START - Selt-Tuning Adaptive Radix Tree

Philipp Fent*, Michael Jungmair*, Andreas Kipf, Thomas Neumann
Technische Universitit Miinchen
{fent,jungmair,kipf,neumann} @in.tum.de

Abstract—Index structures like the Adaptive Radix Tree (ART)
are a central part of in-memory database systems. However, we
found that radix nodes that index a single byte are not optimal
for read-heavy workloads. In this work, we introduce START, a
self-tuning variant of ART that uses nodes spanning multiple key-
bytes. To determine where to introduce these new node types,
we propose a cost model and an optimizer. These components
allow us to fine-tune an existing ART, reducing its overall height,
and improving performance. As a result, START performs on
average 85 % faster than a regular ART on a wide variety of
read-only workloads and 45 % faster for read-mostly workloads.

I. INTRODUCTION

One of the go-to index structures for main-memory database
systems is the Adaptive Radix Tree (ART) [13]. Several aspects
make ART very favorable: It is almost as efficient to query as a
hash table [1], while still storing entries in-order, which allows
supporting range queries. Furthermore, it supports efficient
inserts [13], which makes it overall one of the best index
structures. Several fully-fledged DBMSs, including HyPer [9]
and DuckDB [15], use ART in practice.

More recent research explored using machine learning to
predict the location of a sought-after data item efficiently [12].
This approach showed great success in reducing the size
overhead of the index while also significantly speeding up
lookup times. With their more shallow structures, they often
outperform ART. E.g., for data that follows a normal distribu-
tion, a machine learning approach [12] can have 2.5 x higher
throughput. However, learned indexes come at the cost of
robustness, where inserts or updates usually require retraining
parts of the index. The efficient and robust handling of changing
data is still under intensive research [7].

Especially for read-only or read-mostly benchmarks, learned
indexes take the performance crown off ART [10]. We found
that this is partly caused by the hierarchical structure of nodes
in an ART. For the goal of accessing data in the leaf nodes,
the tree structure requires data-dependent loads with pointer
chasing, proportional to the height of the tree. Piecewise linear
functions predict the data position reasonably good, such that
accessing data may only require a single cache miss.

In this work, we introduce Self-Tuning ART (START), an
ART-variant that features read-optimized multilevel nodes. With
these new node types, START is efficient to query while still
supporting fast modifications. When too many updates occur in
multilevel nodes, it falls back to regular ART nodes. To simplify
reasoning in this paper, we assume that we tune the tree in

*Equal contribution

S,

introduce
multilevel nodes

= cost
model

optimizer

ART START

Fig. 1. Self-tuning ART results in a shallow and more efficient tree

offline mode, but the concept can also be applied online. To
introduce multilevel nodes, we take an existing ART, determine
the most suitable subtrees, and transform those. Figure 1 shows
this analysis and transformation process.

Our self-tuning approach deduces its configuration from first
principles: We start by collecting ART metrics (i.e., the time
to traverse a node) in an isolated experiment on the target
machine. These measurements build the foundation of a cost
model of tree lookups. Based on this model, we determine sets
of (combined) nodes where the cost for a lookup in this subtree
would be smaller with multilevel nodes: Cstarr < CAarT-
We compute the optimal subtrees in O(n) using a dynamic
programming algorithm that maintains the optimal subtrees for
each node.

This approach makes no assumptions about workloads or
underlying hardware. In preliminary experiments, we noticed
that some node optimizations are very hardware-specific and
might not be equally beneficial on different platforms. Instead,
START relies on measurements directly on the target machine
(cf. Section V), which always tunes START for the specific
hardware. Besides, using a custom, workload-specific cost
function C(n), it could be tuned further to adapt to a particular
workload.

Our contributions include:

1) Two ART node designs that accelerate data access by
reducing the tree height. One design proposes a novel
and compact multilevel ART node based on a technique
called rewiring (Section III).

2) A model for reasoning about the costs to traverse an ART
(Section IV-A).

3) An algorithm that, based on the cost model, optimally
places multilevel nodes in an existing tree (Section [V-B).

Node4 Nodel6
keys 4 children keys 16 children
l°|‘|2|3"1|¢|$|1l l°|‘|21“'l$|$|$l"‘@
VANIVANRVANIVAN VANIVANIVAN A
Node48 Node256
index 48 children 256 children

lOI 1IZI 31~~L5Jl L [L [L | - [:%:] l L [L [L [L [L [L | - [:%:]
A A A VANNEVANIVANRVANIVANRVANRVAN A
Fig. 2. Regular ART nodes that each index a single byte

II. BACKGROUND: ADAPTIVE RADIX TREE

ART is a radix tree with adaptive nodes that scale with
the density of values populating the key space. As shown
in Figure 2, an ART can have four different node types that
fall into three structural classes. Node4 and Nodel6 use a key
array where the key position corresponds to the correct child
pointer. A Node48 instead stores 256 single-byte child indexes,
to which the radix key byte serves as an index. This child
index then points to the corresponding child pointer. Node256
follows the regular radix tree design of storing child pointers
in a flat array.

To optimize for sparsely populated regions, ART uses path
compression. It allows for a significant reduction in tree height
and space consumption by removing all inner nodes that only
have a single child. Path compression especially helps with
string keys, which would otherwise produce deep trees, but
also applies to other key types. E.g., dense surrogate integer
keys, which auto-increment for each element, might use 8 Byte
storage, but in practice, the leading 3 Byte are O for up to a
trillion entries.

In this paper, we argue that this static single-byte radix
can be improved. In several workloads, an ART is higher than
necessary, which causes many data-dependent random accesses.
However, for practical considerations, it still makes sense to
use a byte-wise radix, since many standard keys naturally
follow byte boundaries. In the following, we introduce new
ART nodes that span multiple key-bytes and levels.

III. MULTILEVEL NODES

In contrast to regular ART nodes, multilevel nodes allow
access with multiple key-bytes. Since this necessarily makes
the nodes span more entries than traditional ART nodes, this
is most beneficial for read-heavy workloads. By introducing
larger and more complex nodes, START reduces the height
of the tree and trades off insert for lookup performance. Still,
compared to learned indexes, START can be efficiently updated
without retraining learned models.

Without formal proof, we argue that the multilevel nodes that
we introduce do not change the worst-case space consumption
of 52 Bytes per key-byte. The intuition is that we can extend
the original ART proof [13] by keeping the space consumption
s(n) of a multilevel node within the combined budgets b(z)
of all child nodes c¢(n):

s(n) < <ercm b(x)) — 52

In other words, we can guarantee the worst-case space
consumption by keeping multilevel nodes small enough. That
is, we keep the size of START’s multilevel nodes within the
budget of its direct children.

A. Rewired Nodes

Naive multilevel nodes, similar to Node256, could use flat
arrays for 2-level and 3-level nodes, holding 2562 = 64 K and
2562 = 16 M entries. Indexing into such nodes would be similar
to Node256 by interpreting 2, respectively 3 Bytes as an index
into an array of child pointers. However, this implementation
is too inflexible and space inefficient for anything other than
very dense regions in the key space.

Instead, we propose two new multilevel node types that
make use of rewired memory [16] to obtain a more compact
representation for sparser areas. Rewiring decouples the logi-
cally indexable virtual address space from physical pages that
consume memory.

We follow the implementation of rewiring presented in [16]:
First, we create a main-memory file backed by physical pages
using the Linux system call memfd_create. Then, we map
this file page-wise to virtual memory using multiple mmap
calls. This procedure is depicted in Figure 3: A total of four
virtual pages are mapped to the created main-memory file. The
pages of the main-memory file are then backed by physical
pages on demand.

virtual . " "

pages a b b < ‘
memory s
physical - ' o ‘

pages a b

Fig. 3. Implementation details of rewiring

In the example, the first two virtual pages (blue and red) are
mapped to the corresponding two pages of the main-memory
file. Using a second mmap call, the green virtual page is also
mapped to the second file page. Thus, both the red and green
virtual pages are mapped to the same physical page with content
’b’. The white virtual page is mapped to the file, but is not
backed by physical memory since it has not been accessed.

We use rewiring as shown in Figure 4: multiple compatible
and sparsely populated virtual pages can share one physical
page. Additionally, empty pages do not consume any physical
memory.

In the example, we set up the first virtual page as regular
memory with a direct mapping to physical memory. In contrast,
the following two virtual pages share one underlying physical
page. As a result, the memory contents of these pages are now
from the same physical page and need another distinguishing

access(19)

virtual | | |
pages

physical
pages

Y

Fig. 4. Implementation of page-based rewired nodes

factor. We use pointer-tagging (denoted in color) to detect
empty slots that are used by another virtual page. E.g., on
page 2, the fourth entry is occupied by an element of page 3,
which we indicate by different colored hatching and fill. Thus,
when accessing an entry, we check that the tag (solid color)
matches the page number (hatching). Empty nodes are left
mapped to the zero page “@”, not consuming any memory
until the first write.

We observed the effectiveness of this rewiring on a real-
world dataset (osm_cellids, cf. Section VI). On average,
rewiring a Node16M (2562 child pointers on 21° virtual pages)
already pays off for less than 200k entries (a fill rate of about
1 %). Such a node only consumes 22.5 Bytes per entry. As a
result, the space overhead is comparable to that of a Node256,
which needs a fill rate of at least 19 %.

However, page rewiring also has some limitations. Since
we set up pages individually, instead of amortized through a
memory allocator, we need to execute many costly mmap calls,
which again cause expensive page faults. Furthermore, page
sharing only works for “well-behaved” workloads, that have
few collisions on child pointers. Inserts may even cause new
collisions, which we handle with explicit unsharing operations
during insertion.

B. Multilevel Node4

Another observation that we made is that path compression
already stops working when there are two keys in the path.
Multiple keys lead to an excessive number of nodes in this
path, which can degrade performance due to chains of Node4.
Our idea is to use the 12 unused Bytes of a regular Node4
(with respect to its representing cache line) to add multilevel
support. The resulting multilevel Node4 can store up to four
keys with up to four bytes each while not exceeding the size
of a cache line (64 Bytes).

up to 4B keys 4 children
[on]nnBEES]| L [L [] L |
VANIVANIVANIVAN

Fig. 5. Multilevel Node4 can store multiple key bytes in a single cache line

As depicted in Figure 5, we keep the layout of the regular
Node4 type. Following the node header, we still store up to
four keys that now can have a size of up to four bytes. The
only difference is that now key parts have a size of up to four

bytes, and the Node can, therefore, span over up to four radix
levels.

IV. SELF TUNING

A key question is where and when to use multilevel nodes
in an ART. In regular operation, we have only node-local
information without the full context of the surrounding. It would
be too expensive to collect that information during inserts, and
storing it would significantly increase memory usage. Instead,
we introduce a self-tuning phase that computes the context
once for the whole tree and optimally places multilevel nodes.
Similar to retraining a learned index, the cost of this phase can
be amortized over time. E.g. it only runs when more than 10 %
of the data was changed, or it runs as part of regular index
maintenance (e.g., during VACUUM jobs).

Even with global information, it is still not obvious where
to optimally place multilevel nodes. While the replacement
of a subtree with a multilevel node might be beneficial, it
might prohibit another more optimal configuration. To solve
this problem, we first introduce a cost model. Then, we present
a dynamic programming algorithm that uses the cost model to
minimize the overall lookup costs.

A. Cost Model

To obtain the cost for a lookup in a node, we measure the
cost C'y,(n) to traverse a node n in an isolated experiment. As
baseline C', (&), we take the time to traverse two consecutive
Node4. Then, we measure the time C7(n) to traverse two
Node4 with the node n in between these two nodes, which gives
Cr(n) = C(n) — CL(@). To get stable results, we take the
median of multiple runs, separated by an LEFENCE instruction as
a speculation barrier. We found that a less involved experimental
setup does not model the costs of inner nodes as well, which
is due to speculative execution and caching effects.

Another factor for traversal costs is that, in general, upper
levels of the tree are hotter than lower levels. Upper-level nodes
usually reside in cache, while lower layers are cold. Therefore,
we also measure the costs to traverse cold nodes by explicitly
clearing the cache for these nodes using CLFLUSH. Since
caches are transparent, costs can only be measured reliably for
nodes residing in L1 cache or in main memory: Cp, r1(n) and
Cr,ram(n).

In practice, we may want to extend this to consider more
cache levels. For given latencies of caches Lpi, Lo, ...
and main memory Lr4ps, We can derive approximate costs
C1,1i(n) for a lookup of a node n residing in the i-th cache
level:

Cr.ri(n)=Cr1(n)+ {OL’RAM(H)J (Lpi — L)
Lram
This formula extrapolates the costs for nodes in lower cache
levels (L2 and L3) based on known cache latencies and actual
node traversal costs measured for L1 cache. For this purpose,
we estimate the number of accessed cache lines by dividing the
lookup cost for uncached nodes by the main memory latency.

For the definition of the cost model, we first define two

auxiliary functions: #(n) denotes the number of keys stored

in the subtree underneath n. child* (n, d) is the set of all nodes
with a distance of exactly d child pointers from n. For example,
child™ (n, 1) is the set of all direct children of n. Based on
these functions, we define the cost C'(n) for a regular ART
node as the measured cost and the cost of accessing all keys
in the subtree underneath n:

C(n) = Cr(n) - #r(n) + erdﬁld*(n»l) @)

In this formula, the cost of a node n is the cost of traversing
it on its own weighted by the number of keys that can be
accessed through n. Plus, recursively, the cost of all nodes in
its subtree. If we instead use a multilevel node o spanning @
levels, we skip the next ¢ — 1 levels:

CReptaced(0,7) = C1(0) - #(0) + Zzechilcﬁ(o i))

We thus define the benefit b of replacing node n with the i-
multilevel node o as follows:

b(”) o, 7’) = C(’I’L) - CReplaced(O; 7')

We want to point out that this cost model is workload-agnostic,
i.e. it allows to minimize the average cost of visiting keys in
the tree. A workload-aware cost model could help START to
adapt to actual query patterns.

B. Optimization

A first approximation of optimal node placement would be a
greedy bottom-up replacement. Since lower-level nodes are less
likely to be cached, thus have higher average cost, replacing the
bottom-most nodes with multilevel nodes results in surprisingly
good results. However, this can produce suboptimal trees when
mid-level nodes would be even more beneficial.

Instead, we propose a dynamic programming algorithm [2]
that considers the cost of optimal lower-level nodes. We
first consider the optimal costs of its descendant subtrees to
determine if we want to introduce a new i-level node. We
denote the intermediate results next to individual nodes as
follows.

40
(295,215,135, ..]

The first line denotes the number of keys of the subtree
(the sum of the number of keys of the direct children). The
second line contains a list of combined optimal costs of its
descendants. We start with the costs for the Oth descendant,
i.e., the subtree itself, then the 1st descendants, i.e., the sum of
the costs of its children, and we continue with the remaining
descendants. Hence, there are at most as many entries as there
are levels under a certain node. We bound the length of this
array to the deepest multilevel node that we support.

Figure 6 shows an example calculation in a 2-level subtree.
We traverse the tree bottom-up, starting with the bottom-most
layer, reusing already computed aggregates. In the mid-level
layer, we do not consider replacements and just compute the
cost table of a single-level node with cost 2. To calculate the
optimal subtree costs, we fill the array backward. We start with
the sum of costs of the 1st descendants: 80 = 60 + 20. Then

25415

20
40-24215
1-level
215,135, ...
255’))
1034135

25
[130, 80, .. .]

20
60, ..]

Fig. 6. Example for minimizing subtree costs using dynamic programming

TABLE I
EXAMPLE COSTS FOR A LOOKUP IN A NODE

[ns/lookup] Levels Cached Header Cached Uncached
Node4 1 7 7 68
Nodel6 1 5 77 162
Node48 1 2 165 168
Node256 1 2 88 92
Rewired64K 2 6 87 162
Rewired16M 3 6 88 165
MultiNode4 2-4 6 6 68

we compute the cost of the subtree itself as the number of keys
times the cost plus the (already calculated) cost to traverse the
lower descendants: 130 = 25 - 2 4 80.

For the top-most layer, we consider a single-level node
with cost 2 (red) and alternatively a 2-level node with cost 3
(). The calculation for the single-level node is analogous,
but the 2-level computation combines the node’s cost with the
cost of its 2nd descendants instead (135 = 80 + 55). In the
example, the resulting optimal subtree uses the 2-level node,
outperforming the optimal subtrees of the lower levels.

Once the bottom-up calculation reaches the root, it serves as
a blueprint to introduce any new, optimally placed multilevel
nodes. Since upper-layer decisions during the first traversal
might cause optimal lower-level node creation to be skipped
(because they are incorporated into multilevel nodes), we
traverse the tree a second time to transform nodes in bulk. For
this transformation step, we attach multiple helper structures
to the tree. Afterward, we discard all helper structures, which
leaves zero overhead for regular operation.

V. NODE EVALUATION

In the following, we present cost model measurements, as
described in Section IV-A, for regular as well as multilevel
nodes. All measurements were executed on an Intel 19-7900X
CPU with 13.8 MByte last-level cache (LLC) on a single
NUMA node. As a point of reference, an LLC miss takes
about 60 ns.

32bit 64 bit
500 -
+
"2 400 4 + Indexes
o + & a v n
~
2 300 ¢ O E O ART
I~ % X X O O @) O START
5200 1 =] O O T} o @ o X + RS
8 X ¢ ﬁ X O
R 1004 O % O X RMI
=
o) Fol @ o X Q
() T T T T T T T T T T T T T T
po0¥S o (\o(‘“‘a\ (\O““‘A\ aens® %Q.A(se ook {0 “0\.“\2\\ (\0\.(\\3\ Ce\\‘\(\% Qens® ;93‘56 \\1\\"\/\%
of | \oF R ‘
Datasets

Fig. 7. Read-only performance of a regular ART and START in comparison to RMIs and RadixSplines

Table I shows a performance evaluation of the individual
nodes. For each node type, we measure lookup times for three
different cases:

Cached: the node resides completely in L1 cache

Header Cached: only the first cache line of the node is in L1
cache, while the rest of the node is flushed

Uncached: the whole node is not in the cache

We measure these three different setups since the header is
the most accessed part of the node. A traversal unconditionally
accesses the header to determine the node type, while it only
needs a single child pointer. For many node types, this causes
one additional cache miss, but especially for larger nodes, the
header is hot while the body is relatively cold.

The results of the first two nodes Node4 and Nodel6 are
as expected: A Node4 fits into one cache line, and therefore a
cold access causes one cache miss. Nodel6 needs to access
two cache lines, as both the key array and 16 child pointers do
not fit into 64 Byte. On the other hand, the results for Node48
and Node256 are surprising at first: We would expect a total of
three cache misses for Node48 and two for Node256. However,
our measurements show significantly less time spent during
lookup, corresponding to one fewer cache miss than expected.
This can be explained with correct branch prediction and out-of-
order execution of modern processors. The processor correctly
predicts the node type and speculatively executes its lookup
code, effectively hiding the second cache miss. Since both
Node48 and Node256 do not use the header for a lookup, we
can only observe the latencies of two and one cache miss(es),
respectively.

In our evaluation setup, naive multilevel nodes Node64K and
Nodel6M behave identical to Node256, again exploiting out-of-
order execution. Still, these implementations are impractical due
to their memory consumption and inflexibility. In situations
where at least the header is cached, our implementation of
rewired nodes shows nearly identical performance. Due to an
implementation detail of rewiring, we keep the header separate
from the rewired structure and store the start address of the
rewired child pointer array. This leads to two observable cache
misses if the node is cold, but due to the sheer size of the
nodes, their header is usually very hot and, therefore, cached.
Then only a single cache miss occurs for accessing the entry.

MultiNode4 is also a straight improvement to Node4, spanning
multiple levels with almost the same performance.

In summary, START’s multilevel nodes can offer significantly
lower lookup times. E.g., we can get much lower latency if
we replace three layers of Node256 by one Rewired16M node
where one single header can still fit into the cache:

88 +2-92 = 272 > 88Rewired16M

VI. OVERALL EVALUATION

In the last section, we noted that individual multilevel
nodes can be significantly faster than a combination of regular
nodes. However, the global impact of multilevel nodes is not
immediately apparent. In the following, we present an overall
evaluation, primarily based on SOSD [10], introduced initially
as a benchmark for learned indexes. SOSD provides a reliable
single-threaded benchmarking setup for a multitude of datasets
and comes with many (learned) index structure baselines.

Each SOSD dataset consists of 200 million unsigned integer
keys, either 32 bit or 64 bit. Some datasets are taken from real-
world data (books, fb, osm_cellids, wiki_ts), while
others are synthetic (e.g. according to a lognormal distribution).
In our evaluation, we compare with the following four index
structures:

ART: A regular adaptive radix tree

START: Our C++17 implementation of a self-tuning ART!
RS: RadixSpline (cf. Section VII-B)

RMI: Recursive Model Index (cf. Section VII-B)

A. Read Only

The SOSD benchmark performs read-only measurements.
It records the time needed to perform ten million lookup
operations on the index structure (with keys drawn from the
dataset). Figure 7 shows the resulting average lookup latency
of the four index structures for all 14 datasets.

We observe that START is consistently faster than ART,
over 85 % on average over all datasets. For the real-world fb
dataset, the lookup latency of START is even three times lower
than ART’s. Moreover, START is also competitive with the
two learned indexes. For all real-world datasets, START has

Thttps://github.com/jungmair/START

https://github.com/jungmair/START

32bit 64 bit
4001

_ 0 A & Indexes
g & X ® ART
2 300 A A %
2 & A X & X ® START
200 23 L £ X Q A SO
2 A g X £ Workload
210 % A A £ % P A\ Mixed
= X X & & X Read

() T T T T T T T T T T T T T T

‘000\4S §o \00(\0(‘“‘&\ (\oﬂ“‘a\ d@“‘ge sQ‘A(Se ‘000\'\'g (‘\000“0\.“\‘4\\ (\o(“\?:(\ Ce\‘\(\$ d@“‘ge sﬂ)’&(ge \\1\\4\/\S
5 © oS~
Datasets

Fig. 8. Mixed read and write workload performance of a regular and a self-tuning ART

better performance than both RadixSpline and RMI. Even for
synthetic datasets, START is competitive with learned indexes.

B. Read Mostly

In contrast to the learned indexes, START can not only be
used as a read-only index but also supports efficient updates.
We, therefore, additionally run a benchmark with writes. Since
our multilevel nodes are specially optimized for read-heavy
workloads, START’s insert operations are more expensive but
still feasible: For a write-only workload, START is, on average,
slower by 71 % than ART. To create a more realistic read-
mostly workload, we use a benchmark akin to YCSB-B [6].
In this benchmark, we split the workload into 95 % reads
and 5 % skewed writes. The skew follows the YCSB “Latest”
distribution, which is a Zipfian [8] distribution, where higher
keys are more likely to be chosen.

From the original dataset of 200 million keys, we sample
500 thousand keys according to this distribution and exclude
them during the build phase. Then, we measure the time to
insert these keys into the index and subsequently perform 9.5
million lookups. Since inserts might cause the multilevel nodes
to degrade, we consider this the worst case for START.

Figure 8 shows results for ART and START in this mixed
workload compared to read-only. Since the learned indexes
do not support inserts, we exclude them from this experiment.
As expected, performance degrades with concurrent insert
operations. Still, START is over 45 % faster than a regular
ART and is even better in mixed operation than an ART in the
read-only workload.

C. Memory Consumption

It is important to note that while START’S memory con-
sumption is guaranteed to stay in the same theoretic bounds
than ART, we do not optimize for space consumption but
for lookup time. Still, on average over all datasets, START
consumes a similar amount of memory compared to ART. Yet,
memory consumption depends on the dataset: For e.g., the 64-
bit books dataset, START requires 8.3 GB of RAM instead
of 5.4 GB for ART. On the contrary, for the 64-bit normal
dataset START uses only half of the memory allocated by ART:
2.1 GB are used compared to 4.7 GB allocated by ART. The

effectiveness of shared physical pages varies depending on the
dataset which explains the differences in memory consumption.

VII. RELATED WORK

Index structures are well researched, with a multitude of
different approaches to quickly find the values for a given key.
We present related work that broadly falls in the two categories
of traditional and learned index structures.

A. Traditional index structures

The Adaptive Radix Tree has been thoroughly analyzed,
compared with different data structures, and received proposals
to improve it [1], [13], [18]. Wong et al. [17] analyze the per-
formance of ART regarding the Translation Lookaside Buffer
(TLB). They find that a regular ART can have performance
problems caused by TLB misses and propose a workload-
conscious reorganization of nodes onto “hot” pages. This
reorganization step to reallocate nodes and introduce huge
pages is similar to our analysis step but does not introduce
different node types.

The KISS-Tree [11] is an advancement of the Generalized
Prefix Tree [5] and is a very efficient radix tree with only three
levels. It stores 32 bit keys using an open addressing scheme
for the first 16 bits, relying on virtual memory to save space.
Similar to Section III-A, completely unused ranges in the key
space are only mapped to physical memory on-demand and do
not use memory until used. In contrast to our rewired nodes,
where pages can be shared, even a single entry in the range
still uses a whole 4 KByte page of memory.

The Height Optimized Trie [4] uses a dynamic number of bits
for the fanout of each level. Especially for sparsely distributed
and string-like keys, this can reduce the tree height, reduce
memory consumption, and increase throughput performance. In
comparison to ART and our work, their finer and more granular
bit-level adaptive node sizes allow an even better adaption to
sparse key distributions. However, HOT has a lower maximum
fanout than ART (32 instead of 256). Thus, HOT does not
adapt to relatively dense areas. In contrast, START increases
ARTs maximum fanout to 16M.

B. Learned indexes

The category of learned indexes introduces machine learning
models as a component of index structures. Kraska et al. [12]

describe recursive-model indexes (RMI) that use staged models
to predict the position of the data in a sorted data array.
RMlIs approximate the underlying CDF of the keys and
use that model to predict the position of a key, which is
followed by a local search. They show that these structures
feature significantly faster lookups than traditional indexes.
Nevertheless, several critical aspects for robust real-world
usage like updates, concurrency, or recovery are not yet well
understood.

Another approach is RadixSpline, which has a similar idea
to RMIs by fitting an approximate function to the CDF [10],
[14]. In contrast to RMIs that are built top-down, a RadixSpline
is built bottom-up. A RadixSpline fits a linear spline to the
data and uses a radix lookup table to locate the corresponding
spline segment.

To solve the question of dynamic updates, Ding et al. [7]
propose ALEX as an extension to RMIs that keep the
underlying data in efficiently updatable arrays [3]. They propose
to make learned indexes practical by using adaptive RMIs
where nodes can be split on inserts. Surprisingly, the updatable
arrays can also improve the lookup performance since the
empty space used for efficient updates can help to keep records
close to their predicted position.

VIII. CONCLUSION

In this work, we have shown that multilevel nodes can

significantly improve the performance of ART. As we have
shown, it is possible to introduce a node-by-node cost model
that we successfully use for optimal node placement in START.
For read-heavy workloads, we bring START close to the
performance of learned indexes while retaining the robustness
of ART.
Acknowledgments: This project received funding by the
European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant
agreement No 725286). o -

[1]

[2]
[3]

[4]

[5]

[6]
[7]

[8]
[9]

[10]

[11]
[12]
[13]
[14]
[15]
[16]
(17]

[18]

REFERENCES

V. Alvarez, S. Richter, X. Chen, and J. Dittrich. A comparison of adaptive
radix trees and hash tables. In ICDE, 2015.

R. Bellman. On the theory of dynamic programming. PNAS, 1952.

M. A. Bender and H. Hu. An adaptive packed-memory array. In PoDS,
2006.

R. Binna, E. Zangerle, M. Pichl, G. Specht, and V. Leis. HOT: A height
optimized trie index for main-memory database systems. In SIGMOD,
2018.

M. Bohm, B. Schlegel, P. B. Volk, U. Fischer, D. Habich, and W. Lehner.
Efficient in-memory indexing with generalized prefix trees. In BTW,
2011.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with YCSB. In SoCC, 2010.

J. Ding, U. F. Minhas, H. Zhang, Y. Li, C. Wang, B. Chandramouli,
J. Gehrke, D. Kossmann, and D. B. Lomet. ALEX: an updatable adaptive
learned index. CoRR, abs/1905.08898, 2019.

J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger.
Quickly generating billion-record synthetic databases. In SIGMOD, 1994.
A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP main
memory database system based on virtual memory snapshots. In /CDE,
2011.

A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska,
and T. Neumann. SOSD: A benchmark for learned indexes. CoRR,
abs/1911.13014, 2019.

T. Kissinger, B. Schlegel, D. Habich, and W. Lehner. KISS-Tree: smart
latch-free in-memory indexing on modern architectures. In DaMoN, 2012.
T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case
for learned index structures. In SIGMOD, 2018.

V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: ARTful
indexing for main-memory databases. In ICDE, 2013.

T. Neumann and S. Michel. Smooth interpolating histograms with error
guarantees. In BNCOD, 2008.

M. Raasveldt and H. Miihleisen. DuckDB: an embeddable analytical
database. In SIGMOD, 2019.

F. M. Schuhknecht, J. Dittrich, and A. Sharma. RUMA has it: Rewired
user-space memory access is possible! PVLDB, 2016.

P. Wong, Z. Feng, W. Xu, E. Lo, and B. Kao. TLB misses: The missing
issue of adaptive radix tree? In DaMoN, 2015.

H. Zhang, D. G. Andersen, A. Pavlo, M. Kaminsky, L. Ma, and R. Shen.
Reducing the storage overhead of main-memory OLTP databases with
hybrid indexes. In SIGMOD, 2016.

