DeltaNI: An Efficient Labeling Scheme
for Versioned Hierarchical Data

Jan Finis Robert Brunel Alfons Kemper
Thomas Neumann Franz Fiarber Norman May

Technische Universitdt Miinchen

SAP AG

TUTI SAPd

Motivation SAP

Enterprise-Resource-Planning (ERP) systems
use a lot of dynamic hierarchical datal

2/29

Motivation SAP

Enterprise-Resource-Planning (ERP) systems
use a lot of dynamic hierarchical datal

Examples:

» Human Resources (HR) hierarchy

> 1 million nodes
> Some subtree moves (around 10-15%)

Dale

Eddy

(Garry] [(Hana])

2/29

Motivation SAP

Enterprise-Resource-Planning (ERP) systems
use a lot of dynamic hierarchical datal

Examples:

» Human Resources (HR) hierarchy

> 1 million nodes

> Some subtree moves (around 10-15%)
» Asset hierarchies

» 10 — 100 million nodes
> A lot of subtree moves (50% or more)

2/29

Motivation SAP

Enterprise-Resource-Planning (ERP) systems
use a lot of dynamic hierarchical datal

Examples:

» Human Resources (HR) hierarchy

> 1 million nodes

> Some subtree moves (around 10-15%)
» Asset hierarchies

» 10 — 100 million nodes
> A lot of subtree moves (50% or more)

» Problem: Current indexing approaches do
not support subtree moves!

2/29

Motivation SAP

Enterprise-Resource-Planning (ERP) systems
use a lot of dynamic hierarchical datal

Examples:

» Human Resources (HR) hierarchy

> 1 million nodes
> Some subtree moves (around 10-15%)

> Asset hierarchies

» 10 — 100 million nodes
> A lot of subtree moves (50% or more)

» Problem: Current indexing approaches do
not support subtree moves!

» Challenge: Versioning required for
accountability

2/29

Hierarchical Data SAP

» Hierarchical Relationship over tuples of a table

Name | Boss |Salary]...
Adam | NULL [80,000|...
Bob |Adam |55,000...
Celia | Adam |70,000|...
Dale | Celia |55,000|...
Eddy | Celia |45,000...
Felicia| Adam |60,000] ...
Gina |Felicia|75,000]...
Hana | Gina [45,000...

3/29

Hierarchical Data SAP

» Hierarchical Relationship over tuples of a table

Name | Boss |Salary]...
Adam | NULL [80,000|...
Bob |Adam |55,000...
Celia | Adam |70,000|...
Dale | Celia |55,000|...
Eddy | Celia |45,000...
Felicia| Adam |60,000] ...
Gina |Felicia|75,000]...
Hana | Gina [45,000...

» Queries over structural properties, e.g., subtree
SELECT name, salary FROM /Employee[name=‘‘Celia’’]//*

3/29

Hierarchical Data SAP

» Hierarchical Relationship over tuples of a table

Name | Boss |Salary]...
Adam | NULL [80,000|...
Bob |Adam |55,000...
Celia | Adam |70,000|...
Dale | Celia |55,000|...
Eddy | Celia |45,000...
Felicia| Adam |60,000] ...
Gina |Felicia|75,000]...
Hana | Gina [45,000...

» Queries over structural properties, e.g., subtree
SELECT name, salary FROM /Employee[name=‘‘Celia’’]//*

» Scope: Index the hierarchy structure

3/29

Hierarchical Data SAP

» Hierarchical Relationship over tuples of a table

Name |Salary | ...
Adam [80,000|...
Bob [55,000/...
. Celia |70,000]...
Gina

Dale |55,000]...
i Eddy [45,000]...
(Hana | Felicia |60,000] ...
Gina |75,000|...
Hana |45,000|...

Felicia

» Queries over structural properties, e.g., subtree
SELECT name, salary FROM /Employee[name=‘‘Celia’’]//*

» Scope: Index the hierarchy structure

3/29

Versioned Hierarchical Data SAP

» Multiple versions of a hierarchy (1000+)

» Updates at latest version create new version
» Versioning of the table out of scope
» Possibly branching history

BJ(C)(F (6] BJ(C)(F](6] (B](C](F](G]

O (E) ® ([O(E (H [DJ[E
|
Vi > \/, > V5

» Versioned Queries
SELECT name, salary FROM /Employee[name=‘‘Celia’’]//* IN V>

4/29

Goals sAP TUT

Goal: An efficient index for versioned hierarchies to speed up ERP
systems (and other hierarchical databases).

5/29

Goals sAP TUT

Goal: An efficient index for versioned hierarchies to speed up ERP
systems (and other hierarchical databases).

Desired properties:

» Efficient queries in all versions

5/29

Goals sAP TUT

Goal: An efficient index for versioned hierarchies to speed up ERP
systems (and other hierarchical databases).

Desired properties:
» Efficient queries in all versions

> Low space consumption

» Large hierarchies
» Long histories
» Main-memory database

5/29

Goals sAP TUT

Goal: An efficient index for versioned hierarchies to speed up ERP
systems (and other hierarchical databases).

Desired properties:
» Efficient queries in all versions

> Low space consumption

» Large hierarchies
» Long histories
» Main-memory database

» Efficient updates in latest version
» Insert, delete, and subtree move

5/29

Goals sAP TUT

Goal: An efficient index for versioned hierarchies to speed up ERP
systems (and other hierarchical databases).

Desired properties:
» Efficient queries in all versions

> Low space consumption

» Large hierarchies
» Long histories
» Main-memory database

v

Efficient updates in latest version
» Insert, delete, and subtree move

v

Allow branching histories

5/29

Indexing Hierarchies: Labeling Schemes SAP

» Widely used hierarchy indexing: Labeling Schemes

6/29

Indexing Hierarchies: Labeling Schemes SAP

» Widely used hierarchy indexing: Labeling Schemes

» Each node carries fixed set of labels
» Queries can be answered by only considering labels

6/29

Indexing Hierarchies: Labeling Schemes SAP

» Widely used hierarchy indexing: Labeling Schemes
Each node carries fixed set of labels

Queries can be answered by only considering labels
Widely applied in, e.g., XPath processing

Examples: pre/post, ORDPATH, nested intervals (NI)

v

v vy

6/29

Indexing Hierarchies: Labeling Schemes SAP

» Widely used hierarchy indexing: Labeling Schemes
Each node carries fixed set of labels

Queries can be answered by only considering labels
Widely applied in, e.g., XPath processing

Examples: pre/post, ORDPATH, nested intervals (NI)

v

v vy

6/29

Indexing Hierarchies: Labeling Schemes SAP

» Widely used hierarchy indexing: Labeling Schemes
Each node carries fixed set of labels

Queries can be answered by only considering labels
Widely applied in, e.g., XPath processing

Examples: pre/post, ORDPATH, nested intervals (NI)

v

v vy

6/29

Indexing Hierarchies: Labeling Schemes SAP

» Widely used hierarchy indexing: Labeling Schemes
Each node carries fixed set of labels

Queries can be answered by only considering labels
Widely applied in, e.g., XPath processing

Examples: pre/post, ORDPATH, nested intervals (NI)

v

v vy

'S

6/29

Indexing Hierarchies: Labeling Schemes

» Widely used hierarchy indexing: Labeling Schemes
Each node carries fixed set of labels

» Queries can be answered by only considering labels

» Widely applied in, e.g., XPath processing

» Examples: pre/post, ORDPATH, nested intervals (NI)

v

'S

/Employee [name=*‘Celia’’]//* = “All nodes in [3,8]"

6/29

Challenges SAP

» Challenge 1: Efficient Query Support

7/29

Challenges SAP

» Challenge 1: Efficient Query Support
» NI can be used to answer queries efficiently

7/29

Challenges SAP

» Challenge 1: Efficient Query Support
» NI can be used to answer queries efficiently
» Challenge 2: Efficient Update Support

7/29

Challenges SAP

» Challenge 1: Efficient Query Support
» NI can be used to answer queries efficiently v
» Challenge 2: Efficient Update Support
» NI not dynamic (O(n) bounds change per update) @

-~

7/29

Challenges SAP

» Challenge 1: Efficient Query Support
» NI can be used to answer queries efficiently v
» Challenge 2: Efficient Update Support
» NI not dynamic (O(n) bounds change per update) @

-~

7/29

Challenges SAP

» Challenge 1: Efficient Query Support
» NI can be used to answer queries efficiently v
» Challenge 2: Efficient Update Support
» NI not dynamic (O(n) bounds change per update) @

-~

O(n) bound changes

7/29

Challenges SAP

» Challenge 1: Efficient Query Support
» NI can be used to answer queries efficiently v
» Challenge 2: Efficient Update Support
» NI not dynamic (O(n) bounds change per update) @

-~

O(n) bound changes

7/29

Challenges SAP

» Challenge 1: Efficient Query Support

» NI can be used to answer queries efficiently
» Challenge 2: Efficient Update Support

» NI not dynamic (O(n) bounds change per update) @
» Challenge 3: Space Consumption of Histories

-~

O(n) bound changes

7/29

Challenges SAP

» Challenge 1: Efficient Query Support

» NI can be used to answer queries efficiently v
» Challenge 2: Efficient Update Support

» NI not dynamic (O(n) bounds change per update) @
» Challenge 3: Space Consumption of Histories

» O(n) bounds change per update need to be stored ®

-~

O(n) bound changes

7/29

Swaps sap T

» Observation: Each update can be represented by a swap of
two ranges of bounds

8/29

Swaps

SAP

m

» Observation: Each update can be represented by a swap of

two ranges of bounds

» Insert Node: Before

OE<E——a

>
¢ D:IEIF
I 4 —» | — | P
—
5 max 10

8/29

Swaps sap T

» Observation: Each update can be represented by a swap of
two ranges of bounds

» Insert Node: After

R4:
* B » 10
o« > I
IIC D F|4£>|
Lo e e e e
0 5 10 max

8/29

Swaps sap T

» Observation: Each update can be represented by a swap of
two ranges of bounds

» Delete Node: Before

8/29

Swaps sap T

» Observation: Each update can be represented by a swap of
two ranges of bounds

» Delete Node: After

R4+4 R4:
4 A A
« B > +0
I ¢ > I
L1 Sy & T E S
—_ =
0 5 A 10

8/29

Swaps

SAP

m

» Observation: Each update can be represented by a swap of
two ranges of bounds

» Delete Subtree: Before

O<«——=a

(A)
o\ R:
N e -
© v
Rl RZ R3 R4
A N
C 4
B N—————B—————h F I
— =N 4 4
—————————
5 10 max

8/29

Swaps sap T

» Observation: Each update can be represented by a swap of
two ranges of bounds

» Delete Subtree: After

'
® ® ® ©)
Ry 0 R3: -4 R, +5 R,:
4 A A 48
N » C 10
| b ey
L T N T ey 1 r e
%
0 5 b 10

8/29

Swaps sap T

» Observation: Each update can be represented by a swap of
two ranges of bounds

» Move Subtree: Before

®)
® AN
Ry R, Rs3

f
//
Ry

4 A A
Al C r:
| PEAA AN
A G R o I il I CR Q
%
0 5 10 by

8/29

Swaps sap T

» Observation: Each update can be represented by a swap of
two ranges of bounds

» Move Subtree: After

S & 5 %

©
Ri: 20 Rs: -4 Ry:+2 R4: £0
A)
C d
"
B E DL F :
AV V2SS VS VA VA A
I Y

8/29

Storing Swaps sap T

» Observation: Each update can be represented by a swap of
two ranges of bounds

9/29

Storing Swaps sap T

» Observation: Each update can be represented by a swap of
two ranges of bounds

» |dea: Simply store that swap instead of the changed bounds

9/29

Storing Swaps sap T

» Observation: Each update can be represented by a swap of
two ranges of bounds

» |dea: Simply store that swap instead of the changed bounds

Before Ri: A Ry R3 R4
I: B :I
I ¢ > I
L S & E s
V. vV VOV VYV VeV TV A

9/29

Storing Swaps sap T

» Observation: Each update can be represented by a swap of
two ranges of bounds

» |dea: Simply store that swap instead of the changed bounds

Before R: A R, Rs R4
I: B :I

I ¢ > I

1 S & S
V. V. V V V VvV Vv V. Vv YA
ISourceSpace R; l R, I Rs3 |R4
— I N
0 5 10

9/29

Storing Swaps sap T

» Observation: Each update can be represented by a swap of
two ranges of bounds

» |dea: Simply store that swap instead of the changed bounds

After R1: 0 R3Z -4 Rz: +2 R4:
4 A IS +0
«) B R ql
< D R E '
| | +—> +—> +“—> I +—> |
vV v WV WV VvV VIV AN Y VY
Source Space R; R, Rs3 R4
Target Space 0 -4 +2 0
! I I I I) I I I ' I
0 5 10

9/29

Representing Swaps sap T

» Representation: Two balanced (binary) search trees (“double
tree”)

» Node content: Lower border and link to other tree

Source Tree
Target Tree
Source Space
Target Space
' I I I I ! I I I I J I
0 5 10

10/29

NI Deltas SAP

» The double tree represents a function § : N — N

Source Tree

Target Tree

11/29

NI Deltas SAP

» The double tree represents a function § : N — N

» 0 maps interval bounds from source space to target space

Source Tree

Target Tree

11/29

NI Deltas SAP

» The double tree represents a function § : N — N
» 0 maps interval bounds from source space to target space

» Let b be a bound in source space, then §(b) is equivalent
bound in target space

Source Tree

Target Tree

11/29

NI Deltas SAP

» The double tree represents a function § : N — N
» 0 maps interval bounds from source space to target space

» Let b be a bound in source space, then §(b) is equivalent
bound in target space

» Given an NI encoding in version V; and a delta oV, from
version V; to another version V;, we can answer queries in V;

Source Tree

Target Tree

11/29

Computing 0 on the Double Tree SAP

» Computing d§(b) is easy:

Source Tree

Target Tree

12/29

Computing 0 on the Double Tree SAP

» Computing d§(b) is easy:
» Find greatest node in source tree less than b
= Usual search-tree lookup

Source Tree

Target Tree

12/29

Computing 0 on the Double Tree SAP

» Computing d§(b) is easy:
» Find greatest node in source tree less than b
= Usual search-tree lookup

» Apply translation of that node

Source Tree

Target Tree

12/29

Computing 0 on the Double Tree SAP

» Computing d§(b) is easy:
» Find greatest node in source tree less than b
= Usual search-tree lookup

» Apply translation of that node

6(11) =T7:

Source Tree

Target Tree

12/29

Computing 0 on the Double Tree SAP

» Computing d§(b) is easy:
» Find greatest node in source tree less than b
= Usual search-tree lookup

» Apply translation of that node

6(11) =T7:

Source Tree

Target Tree

» Computation of §1(b) similar

12/29

Double tree feasible? SAP

Does the double tree delta solve the problems?

Source Tree

Target Tree

13/29

Double tree feasible? SAP

Does the double tree delta solve the problems?

» Challenge 1: Efficient Query Support

Source Tree

Target Tree

13/29

Double tree feasible? SAP

Does the double tree delta solve the problems?
» Challenge 1: Efficient Query Support
» NI can be used to answer queries efficiently v

Source Tree

Target Tree

13/29

Double tree feasible? SAP

Does the double tree delta solve the problems?
» Challenge 1: Efficient Query Support

» NI can be used to answer queries efficiently v
» Calculating 0(b) (search tree lookup) is in O(logc) v

Source Tree

Target Tree

n = number of nodes, ¢ = number of changes in delta

13/29

Double tree feasible? SAP

Does the double tree delta solve the problems?

» Challenge 1: Efficient Query Support v

» Challenge 2: Space Consumption

Source Tree

Target Tree

n = number of nodes, ¢ = number of changes in delta

13/29

Double tree feasible? SAP

Does the double tree delta solve the problems?

» Challenge 1: Efficient Query Support v
» Challenge 2: Space Consumption
» Storing all changed bounds: O(n) space ®

Source Tree

Target Tree

n = number of nodes, ¢ = number of changes in delta

13/29

Double tree feasible? SAP

Does the double tree delta solve the problems?

» Challenge 1: Efficient Query Support v
» Challenge 2: Space Consumption

» Storing all changed bounds: O(n) space ®
» Storing only range borders: O(c) space ©

Source Tree

Target Tree

n = number of nodes, ¢ = number of changes in delta

13/29

Double tree feasible? SAP

Does the double tree delta solve the problems?

» Challenge 1: Efficient Query Support v
» Challenge 2: Space Consumption v

» Challenge 3: Efficient Update Support

Source Tree

Target Tree

n = number of nodes, ¢ = number of changes in delta

13/29

Double tree feasible? SAP

Does the double tree delta solve the problems?

» Challenge 1: Efficient Query Support v
» Challenge 2: Space Consumption v

?

» Challenge 3: Efficient Update Support

Source Tree

Target Tree

n = number of nodes, ¢ = number of changes in delta

13/29

Updating Deltas SAP

» Until now, we only considered deltas with one change

After R1: 0 R3Z -4 Rz: +2 R4Z
‘ & y 0
) B R q
| #—= D R E '
| [+—> +—> +“—> I +“—> |
vV Vv vV VvV V VIV AN Y VY
Source Space R; R, Rs3 R4
Target Space 0 -4 +2 0
I I I I I T I I I T I
0 5 10

14 /29

Updating Deltas

» Until now, we only considered deltas with one change

» How to build deltas with more changes?

A B C D E F G H |
R I -
| s« >< - ~ -7 |
| U~ T \\\\\\ e \),z” |
O T s t
[I I I I I I I
LA L N I B N N O B B N B B
0 10 20

14 /29

n
)
a2
()
()
a0
c
B
©
O
o
)

. S
I---
\
\
\
\
\ _—
A
%4
\%/
A
\\ 3
VA T
w---
\
\ —
\
A
/V\
2
/
/
w-—
v
\ 7
vV
A
I\ S
ANy
a--- \
\
,A\
/
I
O-—= 7\
N/
v
N
/ \
\
/ \
/
ol
<<--—--- » -

15 /29

0
(g}
=
()
()
oY0)]
=
)
0
Ne)
o
)

» Task: Swap range R, with R3

. » ——
I--- <
\ o
\
\
\
\ !
A
%4
\%/
/
N
/
G . Ar‘\
w---
\
\ - —
\
A
N\
y
2
/ o
/ o
W--=
vl
\ 7
v
A
I\ =
/N A
o--- /\
\/
A
A
- \
(] RN Lo
v e
N
/ \
N
/
@ g
<<--—--- » -

10

15 /29

0
(g}
=
()
()
oY0)]
=
)
0
Ne)
o
)

» Step 1: Insert range borders

20

10

» Search tree insert: O(logc) v

15/29

Updating Deltas

15 /29

0
(g}
=
()
()
oY0)]
=
)
0
O
o
)

» Step 2: Swap borders in R> and Rs3

15/29

Updating Deltas SAP

» Step 2: Swap borders in R, and R3

A

|
i
A

|
!
[
0

» Naive: Delete and reinsert all changed borders: O(clogc) ®

» = Better approach required

15/29

o
©
=
)]
-
()
o)
el
O
m
-
[
L
e
o=
Ll

» Observation: Only target space changes

16 /29

Efficient Border Swap

» Observation: Only target space changes

ACCE E B F D H G |
DR | R P R A | Re |
A CE B F D C E H G |
| R A SRy | R | | R |
I T T T T I T T T T I T T T T I T T T T I T T T
0 10 20

16 /29

Efficient Border Swap

» Observation: Only target space changes
» Steps: Adjust keys O(c) keys, swap O(c) nodes
D

F
Rs!
|

16 /29

Efficient Border Swap SAP

» Observation: Only target space changes

16 /29

Efficient Node Rearrangement sap T

» How to swap O(c) nodes in a search tree in O(log c)?

o 2

17/29

Efficient Node Rearrangement sap T

» How to swap O(c) nodes in a search tree in O(log c)?

» Solution: Split and join

pIitI

17/29

Efficient Node Rearrangement sap T

» How to swap O(c) nodes in a search tree in O(log c)?

pIitI

Join
«

» Split: Split a tree into two new balanced trees

17/29

Efficient Node Rearrangement sap T

» How to swap O(c) nodes in a search tree in O(log c)?

pIitI

IJoin
» Split: Split a tree into two new balanced trees

» Join: Concatenate two trees to one balanced one

17/29

Efficient Node Rearrangement sap T

» How to swap O(c) nodes in a search tree in O(log c)?

pIitI

IJoin
» Split: Split a tree into two new balanced trees

» Join: Concatenate two trees to one balanced one

» Both operations run in O(logc) v

17/29

Updating Keys Efficiently SAP

» Split and join can rearrange nodes efficiently
» But: Keys are not updated = search tree condition violated!

» Updating one by one would require O(c)

18/29

Updating Keys Efficiently SAP

» Split and join can rearrange nodes efficiently
» But: Keys are not updated = search tree condition violated!

» Updating one by one would require O(c)
» Solution: Accumulation tree
= Node key: Sum of all keys on path to root

18/29

Updating Keys Efficiently SAP

» Split and join can rearrange nodes efficiently
» But: Keys are not updated = search tree condition violated!

» Updating one by one would require O(c)
» Solution: Accumulation tree
= Node key: Sum of all keys on path to root

18/29

Updating Keys Efficiently SAP

» Split and join can rearrange nodes efficiently
» But: Keys are not updated = search tree condition violated!

» Updating one by one would require O(c)
» Solution: Accumulation tree
= Node key: Sum of all keys on path to root

» Changing all keys in a subtree: O(1)

18/29

The Swap Algorithm sap TUTI

» Using split/join and the accumulation tree, updating in
O(log c) is possible
» Target tree before update:

19/29

The Swap Algorithm sap TUTI

» Using split/join and the accumulation tree, updating in
O(log c) is possible
» Target tree with accumulation before update:

19/29

The Swap Algorithm sap TUTI

» Using split/join and the accumulation tree, updating in
O(log c) is possible
» Step 1: Split tree (O(log ¢))

19/29

The Swap Algorithm sap TUTI

» Using split/join and the accumulation tree, updating in
O(log c) is possible
» Step 1: Split tree (O(log ¢))

))
@ @

19/29

The Swap Algorithm sap TUTI

» Using split/join and the accumulation tree, updating in
O(log c) is possible
> Rearrange trees (no-op)

))
@ @

19/29

The Swap Algorithm sap TUTI

» Using split/join and the accumulation tree, updating in
O(log c) is possible
> Rearrange trees (no-op)

19/29

The Swap Algorithm sap TUTI

» Using split/join and the accumulation tree, updating in
O(log c) is possible
» Step 2: Translate keys (O(1))

+10 -3 +3 +10

E* G

19/29

The Swap Algorithm sap TUTI

» Using split/join and the accumulation tree, updating in
O(log c) is possible
» Step 3: Join trees (O(log c))

19/29

The Swap Algorithm sap TLTI

» Using split/join and the accumulation tree, updating in
O(log c) is possible

» Final result:

19/29

Overview SAP

» What we have shown:

20/29

Overview SAP

» What we have shown:
» Double tree delta efficiently represents the changes in a version
» Efficient Queries (NI Encoding)
> Efficient Updates (Swap Algorithm)
> Low Space Consumption (O(c))

20/29

Overview SAP

» What we have shown:
» Double tree delta efficiently represents the changes in a version

» Efficient Queries (NI Encoding)
> Efficient Updates (Swap Algorithm)
> Low Space Consumption (O(c))

» What is missing:

20/29

Overview SAP

» What we have shown:
» Double tree delta efficiently represents the changes in a version

» Efficient Queries (NI Encoding)
> Efficient Updates (Swap Algorithm)
> Low Space Consumption (O(c))

» What is missing:
» How to represent whole version histories efficiently?

20/29

Representing Version Histories

> Assume:
» Linear history of n versions Vg, ..., V,_1
» Constantly bounded number of changes ¢ per version
» What we need:
» V4 has a fully materialized NI encoding
» We need deltas that lead to each other version (transitively)
» E.g., do—3 and d3_,5 lead to Vi by applying d3_,5(d0—3(b))
» Which deltas to store in order to. ..
» minimize space consumption?
> minimize query runtime?

21/29

Simple Schemes SAP

» Minimize space consumption: linear topology

(e

0 1 2 3 4 5 6 7 8
Base B S N N e e N N
2 3 4 5 6 7 8 9

1 1

o

22/29

Simple Schemes SAP

» Minimize space consumption: linear topology
= O(n) space consumption v’

(e

0 1 2 3 4 5 6 7 8
Base S S S S S S I
2 3 4 5 6 7 8 9

1 1

o

22/29

Simple Schemes SAP

» Minimize space consumption: linear topology

= O(n) space consumption v’
= O(n) query time ®

0 1 2 3 4 5 6 7 8
Base e SE S S S CE e S N I
2 3 4 5 6 7 8 9

1 1

ol‘p

22/29

Simple Schemes SAP

» Minimize space consumption: linear topology

= O(n) space consumption v’
= O(n) query time ®

0 1 2 3 4 5 6 7 8
Base R S CEE S R, JEEE JEEE s CEEE e N
2 3 4 5 6 7 8 9

1 1

ol‘D

» Minimize query time: star topology

22/29

Simple Schemes SAP

» Minimize space consumption: linear topology

= O(n) space consumption v’
= O(n) query time ®

0 1 2 3 4 5 6 7 8
Base R S CEE S R, JEEE JEEE s CEEE e N
2 3 4 5 6 7 8 9

1 1

ol‘D

» Minimize query time: star topology
= O(log n) query time v/

22/29

Simple Schemes SAP

» Minimize space consumption: linear topology

= O(n) space consumption v’
= O(n) query time ®

0 1 2 3 4 5 6 7 8
Base R S CEE S R, JEEE JEEE s CEEE e N
2 3 4 5 6 7 8 9

1 1

ol‘D

» Minimize query time: star topology
= O(log n) query time v/
= O(n?) space consumption @

22/29

Exponential Scheme SAP

» We need a better space/time tradeoff!

23/29

Exponential Scheme SAP

» We need a better space/time tradeoff!
» Solution: Exponential scheme

0

0 2 0 4 4 6 0 8 8 10 8
1 4573 5y 7 9 2o 1
4 12
Base N
78

23/29

Exponential Scheme SAP

» We need a better space/time tradeoff!
» Solution: Exponential scheme
= O(nlog n) space consumption v/

0

0 2 0 4 4 6 0 8 8 10 8
1 4573 5y 7 9 2o 1
4 12
Base N
78

23/29

Exponential Scheme SAP

» We need a better space/time tradeoff!
» Solution: Exponential scheme

= O(nlog n) space consumption v/
= O(log n) best case query time v

0

0 2 0 4 4 6 0 8 8 10 8
1 4573 5 ¥ 77 9 w10 U
4 12
Base >
78

23/29

Exponential Scheme SAP

» We need a better space/time tradeoff!
» Solution: Exponential scheme

= O(nlog n) space consumption v/
= O(log n) best case query time v
= O(log® n) worst case query time

0

0 2 0 4 4 6 0 8 8 10 8
1 4573 3 el 9 2o 1
4 12
Base N
78

23/29

Evaluation Baseline SAP

» Baseline: Currently strongest algorithms

24 /29

Evaluation Baseline SAP

» Baseline: Currently strongest algorithms
» Labeling with ORDPATH

> No relabeling = efficient updates
» Efficient queries

24 /29

Evaluation Baseline SAP

» Baseline: Currently strongest algorithms
» Labeling with ORDPATH

> No relabeling = efficient updates
» Efficient queries

» Versioning with Multiversion B-Tree (MVBT)

> Asymptotically optimal query time and space consumption

24 /29

Evaluation Baseline SAP

» Baseline: Currently strongest algorithms ORD-MVBT

» Labeling with ORDPATH

> No relabeling = efficient updates
» Efficient queries

» Versioning with Multiversion B-Tree (MVBT)

> Asymptotically optimal query time and space consumption

24 /29

Evaluation Baseline SAP

» Baseline: Currently strongest algorithms ORD-MVBT

» Labeling with ORDPATH

> No relabeling = efficient updates
» Efficient queries

» Versioning with Multiversion B-Tree (MVBT)
> Asymptotically optimal query time and space consumption
» |Improvements with DeltaNI
» Support of subtree relocation and deletion
» Branching histories
» Simple integer comparisons instead of bytewise comparisons

24 /29

Evaluation: Query Performance

Time for one million queries
9%

Execution Time (s)

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

Version

—o— DeltaNl| —»— ORD-MVBT

25 /29

Evaluation: Space Consumption SAP

Space consumption
7K
6.5+
6l
55+
51
4.5
4l
351
3 L
25}
2l
151
A
0.5
0

Total Size (GB)

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

Version

—o— DeltaNl —e— ORD-MVBT

26 /29

Evaluation: Update Performance SAP

Time for one million updates

100t

10°

Execution Time (s)

" WWWWNW/W@MW%WW/WWNWWM

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

Version

‘ o DeltaNI —a— ORD-MVBT ‘

27 /29

Conclusion SAP

» Core observation: All updates reducable to range swap in the
NI encoding

28 /29

Conclusion SAP

» Core observation: All updates reducable to range swap in the
NI encoding
» Double tree interval deltas make NI encoding dynamic
» O(c) space consumption
» O(log c) update complexity
» Even complex updates supported (subtree relocation)

28/29

Conclusion SAP

» Core observation: All updates reducable to range swap in the
NI encoding
» Double tree interval deltas make NI encoding dynamic
» O(c) space consumption
» O(log c) update complexity
» Even complex updates supported (subtree relocation)
» Versioning via exponential delta-packing scheme
» Yields reasonable space/time tradeoff

28/29

Questions SAP

Thank you for your attention!

Any questions?

29 /29

