
A Tailored Regression for Learned Indexes:
Logarithmic Error Regression

Martin Eppert
eppert@in.tum.de

Technische Universität München

Philipp Fent
fent@in.tum.de

Technische Universität München

Thomas Neumann
neumann@in.tum.de

Technische Universität München

ABSTRACT
Although linear regressions are essential for learned index struc-
tures, most implementations use Simple Linear Regression, which
optimizes the squared error. Since learned indexes use exponential
search, regressions that optimize the logarithmic error are much
better tailored for the use-case. By using this fitting optimization
target, we can significantly improve learned index’s lookup perfor-
mance with no architectural changes.

While the log-error is harder to optimize, our novel algorithms
and optimization heuristics can bring a practical performance im-
provement of the lookup latency. Even in cases where fast build
times are paramount, log-error regressions still provide a robust
fallback for degenerated leaf models. The resulting regressions are
much better suited for learned indexes, and speed up lookups on
data sets with outliers by over a factor of 2.
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1 INTRODUCTION
Learned indexes are based around the idea of fitting the data distri-
bution function to locate keys. Ideally, one would find the exactly
matching function, which allows precisely calculating the position
in the underlying data store. However, exactly matching functions
are memory and compute intensive, which makes them unsuitable
as an index. Instead, we trade precision for speed with an inexact
function which gives an approximate position and use a refining
search to find the data. The most popular function, used by many
learned indexes [2, 4, 10, 11], is a linear model that is trained with
Simple Linear Regression.

This standard technique in current learned indexes uses linear
models that minimize the squared error. The popularity of the
squared error stems primarily from widely known analytical so-
lutions to minimizing it, which makes it simple to calculate, even
tough its nominal value only has as weak connection to the opti-
mization goal [5, 15]. In the case of learned indexes, we use exponen-
tial and binary search to find the exact data position. Consequently,
when we intend to minimize the runtime, we need to consider the
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Figure 1: Comparison of logarithmic and squared error re-
gressions on normal distributed data. Minimizing the log
instead of the squared error allows ~15% lower lookup la-
tency.

logarithmic error: log2 (n). Since the current approaches optimize a
different error, that does not directly capture the application, the
resulting models have a brittle impedance mismatch between the
quadratic model and the logarithmic runtime.

In our paper, we investigate the impact of this disconnect in the
conventional metric and propose to use a logarithmic error regres-
sion instead. Figure 1 shows an experiment on normal distributed
data to determine the correlation between lookup latency and the
type of error. In this experiment, the lookup latency clearly follows
the log-error, but the mean squared error does not correlate at all.
Thus, we argue that the current practice optimizes a sub optimal
metric, which results in brittle models that are susceptible to out-
liers. Least squares will worsen the model by accepting many small
errors to better fit singular outliers. For example, consider one point
with error 64, which is already a huge squared error, but its log2
error is easily overcome by a good fit for the remaining data.

When we study the behavior of the last-level refinement algo-
rithms further, this disconnect becomes even more visible. Figure 2
shows the runtime of linear and exponential search, which most
indexes use [9, 17, 21], with an increasing amount of prediction
error. Unsurprisingly, we can observe that exponential search is
much more robust to big errors, and is faster than linear search for
errors exceeding five. In contrast, the squared error grows rapidly
and quickly loses any connection even to the linear search.

This aspect of least squares regression is the reason for its sus-
ceptibility to outliers. Already adding a single point to the data set
can significantly influence the outcome of the regression, which
makes adversarial attacks trivial. Even without bad intentions, least
squares regression is often sub optimal, especially with skewed
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Figure 2: Refinement time to find an element, depending on
the prediction error.The squared error diverges quickly from
exponential search time.

data. When we instead optimize the logarithmic error, we get con-
sistently better regressions, which are robust to outliers without
filtering them out.

2 MINIMIZING THE LOGARITHMIC ERROR
Since the logarithmic error looks like the obvious optimization
target, why do all existing implementations minimize the squared
error instead? The main problem of the log-error is its non-convex
loss function, thus optimizing it is computationally expensive. We
define the loss of the continuous log-error function formally as:

!log (y, ŷ) B
#∑
8=0

log2 (1 + |~8 − ~̂8 |)

Respectively with a discrete error:

!dlog (y, ŷ) B
#∑
8=0

dlog(1 + |~8 − ~̂8 |)e

A traditional approach to optimize such problems would be a
gradient descent that minimizes the loss function, which we can
calculate using the derivative of our loss function:

m!log (y, ŷ)
mŷ

=

#∑
8=0

1
1 + |~8 − ~̂8 |

· sign(~8 − ~̂8 )

However, since our problem space in not convex, a gradient descent
does not necessarily converge to the global optimum. In Figure 3,
we illustrate this problem with the loss landscape of the logarithmic
errors. We can observe that the plotted loss function has more than
one minimum, and thus gradient descent will get stuck in one
such local minimum. In other words, the loss is the product of the
individual errors, which cannot be optimized with regular methods.

!log (y, ŷ) B log2

(
#∏
8=0

(1 + |~8 − ~̂8 |)
)

Nevertheless, the error landscape contains an additional insight:
All local minima coincide with data points. This means that we can
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Figure 3: Cross section of the linear regression loss landscape
over the data set {2, 5, 7, 16, 18}. We fix the first parameter
and consider all “horizontal” regressions y = 0 x + b.

vastly reduce the search space to minimize the logarithmic error,
since we only need to consider linear regressions through two data
points. In the following, we make use of this property to efficiently
create logarithmic error regressions. The proof for this property can
be lifted form the proof of the same property of the least absolute
deviation (LAD) regression [16].

2.1 Optimal Solutions
Naïve Algorithm Following the insight that a regression crossing
a point is a local minimum, we sketch a first naïve algorithm that
brute-forces the optimal logarithmic regression: For a set of points
- , we test all - ×- combinations that define a line, and choose the
regression with the smallest log-error. This method is well-known
to minimize the least absolute deviation error [16].

For the asymptotic runtime of this algorithm, we need to consider
the O(=2) combinations of candidate points. For each of the can-
didate regressions, we check the logarithmic error over the whole
data set, which yields a total complexity of O(=3). For a practical
application in an index structure, which have linear subsections of
hundreds or thousands of points, this runtime is rather infeasible.
Still, this is a significant improvement compared to NP-hard general
optimization.
Fast Discrete Logarithmic Error Regression As an improve-
ment over the naïve algorithm, we can exploit the fact that we
are only interested in the discrete logarithmic error. The phenom-
enon we use here is that each point in the data can only produce
O(log(n)) distinct errors. Using this fact, we propose Algorithm 1
that efficiently enumerates the possible regressions in a circular
sweep around a pivot point and discards any regressions with
larger errors. Figure 4 visualizes this concept by pivoting regres-
sions around the point (6,4). As a result, we can substitute the inner
loop of the naïve algorithm by using a priority queue, which re-
duces a linear to a logarithmic factor, which improves the runtime
to O(=2 log(=) log(n)).

In practice, we round the values before we take the logarithm
similar to how we have to round values to index into an array. This
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is problematic for the algorithm since the error is zero for n ∈ [0, 1)
and thus minima are not single points anymore. In this case, we can
no longer assume that the optimal regression passes through two
data points. However, it is sufficient to use the discrete logarithm
without rounding since we are close to the true error.

Algorithm 1: Discrete log-error regression intersecting
the pivot ? .
Data:  := data, sorted
Result: 0,1 := optimal regression ~ = 0 ∗ G + 1 for the

discrete logarithmic error
fun 3!>6�AA>A (@, (0,1)) B dlog(1 + |@~ − b0 ∗ @G + 1c |)e
?@ B "8=%A8>A8C~&D4D4 , 4C>C0; B 0
for : ∈  do

42DAA = 3!>6�AA>A (:, (0, ?~))
4C>C0; += 42DAA
B;>?4 B min B;>?4 > 0 of a line passing through ? with
3!>6�AA>A (:, (B;>?4, 8=C4A24?C)) ≠ 42DAA
?@.8=B4AC (:4~ = B;>?4, E0;D4 = (G, 42DAA ))

end
?>C4=C80;, 4min B 4C>C0; ; // Potential is an upper

bound on the possible improvement in error
0min B 0, 1min B G8 .~ E0;83 B 5 0;B4

while<8=�>BC ≥ 2>BC − ?>C4=C80; ∨ ¬E0;83 do
B;>?4?A4E, (G, 42DAA ) B ?@.?>? ()
E0;83 B B;>?4?A4E ≠ ?@.C>? ()
B;>?4, 8=C4A24?C B line with min B;>?4 > B;>?4?A4E of a
line passing through ? with
3!>6�AA>A (:, (B;>?4, 8=C4A24?C)) ≠ 42DAA

update 4C>C0; and 42DAA accordingly
if 4C>C0; is decreasing then

?>C4=C80; −= 1
end
if E0;83 ∧ 4C>C0; < 4min then

4min B 4C>C0;
0min B B;>?4, 1min B 8=C4A24?C

end
?@.8=B4AC (:4~ = B;>?4, E0;D4 = (G, 42DAA ))

end
return (4min, 0min, 1min)

2.2 Approximate Solutions
Even though we already improve the runtime to find the optimal
solution, finding it for large data sets is still expensive. Ideally, we
need an algorithm with sub-quadratic runtime that still finds a
near-optimal solution. In the following, we propose two faster, but
approximate algorithms.
Two Point Method First, we propose a variant of the Two Point
Method [16] which minimizes the logarithmic error. The regular
Two Point Method minimizes the least absolute deviation by finding
the optimal regression intersecting a randomly chosen data point.
Since the optimal regression always intersects two points, we iterate
this procedure on the second point, which yields a better regression
with smaller or equal error. For least absolute deviation regressions,
this method converges to the optimal solution, since its loss function
is convex [12, 16, 18, 22].
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Figure 4: Discrete log-error regression. We start with a hori-
zontal line crossing the pivot, which we rotate until reaching
a global minimum. Each rotational step takes O(log(=)).

To adapt the Two Point Method to log-errors, we can reuse our
previous results to find optimal regressions intersecting a point.
For continuous log-errors, this unfortunately needs O(=2), but for
discrete errors, we can use our faster Algorithm 1. However, the loss-
function is still non-convex, which implies that Two Point Method
will not necessarily converge to the global optimum. Nevertheless,
in our tests this approach consistently converges to near-optimal
minima (cf. Table 1).
Tournament Evaluation With Algorithm 2 we devise an easy
to use approximation to the log error regression problem called
Tournament Evaluation, which uses a heuristic to determine the
best regression from a set of candidates. The algorithm first picks
O(=) random regression candidates, which then compete in a single-
elimination style tournament to determine the best logarithmic
error regression. The space of all regressions is severely limited
because the optimal regression must pass through a pair of data
points.

For each round, we pair two neighboring candidates and elimi-
nate the worse one. To accelerate the first rounds, we start with a
small subset of points, on which we evaluate the regressions, but
exponentially increase the number of points in later rounds. The
reasoning behind this is that we can quickly eliminate very bad
regressions and spend more time finding the best of the best. Thus,
we find a heuristically good regression in O(= log(=)).

Unfortunately, it is not possible to give guarantees on the quality
of the resulting linear regression. However, in our experiments
Tournament Evaluation performswell and consistently outperforms
the Simple Linear Regression. Table 1 shows a qualitative analysis
of the resulting regressions, which shows that the algorithms can
keep the error within 1.5 % of the optimum.
Refined Error Functions All in all, Tournament Evaluation pro-
vides an efficient way to find good log-error regressions. However,
using the pure log-error still has some limitations, e.g., at the bounds
of the indexed underlying data. Since the regression prediction
needs clamping to these bounds anyway, we can also incorporate
this in the error function. For Tournament Evaluation this is a trivial
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Algorithm 2: Tournament Evaluation to approximate the
optimal linear regression with log-error.
Data: - B data
Result: 0,1 B approximate linear regression minimizing

the logarithmic error with ~ = 0 ∗ G + 1
Function LogRegression(- , ℎ486ℎC):

// Generate the initial O(=) random candidate set
if height == 1 then

0,1 B 0 ∈ -,1 ∈ -, 0 ≠ 1, chosen randomly
return 0,1

end
// Recurse to find competitors for the current round
01, 11 B LogRegression(- , ℎ486ℎC − 1)
02, 12 B LogRegression(- , ℎ486ℎC − 1)
// Evaluate them on an increasingly bigger subset
41 B sampleError(- , 2ℎ486ℎC , 01, 11)
42 B sampleError(- , 2ℎ486ℎC , 02, 12)
if 41 < 42 then

return 01, 11
else

return 02, 12
end

Table 1: Qualitative analysis of the log-error fit. Each mea-
surement shows the discrete log-error error compared to the
optimum on a data set of 2000 keys. Evaluated methods: Sim-
ple Linear Regression (SLR), Least Absolute Deviation (LAD),
Two Point Method (2P), Tournament Evaluation (TE).

Method Facebook Wiki Normal Uniform Outlier

SLR1 7.99 % 7.34 % 28.32 % 4.66 % 185.39 %
LAD 2.78 % 4.13 % 7.55 % 1.49 % 3.14 %
2P 0.43 % 0.81 % 0.76 % 1.19 % 0.38 %
TE 0.55 % 0.60 % 0.76 % 0.93 % 0.81 %

change, which results in a slight performance advantage on small
arrays.

3 TRADITIONAL METHODS
As sketched in Section 1, most previously proposed learned indexes
use linear regressions that minimize the !2-norm, i.e., the mean
squared error (MSE). Some other methods are also used in learned
indexes, such as interpolation, which share most pitfalls with the
mean squared error regression [4, 10]. While we do not see a direct
connection of this error to the expected performance of exponential
search, optimizing the MSE can potentially bring the error close to
the convergence point of n = 0. In the following, we first discuss
the traditionally used algorithms for linear regression, before we
compare them to our proposed approaches in Section 5.
Simple Linear Regression When looking at the publicly avail-
able implementations of learned indexes, the most frequently used
implementation is Simple Linear Regression [2, 11]. Indeed, it is
quite elegant and fits the optimal MSE regression in O(=). Simple
1SLR produces the optimal MSE, which can differ dramatically from the log-error.

Linear Regression finds the optimal 0̂, 1̂ for data produced from a
process described by ~8 = 0G8 + 1 + n8 . 0̂, 1̂ can be computed by the
following equations, where Ḡ denotes the average value of G .

0̂ =

∑=
8=1 (G8 − Ḡ)(~8 − ~̄)∑=

8=1 (G8 − Ḡ)2
1̂ = ~̄ − (0̂Ḡ)

However, Simple Linear Regressions does not come without
problems: While it does find the optimal regression, this optimum
is susceptible towards outliers. Since the errors are squared, even a
small amount of data points can significantly disturb the optimal
regression.
Least Absolute Deviation Since the squared error amplifies the
errors, one obvious solution is to create a more robust regression
using a different norm. For example, one could instead optimize
the !1-norm, which is the least absolute deviation:

!!�� (y, ŷ) = Σ8 |~8 − ~̂8 |

Techniques optimizing it are also well-known, albeit already slower
and usually require iteration. The two most common methods to op-
timize the LAD error are: Iteratively re-weighted least squares [1],
and the Direct Descent method [22]. Still, the least absolute devia-
tion weights outliers much higher than their performance penalty
for exponential search.
Robust Regression In contrast, regressions over the logarithmic
error are by definition much more robust concerning outliers. Since
robust regressions are desirable for all kinds of applications, there
also exist textbook algorithms that can guarantee robustness. A
common robust regression method is the Theil-Sen estimator [20],
which is available in many statistics libraries. Its desirable property
is a guarantee of robustness, i.e., its breakdown point, which means
it can handle about 30 % disturbed points, without degrading.

However, as we will see in the evaluation, the Theil-Sen regres-
sion overall performs slightly worse than MSE in regular workloads.
Nevertheless, robustness is still advantageous to defend against
edge cases where a single outlier can degrade the performance by
over 2×. This problem was already highlighted in Kraska et al.’s
foundational paper on learned indexes [11], where they propose a
threshold fallback to regular B-Trees. This is often caused by a badly
fitting MSE model, and could be avoided with robust regression.

4 PERFORMANCE TUNING
Compared to Simple Linear Regression, log-error regressions take
more time to fit. Since indexes are used read-mostly, spending
additional time to get a better fit is usually a good trade off. Never-
theless, it is still valuable to efficiently build the regression, and we
identified two factors that benefit the log-regressions.
Error Evaluation An important primitive to calculate the log-
error is a fast calculation of the logarithmic error. Especially for the
discrete logarithm base two, this calculation can be very efficient.
On integer distances, we use dedicated bit scan instructions that
are present, e.g., in x86 and ARM instruction sets, and efficiently
calculate the discrete logarithm:

num_bit - clz(1 + abs(x1 - x2)) - 1
On floating-point distances, we can also directly use the IEEE
floating-point exponent. Both methods result in few executed in-
structions to calculate the error.
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Figure 5: Leaf Model Benchmark. Each box shows the lookup time of 1000 key subset linear regression constructed with: Simple
Linear Regression (SLR), Least Absolute Deviation (LAD), log-error (Log) and discrete log-error (DLog) Tournament Evaluation,
Two Point Method with discrete log-error (2P), andTheil Sen

Small Error Convergence Another improvement to the build
times is to run a tentative cheap regression, e.g., a Simple Linear
Regression. When this already results in tiny errors, i.e., 0 ≈ n ≈
n2 ≈ log2 (n), then any regression will converge to the same linear
function, and we can finish with the cheaply calculated regres-
sion. This effect is additionally amplified by the behavior of the
search functions with small errors that we could already observe
in Figure 2. When the error is small enough, e.g., ≤ 4, the search is
dominated by the cache-line granular memory access that loads all
searched elements simultaneously. Nevertheless, when the errors
are larger, logarithmic error regression is strictly better than a MSE
regression.

5 EVALUATION
In the following, we evaluate the effect of the discussed alternative
regressions on the performance of learned indexes. First we run
micro-benchmarks on isolated leaf models, which gives a clear view
into the affected component of learned indexes. Afterwards, we
integrate these methods in the open-source RMI [11] to measure
the effect on the whole system.

All benchmarks were executed with a single thread on an Intel
Xeon E5-2660v2 CPU and repeated 30 times tomeasure performance
with warm caches. The tested data sets are largely from the Search
on Sorted Data (SOSD) benchmark2. Our implementation of the
recursive model indexes is based on the reference implementation3,
with some additional data sets and log-regression: https://github.
com/umatin/LogarithmicErrorRegression

For our micro benchmarks, we segment the data set into leaf
models of linear regressions over 1000 keys each. Then, we create a
linear model for predictions using each of the presented methods:
Simple Linear Regression (SLR), Tournament Evaluation optimizing
the log-error (Log) and the discrete log-error (DLog), the Two Point
Method optimizing the log-error (2P), and Theil-Sen regression. Af-
ter using the model to get a starting position, we find the matching
key using exponential search.

In addition to the SOSD data sets, we also use a generated outlier
data set, which is intended to test the robustness of the regressions.

2https://github.com/learnedsystems/SOSD
3https://github.com/learnedsystems/RMI

Here, we generate a uniform random data distribution, and deliber-
ately introduce a single point that differ strongly from the linearity
assumption of the regressions. This single outlier is sufficient to
inflate the squared error, which causes bad SLRs. While this occurs
in few leaf models of regular data sets, it showcases the potential
improvements that are possible in the cases where it does.

For the micro benchmark, Figure 5 shows the resulting lookup
times in leaf models trained with different linear regressions, and
Table 2 breaks down the mean and median speedup over Simple
Linear Regression. Over all data sets, Simple Linear Regression
performs worst, with logarithmic error regression consistently im-
proving the performance by a few percent. Even in the case of
uniform random data, where even a Simple Linear Regression usu-
ally matches the data well, the leaves having outliers by chance
can still be improved by log-error regression. We see the most pro-
nounced speedup with the outlier distribution, where the robust
regressions perform at 2.2×.

In this benchmark, we measured three variants that optimize
the logarithmic error: Log, which optimized the continuous log-
error, DLog that optimizes the discrete version calculated with clz,
and 2P, which uses the Two Point Method. Overall, they perform
roughly equal and all three find good regressions. However, their
build times can differ quite dramatically.

Figure 6 shows the distribution of build times for each of the
methods on example leafs with 1000 keys. Unsurprisingly, Simple
Linear Regression has much shorter build times, and is over 50×
faster than the other methods. The robustTheil-Sen regression even
takes around 5ms to build a single leaf model, even with a reduced
subset of 10 k point combinations. Optimizing the logarithmic error
using 3 steps of Two Point Method is somewhat quicker, but is still
outperformed by the tournament evaluation variants. Especially
with the optimizations using the discrete logarithm, building the
leaf models works in under 0.1ms, which makes log-error feasible
in RMIs.
Impact on RMI The previous micro benchmarks have already
shown that the linear regression can have a significant impact on the
performance of individual leaf models. In the following, we look at
the complete RMI on workloads that use a linear regression on their
leaf models. For our experiments, we use the RMI configuration

https://github.com/umatin/LogarithmicErrorRegression
https://github.com/umatin/LogarithmicErrorRegression
https://github.com/learnedsystems/SOSD
https://github.com/learnedsystems/RMI
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Table 2: Leaf model speedups over Simple Linear Regression

Speedup

Method Data set Mean Median

LAD Facebook 1.5 % 2.0 %
Log 4.8 % 6.0 %
DLog 4.9 % 5.1 %
2P 4.5 % 6.7 %
TheilSen 1.1 % 1.0 %

LAD Wiki 2.2 % 1.7 %
Log 7.9 % 5.2 %
DLog 7.7 % 5.5 %
2P 6.2 % 4.5 %
TheilSen 3.4 % 0.9 %

LAD Normal 9.3 % 9.5 %
Log 13.5 % 13.0 %
DLog 13.2 % 12.8 %
2P 12.7 % 12.5 %
TheilSen 6.6 % 10.1 %

LAD Outlier 0.2 % 0.0 %
Log 119.7 % 117.1 %
DLog 118.7 % 116.4 %
2P 117.0 % 117.3 %
TheilSen 113.8 % 112.5 %

LAD Uniform 1.4 % 3.1 %
Log 2.2 % 3.9 %
DLog 2.0 % 3.4 %
2P 1.9 % 3.8 %
TheilSen 0.7 % 0.8 %

of the SOSD benchmark [9], which already gives state-of-the-art
performance on the evaluatedworkloads.The SOSDworkloads each
consist of 200 million data points, and we additionally generate
a same sized synthetic workload using a gaussian mixture model
with uniformly random distributed means. The gaussian mixture
data set is a distribution that illustrates a bad case for the Simple
Linear Regression. On the four workloads we present here, the first
layer differs for each workload, but the second layer is always a
linear regression.

Table 3 shows a comparison of Simple Linear Regression, which
the reference implementation uses, and our improved log-regression
that optimizes the discrete log-error with a Tournament Evalua-
tion, which consistently improves the RMI performance. While
the improvements of the leaf models of the Wiki data translate
quite well, the speedup on the Facebook data set is less pronounced.
While we expect a bit less speedup due to unrelated overhead in
the first layer, we would expect a speedup that is in the same order
of magnitude. In a preliminary investigation, we found that the
data set contains large numbers spanning the whole 64-bit number
space, which might be a factor that interferes with the precision
of our linear models. Overall, the log-error regression results in a
geomean speedup of 5.8 %.

Table 3: RMI performance with a second layer of 200k linear
regression leaf models.

Lookup [ns] Build [s]

Data set 1st Layer SLR Log Speedup SLR Log Slowdown

Facebook linear 245.7 244.1 0.7 % 23 65 2.8×
Wiki linear 172.1 160.6 7.2 % 24 67 2.8×
Osm cubic 399.4 383.4 4.2 % 27 122 4.5×
Gaussian
Mixture

linear 296.7 266.0 11.5 % 21 47 2.2×
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Figure 6: Build times for 1000 key leaf models. The build
times do not differ significantly on different data sets.

However, the lookup performance improvements come with an
increased training overhead. As Table 3 shows, the RMI built times
increase roughly by a factor of 2–3× when using our proposed Tour-
nament Evaluation. An outlier is the OSM data set which needs
4.5× the build time, which is caused by a relatively bad fitting first
layer with low information gain. This causes comparatively large
leaf models, which take more time to construct proportionally due
to the O(= log(=)) build time of the Tournament Evaluation. We
argue that RMIs are already expensive to construct, and their pri-
mary use-case is read-heavy workloads, where our improvements
are well worth the extra training time. Nevertheless, we are con-
vinced that we can improve the training times by using log-error
regressions only on leaf nodes that benefit significantly.

6 RELATED INDEX STRUCTURES
Even though learned index structures are in the spotlight of current
database research [3, 6–8, 14, 19], we are not aware of any indexes
that optimize the logarithmic error. Since our improvements are
mainly targeted at the used linear regressions, we argue that they
should translate to other related indexes besides the RMI.

Similar to the RMI, ALEX, the updatable adaptive learned in-
dex [2] uses Simple Linear Regression to build its leaf models. How-
ever, preliminary experiments on their open-source implementa-
tion resulted in no significant differences. The reason behind these
results is their use of model-based insertions, which can already
eliminate most of the linear regression error. ALEX uses gapped
arrays to distribute extra space for insertions between elements,
which also allows them to insert almost all already existing keys
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at their correctly predicted location. Then, the resulting model has
zero error, where any previous improvements of the regression
have little impact.

The single-pass build approach RadixSpline [10], in contrast, does
not use linear regression. Instead, they build a spline interpolation
with a maximum error bound, essentially bounding the !∞-norm.
While this is an effective technique to find spline points, we argue
that it does not optimize the right error. However, their focus on fast
construction makes more expensive error calculations not viable.

In contrast, the Piecewise Geometric Model (PGM) index [21]
uses linear models, and thus exponential search, at every level of the
search tree. When using Simple Linear Regression on each level of
this tree, the effects of poorly fitting models amplify. However, we
did not investigate this further, since their construction algorithm
for inner models differs significantly from our approach.

Ryan et al. [13] suggest creating linear models that factor in
cache line access costs. Adapting the presented Two Point Method
for log-errors should be seamlessly possible.

7 CONCLUSION
In our paper, we clearly demonstrated that Simple Linear Regres-
sions are sub optimal for learned indexes. In contrast to minimizing
the squared error, a minimum log-error optimizes the relevant error
for exponential search, which we consider optimal. Compared to
Simple Linear Regression, our approach speeds up average lookup
performance by around 6% and improves extreme cases by 2.2×.

While the overhead in build times makes this approach not suit-
able in all cases, this is less a concern for read-heavy workloads.
Nevertheless, we are convinced that a log-regression can also be
very beneficial for the edge cases where squared and log-error differ
widely. With a fallback log-error regression, learned indexes are
significantly more robust and additionally get a performance im-
provements whenever their time budget allows more optimization.
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