASE. S/he opened
the work item and selected the option to automatically
download and apply the linked change package. All changes
were automatically fetched/pulled from the branch in the
VCS and applied to the local workspace of the reviewer.
After reviewing all changes, the reviewer committed the
changes to the main trunk of the VCS. Finally, the reviewer
had to write a review comment to the work item indicating
that the changes have been reviewed and applied.

B. Release Management

The release management process without the prototype
was as follows: A release manager went through the list
of all the work items and their linked features/requirements
that the release should embody. Subsequently, the release
manager went through each work item based on their priority
and verified if their is a corresponding commit from the
developer in the VCS assigned to the work item (switching
back and forth between two different tools). Often, s/he
also noticed that the patches were not applied to the branch
from where the new release has to be made but rather at
other place. In this scenario, s/he would have created a diff
and applied it to the release branch that was checked out
in his/her local workspace. If s/he was unsure whether a
commit belongs to a work item, s/he first tried to contact
and confirm with the assignee of the work item. Once the
branch is ready by including all the code changes, the release
manager committed all the local changes to the VCS and
moved on to do the release manually or using a build server.

The release management process with the prototype was
as follows: A release manager created a release model
and added all the features/requirements the release should
embody. Once s/he was done with a VCS checkout of the
latest version for the release branch, s/he selected the “Build
Release” option provided in the prototype. The prototype
applied all change packages linked with every work item
that are related to the features/requirements included in the
release model automatically. Next, the prototype presented a
release checking report to the release manager that showed
a summary of the release process with various information,
e.g. whether all the work items are resolved (Figure 3), all
change packages merged to the release branch (Figure 4)
and the automatically created change log from the work item
descriptions (Figure 5). Once the release manager selected
to do the release, all the change packages were merged and
committed to the VCS repository.

C. Experiences

We noticed several advantages while using the prototype.
First, the developers were able to automatically assemble all
code belonging to the sprint and its planned work items and
check if code could be assembled successfully. Second, if
problems occurred during the release, these problems were

12

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

reported. An overview about already merged, not merged or
erroneous change packages helped the developers looking
into the specific change packages. Third, the change log
was automatically assembled. We learned that the presented
approach significantly increased the productivity of our
development team, e.g. the release management process
using the prototype is now up to 4 times faster than before
(30 minutes with and 2 hours without prototype).

VII. RELATED WORK

In the following, related work for code traceability, code
review and release management is discussed.

A. Code Traceability

Maintaining traceability links between code and other
artifacts is a challenging task and therefore a field of intense
research. Most approaches relate structures in the code like
classes, methods, modules, files, or lines of code to other
artifacts like requirements or features. Our approach tracks
changes instead of structures in the code, instead.

A very simple, yet effective approach is presented by
Treude et al. [10] embedding the links directly into code
comments, which can be read by their proposed tool
TagSEA. They use tags in comments to refer to other
artifacts. They go further into the direction by creating links
between tasks (equal to our definition of work item) and
code. This is accomplished by connecting their tool with
MyLyn [11], which can be used to express tasks. They
connect code to MyLyn tasks by using special tags. A major
drawback of using tags in the source code is the overhead
of keeping the tags updated. In a complex project with a
large number of artifacts it gets difficult for a developer
to recall which code files should be connected to which
work item. In our approach, we use the abstraction of
patches over individual code artifacts to overcome this issue.
Fischer et al. [12] link VCS with release data, which is in
contrast to our approach. They use the version history in the
repository, in addition to bug tracking data, to automatically
build the release history of a project and allow viewing and
querying it to retrieve information about the evolution of the
project. While they do post-mortem analysis, our approach
is focused on creating links between code and tasks during
development to benefit code review and release management.

Marcus et al. [13] establish links between code and the
corresponding documentation. In contrast to the approaches
mentioned above, they try to recover the links automatically
using information retrieval, namely Latent Semantic Index-
ing (LSI). This is different to our approach, as we establish
links between code and work items (semi-) automatically
while the developers use a VCS. Qusef et al. [14] use their
SCOTCH tool for dynamic slicing and conceptual coupling
to recover traceability links between unit tests and tested
classes. Antoniol et al. [15] link code locations to object-
oriented design artifacts. Like Marcus et al., they establish

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

all the links without additional information, by performing
different static and dynamic analyses. They use, amongst
others, vector space indexing and probabilistic indexing
techniques (comparable to LSI). All these methods are based
on the textual similarity of artifact content, code identifiers
and comments. This results in unreliable traceability links, as
the created traceability links cannot ensure a high precision
as well as a high recall at the same time.

B. Code Review

Several researchers contributed to the tool support of
code review. Brothers et al. [16] proposed the ICICLE
tool, which embodies different functionalities aiding code
reviews. Examples are a human interface for preparing
comments on the code under inspection and hypertext-
based browsers for referring to various kinds of knowledge
associated with code inspection, thus achieving a certain
degree of traceability. Harjumaa et al. [17] proposed a web
based tool, which features the distribution of the docu-
ment to be inspected, annotation of it, searching of related
documents, a checklist, and inspection statistics. Belli et
al. [18] described an approach for the automatic handling,
checking, and updating of check lists used in reviews. A
similar approach of improving artifact quality by distributed
artifact inspection was presented by De Lucia et al. [19].
They focused on general aspects of the artifacts life-cycle
and presented a distributed inspection process consisting of
seven phases implemented in a tool called WAIT.

All these approaches are in contrast to ours, as we are
able to transfer the changes to be reviewed automatically as
well as providing traceability from the code over work items
to other artifacts, e.g., features or requirements. There are
further tools for code review which can do a lot of other
things that our tool does not support. However, these tools
do not support the functionality discussed here.

C. Release Management

Among numerous research work aiming at improving
the release management process, we identified two major
contributions related within the scope of our work. Van
der Hoek et al. [8] identified the basic issues in release
management and developed a tool to aid the release man-
agement process. In contrast to our approach, their approach
does not include assembling and building components to be
released. It is merely a database of releases, components
to be released and their dependencies among each other.
Saliu et al. [20] contributed research in the field of release
planning, especially for evolving systems which are built
incrementally. Our approach supports release planning as
well, since work items linked to changes in the code are
included in a release.

VIII. DISCUSSION

The proposed approach works with certain constraints
and assumptions. For example, it is also possible that a

13

ICSEA 2012 : The Seventh International Conference on Software Engineering Advances

change belonging to a work item has been committed to
the repository without the creation of a change package.
This can happen if the code is committed with the sources
of another change package, which happens if a developer
was working on two work items and committed the changes
for both in one change package only. However, this can be
noticed by the developer if s/he realizes that one of the work
items has a missing change package. The approach leaves the
task of creating links between the code changes and the work
items to the developer himself/herself. So, the approach
suffers from mistakes a developer does while performing
this activity (like linking code to the wrong work item). The
general problem is that artifacts in human readable text or
code can not be linked together with full reliability using any
existing technique. Our approach of letting the developers
create the links themselves as part of their usual work is
expected to be better in comparison to automatic approaches.

IX. CONCLUSION

This paper proposed an approach for (semi-) automatically
creating traceability links between code and work items by
using VCSs. The created traceability links were used to im-
prove the processes of code review and release management.
The idea to automate the code review process was to use
traceability links between code and work items to apply the
code to the reviewers machine, highlight the changes and
add the reviewers feedback to the work items. For the release
management, the traceability links between code and work
items were used to check which work items are contained
in the code of a release and to build a release automatically
by merging in the missing features or requirements.

The techniques and applications discussed in this paper,
like the establishment of links between code and work items,
are still not explored in depth. Therefore, there are a lot of
possibilities for future research in this area. We are aware
that our approach currently only allows developers to work
at one work item at a time. Therefore, support for working
on several work items at once is subject to future work.
Furthermore, we want to study further possibilities for the
application of our proposed approach. The work presented
in this paper has been evaluated so far only with a small
user group during one sprint in the UNICASE project. Thus,
we plan to conduct a representative user experiment. A
study where the prototype is used throughout a development
project would be very beneficial to evaluate the benefits
offered by the proposed approach to the code review and
release management processes.

REFERENCES

[1] Tichy, W.F. Tools for software configuration management.
In Proceedings of the International Workshop on Software
Version and Configuration Control, pp. 1-20 (1988)

[2] IEEE. IEEE standard for software configuration management
plans: ANSI/IEEE std. 828-1983 (1983)

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-230-1

(3]
(4]

[5]

(6]
(71

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

Leon, A. Software configuration management handbook.
Artech House, Inc. Norwood, MA, USA (2004)

Helming, J., Koegel, M., and Naughton, H. Towards traceabil-
ity from project management to system models. In TEFSE 09:
Proceedings of the 2009 ICSE Workshop on Traceability in
Emerging Forms of Software Engineering, pp. 11-15, IEEE
Computer Society (2009)

Bruegge, B., Creighton, O., Helming, J., and Koegel, M.
Unicase - an Ecosystem for Unified Software, In ICGSE 08:
Distributed software development: methods and tools for risk
management, pp. 12-17 (2008)

UNICASE Open Source Project. http://www.unicase.org/
Helming, J., David, J., Koegel, M., and Naughton, H. Inte-
grating System Modeling with Project Management - A Case
Study. In COMPSAC 09: International Computer Software
and Applications Conference, pp. 571-578 (2009)

Van der Hoek, A., Hall, R., Heimbigner, D., and Wolf,
A. Software release management. Software Engineering -
ESEC/FSE, pp. 159-175 (1997)

Helming, J., Koegel, M., Naughton, H., David, J., and Shterev,
A. Traceability-Based Change Awareness. In MODELS 09:
International Conference on Model Driven Engineering Lan-
guages and Systems, pp. 372-376 (2009)

Treude C. and M.A. Storey. How tagging helps bridge the
gap between social and technical aspects in software devel-
opment. In ICSE 09: International Conference on Software
Engineering, pp. 12-22 (2009)

Eclipse MyLyn. http://www.eclipse.org/mylyn/ [retrieved:
September, 2012]

Fischer, M., Pinzger, M., and Gall, H. Populating a Release
History Database from version control and bug tracking
systems. In ICSM 03: International Conference on Software
Maintenance, pp. 23-32 (2003)

Marcus, A., Maletic, J.I., and Sergeyev, A. Recovery of
traceability links between software documentation and source
code. International Journal of Software Engineering and
Knowledge Engineering, vol. 15, no. 5, pp. 811-836 (2005)

Qusef, A., Bavota, G., Oliveto, R., De Lucia, A., and Binkley,
D. SCOTCH: Slicing and Coupling Based Test to Code Trace
Hunter. In 18th Working Conference on Reverse Engineering
(WCRE), pp. 443-444 (2011)

Antoniol, G., Canfora, G., Casazza, G., and De Lucia, A.
Maintaining traceability links during object-oriented software
evolution. Software: Practice and Experience, vol. 31, no. 4,
pp- 331-355 (2001)

Brothers, L.R. Multimedia groupware for code inspection.
International Conference on Discovering a New World of
Communications (ICC), pp. 1076-1081 (1992)

Harjumaa, L. and Tervonen, I. A WWW-based tool for soft-
ware inspection. In HICSS, Published by the IEEE Computer
Society, pp. 379-388 (1998)

Belli, F. and Crisan, R. Towards automation of checklist-
based code-reviews. In ISSRE 96: International Symposium
on Software Reliability Engineering, IEEE Computer Society,
pp. 24-33 (1996)

De Lucia, A., Fasano, E., Scanniello, G., and Tortora, G.
Improving artefact quality management in advanced artefact
management system with distributed inspection. Software,
IET, vol. 5, no. 6, pp. 510-527 (2011)

Saliu, O. and Ruhe, G. Supporting software release planning
decisions for evolving systems. 29th Annual IEEE/NASA
Software Engineering Workshop, pp. 14-26 (2005)

14

