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Enterprise-Resource-Planning (ERP) systems
use a lot of dynamic hierarchical datal

Examples:

» Human Resources (HR) hierarchy

> 1 million nodes
> Some subtree moves (around 10-15%)

> Asset hierarchies

» 10 — 100 million nodes
> A lot of subtree moves (50% or more)

» Problem: Current indexing approaches do
not support subtree moves!

» Challenge: Versioning required for
accountability
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Hierarchical Data SAP

» Hierarchical Relationship over tuples of a table

Name | Boss |Salary]...
Adam | NULL [80,000|...
Bob |Adam |55,000...
Celia | Adam |70,000|...
Dale | Celia |55,000|...
Eddy | Celia |45,000...
Felicia| Adam |60,000] ...
Gina |Felicia|75,000]...
Hana | Gina [45,000...

3/29



Hierarchical Data SAP

» Hierarchical Relationship over tuples of a table

Name | Boss |Salary]...
Adam | NULL [80,000|...
Bob |Adam |55,000...
Celia | Adam |70,000|...
Dale | Celia |55,000|...
Eddy | Celia |45,000...
Felicia| Adam |60,000] ...
Gina |Felicia|75,000]...
Hana | Gina [45,000...

» Queries over structural properties, e.g., subtree
SELECT name, salary FROM /Employee[name=‘‘Celia’’]//*

3/29



Hierarchical Data SAP

» Hierarchical Relationship over tuples of a table

Name | Boss |Salary]...
Adam | NULL [80,000|...
Bob |Adam |55,000...
Celia | Adam |70,000|...
Dale | Celia |55,000|...
Eddy | Celia |45,000...
Felicia| Adam |60,000] ...
Gina |Felicia|75,000]...
Hana | Gina [45,000...

» Queries over structural properties, e.g., subtree
SELECT name, salary FROM /Employee[name=‘‘Celia’’]//*

» Scope: Index the hierarchy structure

3/29



Hierarchical Data SAP

» Hierarchical Relationship over tuples of a table

Name |Salary | ...
Adam [80,000|...
Bob [55,000/...
. Celia |70,000]...
Gina

Dale |55,000]...
i Eddy [45,000]...
(Hana | Felicia |60,000] ...
Gina |75,000|...
Hana |45,000|...

Felicia

» Queries over structural properties, e.g., subtree
SELECT name, salary FROM /Employee[name=‘‘Celia’’]//*

» Scope: Index the hierarchy structure

3/29



Versioned Hierarchical Data SAP

» Multiple versions of a hierarchy (1000+)

» Updates at latest version create new version
» Versioning of the table out of scope
» Possibly branching history

BJ(C)(F (6] BJ(C)(F](6] (B](C](F](G]

O (E) ® ([O(E (H [DJ[E
|
Vi > \/, > V5

» Versioned Queries
SELECT name, salary FROM /Employee[name=‘‘Celia’’]//* IN V>
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Goals sAP TUT

Goal: An efficient index for versioned hierarchies to speed up ERP
systems (and other hierarchical databases).

Desired properties:
» Efficient queries in all versions

> Low space consumption

» Large hierarchies
» Long histories
» Main-memory database

v

Efficient updates in latest version
» Insert, delete, and subtree move

v

Allow branching histories
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Indexing Hierarchies: Labeling Schemes

» Widely used hierarchy indexing: Labeling Schemes
Each node carries fixed set of labels

» Queries can be answered by only considering labels

» Widely applied in, e.g., XPath processing

» Examples: pre/post, ORDPATH, nested intervals (NI)

v

'S

/Employee [name=*‘Celia’’]//* = “All nodes in [3,8]"
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» Challenge 1: Efficient Query Support

» NI can be used to answer queries efficiently v
» Challenge 2: Efficient Update Support

» NI not dynamic (O(n) bounds change per update) @
» Challenge 3: Space Consumption of Histories

» O(n) bounds change per update need to be stored ®

-~

O(n) bound changes
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Swaps

SAP

m

» Observation: Each update can be represented by a swap of
two ranges of bounds

» Delete Subtree: Before
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Swaps sap T

» Observation: Each update can be represented by a swap of
two ranges of bounds
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Swaps sap T

» Observation: Each update can be represented by a swap of
two ranges of bounds

» Move Subtree: Before
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Swaps sap T

» Observation: Each update can be represented by a swap of
two ranges of bounds
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Storing Swaps sap T

» Observation: Each update can be represented by a swap of
two ranges of bounds

» |dea: Simply store that swap instead of the changed bounds
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Storing Swaps sap T

» Observation: Each update can be represented by a swap of
two ranges of bounds

» |dea: Simply store that swap instead of the changed bounds

After R1: 0 R3Z -4 Rz: +2 R4:
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Representing Swaps sap T

» Representation: Two balanced (binary) search trees (“double
tree”)

» Node content: Lower border and link to other tree

Source Tree
Target Tree
Source Space
Target Space
' I I I I ! I I I I J I
0 5 10
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NI Deltas SAP

» The double tree represents a function § : N — N
» 0 maps interval bounds from source space to target space

» Let b be a bound in source space, then §(b) is equivalent
bound in target space

» Given an NI encoding in version V; and a delta oV, from
version V; to another version V;, we can answer queries in V;

Source Tree

Target Tree
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Computing 0 on the Double Tree SAP

» Computing d§(b) is easy:
» Find greatest node in source tree less than b
= Usual search-tree lookup

» Apply translation of that node

6(11) =T7:

Source Tree

Target Tree

» Computation of §1(b) similar
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Double tree feasible? SAP

Does the double tree delta solve the problems?
» Challenge 1: Efficient Query Support

» NI can be used to answer queries efficiently v
» Calculating 0(b) (search tree lookup) is in O(logc) v
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Double tree feasible? SAP

Does the double tree delta solve the problems?

» Challenge 1: Efficient Query Support v
» Challenge 2: Space Consumption

» Storing all changed bounds: O(n) space ®
» Storing only range borders: O(c) space ©

Source Tree

Target Tree

n = number of nodes, ¢ = number of changes in delta
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Double tree feasible? SAP
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Double tree feasible? SAP

Does the double tree delta solve the problems?

» Challenge 1: Efficient Query Support v
» Challenge 2: Space Consumption v

?

» Challenge 3: Efficient Update Support

Source Tree

Target Tree

n = number of nodes, ¢ = number of changes in delta
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Updating Deltas SAP

» Until now, we only considered deltas with one change
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Updating Deltas

» Until now, we only considered deltas with one change

» How to build deltas with more changes?
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» Step 1: Insert range borders

20
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» Search tree insert: O(logc) v
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» Step 2: Swap borders in R> and Rs3
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Updating Deltas SAP

» Step 2: Swap borders in R, and R3
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» Naive: Delete and reinsert all changed borders: O(clogc) ®

» = Better approach required
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Efficient Border Swap

» Observation: Only target space changes
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Efficient Border Swap

» Observation: Only target space changes
» Steps: Adjust keys O(c) keys, swap O(c) nodes
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Efficient Node Rearrangement sap T

» How to swap O(c) nodes in a search tree in O(log c)?

o 2
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Efficient Node Rearrangement sap T

» How to swap O(c) nodes in a search tree in O(log c)?

pIitI

IJoin
» Split: Split a tree into two new balanced trees

» Join: Concatenate two trees to one balanced one

» Both operations run in O(logc) v
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Updating Keys Efficiently SAP

» Split and join can rearrange nodes efficiently
» But: Keys are not updated = search tree condition violated!

» Updating one by one would require O(c)
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Updating Keys Efficiently SAP

» Split and join can rearrange nodes efficiently
» But: Keys are not updated = search tree condition violated!

» Updating one by one would require O(c)
» Solution: Accumulation tree
= Node key: Sum of all keys on path to root

» Changing all keys in a subtree: O(1)
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The Swap Algorithm sap TUTI

» Using split/join and the accumulation tree, updating in
O(log c) is possible
» Target tree before update:

19/29



The Swap Algorithm sap TUTI

» Using split/join and the accumulation tree, updating in
O(log c) is possible
» Target tree with accumulation before update:

19/29



The Swap Algorithm sap TUTI

» Using split/join and the accumulation tree, updating in
O(log c) is possible
» Step 1: Split tree (O(log ¢))

19/29



The Swap Algorithm sap TUTI

» Using split/join and the accumulation tree, updating in
O(log c) is possible
» Step 1: Split tree (O(log ¢))

) )
@ @

19/29



The Swap Algorithm sap TUTI

» Using split/join and the accumulation tree, updating in
O(log c) is possible
> Rearrange trees (no-op)

) )
@ @

19/29



The Swap Algorithm sap TUTI

» Using split/join and the accumulation tree, updating in
O(log c) is possible
> Rearrange trees (no-op)

19/29



The Swap Algorithm sap TUTI

» Using split/join and the accumulation tree, updating in
O(log c) is possible
» Step 2: Translate keys (O(1))

+10 -3 +3 +10

E* G
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The Swap Algorithm sap TUTI

» Using split/join and the accumulation tree, updating in
O(log c) is possible
» Step 3: Join trees (O(log c))
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The Swap Algorithm sap TLTI

» Using split/join and the accumulation tree, updating in
O(log c) is possible

» Final result:
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Overview SAP

» What we have shown:
» Double tree delta efficiently represents the changes in a version

» Efficient Queries (NI Encoding)
> Efficient Updates (Swap Algorithm)
> Low Space Consumption (O(c))

» What is missing:
» How to represent whole version histories efficiently?
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Representing Version Histories

> Assume:
» Linear history of n versions Vg, ..., V,_1
» Constantly bounded number of changes ¢ per version
» What we need:
» V4 has a fully materialized NI encoding
» We need deltas that lead to each other version (transitively)
» E.g., do—3 and d3_,5 lead to Vi by applying d3_,5(d0—3(b))
» Which deltas to store in order to. ..
» minimize space consumption?
> minimize query runtime?
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Simple Schemes SAP

» Minimize space consumption: linear topology
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= O(n) space consumption v’
= O(n) query time ®

0 1 2 3 4 5 6 7 8
Base e SE S S S CE e S N I
2 3 4 5 6 7 8 9

1 1

ol‘p

22/29



Simple Schemes SAP

» Minimize space consumption: linear topology

= O(n) space consumption v’
= O(n) query time ®

0 1 2 3 4 5 6 7 8
Base R S CEE S R, JEEE JEEE s CEEE e N
2 3 4 5 6 7 8 9

1 1

ol‘D

» Minimize query time: star topology

22/29



Simple Schemes SAP

» Minimize space consumption: linear topology

= O(n) space consumption v’
= O(n) query time ®

0 1 2 3 4 5 6 7 8
Base R S CEE S R, JEEE JEEE s CEEE e N
2 3 4 5 6 7 8 9

1 1

ol‘D

» Minimize query time: star topology
= O(log n) query time v/

22/29



Simple Schemes SAP

» Minimize space consumption: linear topology

= O(n) space consumption v’
= O(n) query time ®
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» Minimize query time: star topology
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Exponential Scheme SAP

» We need a better space/time tradeoff!
» Solution: Exponential scheme

= O(nlog n) space consumption v/
= O(log n) best case query time v
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Exponential Scheme SAP

» We need a better space/time tradeoff!
» Solution: Exponential scheme

= O(nlog n) space consumption v/
= O(log n) best case query time v
= O(log® n) worst case query time
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Evaluation Baseline SAP

» Baseline: Currently strongest algorithms ORD-MVBT

» Labeling with ORDPATH

> No relabeling = efficient updates
» Efficient queries

» Versioning with Multiversion B-Tree (MVBT)
> Asymptotically optimal query time and space consumption
» |Improvements with DeltaNI
» Support of subtree relocation and deletion
» Branching histories
» Simple integer comparisons instead of bytewise comparisons
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Evaluation: Query Performance

Time for one million queries
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Evaluation: Space Consumption SAP

Space consumption
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Evaluation: Update Performance SAP

Time for one million updates
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Conclusion SAP

» Core observation: All updates reducable to range swap in the
NI encoding
» Double tree interval deltas make NI encoding dynamic
» O(c) space consumption
» O(log c) update complexity
» Even complex updates supported (subtree relocation)
» Versioning via exponential delta-packing scheme
» Yields reasonable space/time tradeoff
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Questions SAP

Thank you for your attention!

Any questions?
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