@ CedarDB

CedarDB

Philipp Fent
philipp@cedardb.com

@ CedarDB
Overview

e “PostgreSQL for analytics”

Full-featured versatile database

Simultaneous high-performance analytics and operations on the same data

Several orders of magnitude speedup over existing systems

Full utilization of modern hardware capabilities (e.g. massive parallelism, RAM capacity)
Transparently and gracefully scales beyond main memory

o O O O O

e Started at TUM

o 5 PhDs, developed the system over the last ~6 years
o Bring the most efficient data processing engine to the world

@ CedarDB
Database Systems

e \Who uses a database system daily?

@ CedarDB
Database Systems

e \Who uses a database system daily?
e SQL or NoSQL?

@ CedarDB
Database Systems

e \Who uses a database system daily?
e SQL or NoSQL? Ranking scores per category in percent, February 2024

Wide column stores 2.8 Document stores 10.3%
(]

Vector DBMS 0.3% ~ 2221

Graph DBMS 1.7%
Time Series DBMS 1.2% Key-value stores 5.4%
Spatial DBMS 0.5% Multivalue DBMS 0.2%
Search engines 4.5% Native XML DBMS 0.3%

Object oriented DBMS 0.2%

RDF stores 0.4%

Relational DBMS 71.9%

CedarDB
SQL / Relational NoSQL

e Old e Not so old

CedarDB
SQL / Relational NoSQL

e Ol e Not so old
e Ancient

17 M

@ CedarDB
SQL / Relational NoSQL

e Ol e Not so old
e Ancient

@ CedarDB

SQL / Relational

e
Ancient

NoSQL

Not so old

High scalability

Flexible data formats
Simple key/value storage

@ CedarDB

SQL / Relational NoSQL
o Oid e Not so old
e Ancient e High scalability
e Flexible data formats
e Simple key/value storage

e But an efficient model to work
with data

e Decades of experience building
data processing pipelines for
data-driven applications

10

CedarDB
Case Study:) MongoDB

11

@ CedarDB
Case Study: ’ MongoDB

New query engine in MongoDB 6 (great write-up on laplab.me)
Previous MongoDB engine was document oriented

SCAN — JSON —> FILTER—> JSON —> PROJ —result

A couple of intermediate query stages, each creating a JSON document to
pass to the next one. All documents are discarded except the last one on
the right.

12

@ CedarDB
Case Study: ’ MongoDB

e Slot-Based Query Execution Engine

- slot 1
"all 43; _____________
"b": "hello world" ,("_"""""S].Ot 2
ety T, B @lve —
"""" 0
¥

13

@ CedarDB
Case Study: ’ MongoDB

e Slot-Based Query Execution Engine

ng": 43 A
"b": "hello world";——--islot 2
Heglz 11, 2, 3] w5

open() , getNext() and close() interface and can be used like this:

stream.open();
while (stream.getNext()) {

csomethinag with o rfata oftream nrnvidard
sometning witn tne aata Sstream proviaed.

}
stream.close();

@ CedarDB
Case Study: ’ MongoDB

Volcano model query processing

120 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 6, NO. I, FEBRUARY 1994

Volcano—An Extensible and Parallel Query
Evaluation System

Goetz Graefe

Abstract—To investigate the interactions of extensibility and
parallelism in database query processing, we have developed a
new dataflow query execution system called Volcano. The Vol-
cano effort provides a rich environment for research and edu-
cation in database systems design, heuristics for query opti-
mization, parallel query execution, and resource allocation.

Volcano uses a standard interface between algebra opera-
tors, allowing easy addition of new operators and operator im-
plementations. Operations on individual items, e.g., predi-
cates, are imported into the query processing operators using
support functions. The tics of support functions is not
prescribed; any data type including complex objects and any
operation can be realized. Thus, Volcano is extensible with new
operators, algorithms, data types, and type-specific methods.

Volcano includes two novel meta-operators. The choose-plan
meta-operator supports d) ic query evaluation plans that al-
low delaying selected optimization decisions until run-time,
e.g., for embedded queries with free variables. The exchange
meta-operator supports intra-onerator narallelism _on_narti-

tem as it lacks features such as a user-friendly query lan-
guage, a type system for instances (record definitions), a
query optimizer, and catalogs. Because of this focus, Vol-
cano is able to serve as an experimental vehicle for a mul-
titude of purposes, all of them open-ended, which results
in a combination of requirements that have not been in-
tegrated in a single system before. First, it is modular and
extensible to enable future research, e.g., on algorithms,
data models, resource allocation, parallel execution, load
balancing, and query optimization heuristics. Thus, Vol-
cano provides an infrastructure for experimental research
rather than a final research prototype in itself. Second, it
is simple in its design to allow student use and research.
Modularity and simplicity are very important for this pur-
pose because they allow students to begin working on

nroiecte withont an underctandina of the entire decian and

15

@ CedarDB
Case Study: ’ MongoDB

VOL. 6, NO. 1, FEBRUARY 1994

Volcano model query processing

120 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA EN

Volcano—An Extensible and Parallel Query
Evaluation System

Goetz Graefe

Abstract—To investigate the interactions of extensibility and
parallelism in database query processing, we have developed a
new dataflow query execution system called Volcano. The Vol-
cano effort provides a rich environment for research and edu-
cation in database systems design, heuristics for query opti-
mization, parallel query execution, and resource allocation.

Volcano uses a standard interface between algebra opera-
tors, allowing easy addition of new operators and operator im-
plementations. Operations on individual items, e.g., predi-
cates, are imported into the query processing operators using
support functions. The tics of support functions is not
prescribed; any data type including complex objects and any
operation can be realized. Thus, Volcano is extensible with new
operators, algorithms, data types, and type-specific methods.

Volcano includes two novel meta-operators. The choose-plan
meta-operator supports d) ic query evaluation plans that al-
low delaying selected optimization decisions until run-time,
e.g., for embedded queries with free variables. The exchange
meta-operator supports intra-onerator narallelism _on_narti-

tem as it lacks features such as a user-friendly query lan-
guage, a type system for instances (record definitions), a
query optimizer, and catalogs. Because of this focus, Vol-
cano is able to serve as an experimental vehicle for a mul-
titude of purposes, all of them open-ended, which results
in a combination of requirements that have not been in-
tegrated in a single system before. First, it is modular and
extensible to enable future research, e.g., on algorithms,
data models, resource allocation, parallel execution, load
balancing, and query optimization heuristics. Thus, Vol-
cano provides an infrastructure for experimental research
rather than a final research prototype in itself. Second, it
is simple in its design to allow student use and research.
Modularity and simplicity are very important for this pur-
pose because they allow students to begin working on

nroiecte withont an underctandina of the entire decian and

16

CedarDB
Case Study:) MongoDB

VOL. 6, NO. 1, FEBRUARY 1994

Volcano model query processing

120 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA EN

Volcano—An Extensible and Parallel Query
Evaluation System

Goetz Graefe

Abstract—To investigate the interactions of extensibility and
parallelism in database query processing, we have developed a
new dataflow query execution system called Volcano. The Vol-
cano effort provides a rich environment for research and edu-
cation in database systems design, heuristics for query opti-
mization, parallel query execution, and resource allocation.

Volcano uses a standard interface between algebra opera-
tors, allowing easy addition of new operators and operator im-
plementations. Operations on individual items, e.g., predi-
cates, are imported into the query processing operators using
support functions. The tics of support functions is not
prescribed; any data type including complex objects and any
operation can be realized. Thus, Volcano is extensible with new
operators, algorithms, data types, and type-specific methods.

Volcano includes two novel meta-operators. The choose-plan
meta-operator supports d) ic query evaluation plans that al-
low delaying selected optimization decisions until run-time,
e.g., for embedded queries with free variables. The exchange
meta-operator supports intra-onerator narallelism _on_narti-

tem as it lacks features such as a user-friendly query lan-
guage, a type system for instances (record definitions), a
query optimizer, and catalogs. Because of this focus, Vol-
cano is able to serve as an experimental vehicle for a mul-
titude of purposes, all of them open-ended, which results
in a combination of requirements that have not been in-
tegrated in a single system before. First, it is modular and
extensible to enable future research, e.g., on algorithms,
data models, resource allocation, parallel execution, load
balancing, and query optimization heuristics. Thus, Vol-
cano provides an infrastructure for experimental research
rather than a final research prototype in itself. Second, it
is simple in its design to allow student use and research.
Modularity and simplicity are very important for this pur-
pose because they allow students to begin working on

nroiecte withont an underctandina of the entire decian and

Redial

Last 10)
Py

Dusignad by 1801

17

@ CedarDB
State of the art

100

"tuF
28.1]
26.6

10

Time (seconds)

0.60

0.22

0.1

vle at a time"

DBMS "X"
MySQL 4.1

interpretation
dominates
execution

"column at a time" |
MonetDB/MIL

main-memory
materialization overhead

interpretation ~N-3.7

_a— Overhead
decreases

query without selection —#-2.4

fiu

'Hand—Coded
C Program

L

vectors start to exceed
MonetDB/X100 CPU cache, causing

" = "
vector at a time” oy1ra memory traffic
low interpretation overhead
in-cache materialization

1 1 L L L L 1 ! 1 L L 1 1 1 1

1 4 16

64 256 1K 4K

16K 64K 256K 1M 4M 6M

18

§§ CedarDB
State of the art

100

"tuple at a time"

28.1 [DBMS "X"
26.6"NMySQL 4.1
interpretation = . :
= 10+ dominates column at a time" |
S ieanon MonetDB/MIL
8 main-memory
O , . materialization overhead
@ interpretation
2}
~ a— overhead query without selection =4
o decreases
£
= I i
1 DuckDB "~
0.60 vectors start to exceed
"MonetDB/ le 00" CPU cache, causing
0.22 vector at a time” oy1ra memory traffic
: 'H low interpretation overhead
and-Coded in-cache materialization
C Program
0'1 1
1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

6M

19

é% CedarDB
Code generation

Query execution plan similar to hand-coded C
Slots = CPU registers

for doc in docs:

a = json::lookup(doc, "a")
b = json::lookup(doc, "b")
e—=—3son—loekup{doe—ec—

sum[b] += a

"""""""""""""" slot 1
"hello world" < —
[B #een .

20

@ CedarDB
Data-centric code generation

e Build data pipelines as tight loops
e Keeps data in registers as long as possible

for t in R1:
HT1[t.a] = t

for t in R2:
if t.y < 5:
HT2[t.z] += t.y

for t in HT2:
HT3[t.b] = t

for t in R3:
if t.z > 3:
if HT3[t.z]:
if HT1[t.x]:
print t

.I.
HT’]\‘ M
7\
Ry HT3~ WX, _,
/7 \
HszFz;sum(y) 0.>s
.I.
O,
i
Ry R3

21

@ CedarDB
Expression compilation

%1 = zext i64 %int1; Zero extend to 64 bit
%2 = zext 164 %int2;

%3 = rotr i64 %2, 32; Rotate right
%v = or 164 %1, %3; Combine int1 and int2
%5 = crc32 i64 6763793487589347598, %v; First crc32
%6 = crc32 i64 4593845798347983834, %v; Second crc32
%7 = rotr 164 %6, 32; Shift second part
%8 = xor i64 %5, %7; Combine hash parts
%hash = mul i64 %8, 11400714819323198485; Mix parts

Efficient code generation for arbitrary expressions

® Example: Efficient hashing of two 32-bit columns
® Generalizes to arbitrary data types
® And to arbitrary number of columns

@ CedarDB
Roadmap

Flexible data formats

Efficient data pipelines

Efficient execution with arbitrary complex expressions
Scalability

23

CedarDB
Scalable execution

Morsel-Driven Parallelism

(@)

(@)

Full intra-query parallelism
Self-adapting morsel sizes

Scheduler

(@)

(@)

Adaptive scheduling of short- and
long-running queries
Extensible task-based interface

Adaptive Compilation

(@)

(@)

Re-compilation and re-optimization
Flying start: Directly emit x86

thread

s}
2
=
@
&
o
S
=
3.
N
®
Q
QU
o
Q
S
=,
5

MO T

| I T C I 11

0 10 20 30
time [ms]

24

@ CedarDB
Scaling with remote storage

Fast relations on external storage

(@)

Interleaved networking and processing

Asynchronous networking

(@)

(@)

Download close to network bandwidth
Up to 80 Gbit/s from S3

S3-optimized storage layout

(@)

(@)

Columnar format
Small materialized aggregates

e ————

Query
i
[
X
/7 \
R R,
Worker Threads Local Buffer

N o e ——

25

@ CedarDB
Data Examples

e German federal register portal “Handelsregister”
e ~4GB JSON data from offeneregister.de

26

@ CedarDB
Data Examples

e German federal register portal “Handelsregister”
e ~4GB JSON data from offeneregister.de

{

"all_attributes":{"_registerArt":"HRB","_registerNummer":"141703",

"additional_data":{"AD" :true, "CD":true, "DK" :true, "HD" :false, "SI":true, "UT" :true, "V0":false},

"federal_state":"Bavaria",

"native_company_number":"Minchen HRB 141703",

"registered_office":"Garching", "registrar":"Minchen"},

"company_number":"D2601V_HRB141703",

"current_status":"currently registered",

"jurisdiction_code":"de",

"name" :"UnternehmerTUM GmbH",

"officers":[
{"end_date":"2010-02-11", "name" : "Bernward Doctor Jopen", "other_attributes":{"city":"Grafelfing", "dismissed":true, "firstname":"Bernward'
{"end_date":"2018-081-22", "name" :"Claudia Anke Frey", "other_attributes":{"city":"Neufahrn", "dismissed":true, "firstname":"Claudia Anke",
{"name" :"Andreas Doctor Liebl","other_attributes":{"city":"Unterfohring", "firstname":"Andreas", "lastname":"Doctor Liebl"}, "position":"(
{"name" :"Claudia Anke Frey", "other_attributes":{"city":"Neufahrn b. Freising", "firstname":"Claudia Anke", "flag":"sole representation",
{"name":"Claudia Anke Frey", "other_attributes":{"city":"Neufahrn","firstname":"Claudia Anke", "lastname":"Frey"}, "position":"Prokurist",
{"name" :"Helmut Doctor Schonenberger", "other_attributes":{"city":"Minchen", "firstname":"Helmut", "flag":"mit der Befugnis im Namen der (
{"name" :"Helmut Doctor Schonenberger","other_attributes":{"city":"Minchen", "firstname":"Helmut", "flag":"sole representation”, "lastname'
{"name" :"Stefan Drussler", "other_attributes":{"city":"Minchen","firstname":"Stefan", "lastname":"Drissler"}, "position":"Geschaftsfihrer

"registered_address":"Lichtenbergstr.", "retrieved_at":"2019-01-31T00:07:28Z2"

}

27

@ CedarDB
Data Examples

German federal register portal “Handelsregister”
~4GB JSON data from offeneregister.de
Munich’s most wanted

Who-knows-who of Munich

lizeiprasidium —CpXEE

LIS

Betrug in Milliardenhdhe

Koénnen Sie Hinweise zum Aufenthaltsort
von Jan MARSALEK geben?

@ dem PP Minchen unter +49 (0) 89/2910-0 oder jeder
i Sie hiertar das

28

@ CedarDB
Six Degrees of Jan Marsalek

with execs_json as (select data->>'company_number' company_number, data->>'name' company_name,
json_array_elements((data->"officers')::json) officer_json
from register_data where data->'officers' is not null),
execs as (select company_number, company_name, officer_json->>'name' as name,
officer_json->"'other_attributes'->>"'city' city
from execs_json),

marsalek as (select * from execs where name = 'Jan Marsalek' and city = 'Minchen'"),
marsalek_11 as (select * from execs where company_number in

(select company_number from marsalek)),
marsalek_12 as (select * from execs o where exists

(select * from marsalek_11 m where o.name = m.name and o.city = m.city)),
marsalek_13 as (select * from execs where company_number in

(select company_number from marsalek_12))

select distinct name from marsalek_13 order by name;

29

CedarDB
Six Degrees of Jan Marsalek

(B UMBRA

execs_json company_number, company name,
json_array_elements(()::json) officer_json Load Query
register_data).

company_number, company_name, officer_json / Schema: TPC-H H
officer_json city DBMS T" I Ie

execs_json),

marsalek execs
marsalek_11 execs company_number C d D B 1 5
company_number marsalek)),
marsalek_12 execs o e a r " S
marsalek_11 m 0. 5 m.city)),
marsalek_13 execs company_number
company_number marsalek_12))
marsalek_13 2 DUCkDB 1 3S
. Query Results Query Stats
name
. Atcompision 59ms PostgreSQL 15s
il A\lexander von Knoop At eyecution 1662.9ms
Amra Blume Columns 1

Andrea Gorres Rows 75 Relatlonal 1 OomS
Andreas Doctor Goérg CedarDB

Anne C. Signorino Gelo

Arne Matthias

Benjamin Aquilino

Bettina Funk

Brigitte Hauser-Axtner
Burkhard Ley

Carlos Hauser

Christian von Hammel-Bonten

Christian von von Hammel-Bonten

@ CedarDB
Try it now

e Full-featured versatile database
e Simultaneous high-performance analytics and operations on the same data

Dive deeper: Get in touch:

cedardb.com/docs philipp@cedardb.com

docker pull pfent/umbra

31

http://cedardb.com/docs
mailto:philipp@cedardb.com

CedarDB

® Q)

ML Tooling App Frameworks Ad-hoc Queries Dashboards ML Tooling App Frameworks ~ Ad-hoc Queries

llllllll

CedarDB

7N

emi-Structured Data ERP Event Streams Logs Semi-Structured Data

@ CedarDB
Adaptive Compilation

e Multiple JIT Backends

o High Efficiency vs. Low Latency

o Modularized for different requirements & platforms

e Adaptive Query Execution

o Problem: Selecting strategy upfront is hard

o Solution: Start quickly & upgrade later

o Robust decisions with runtime feedback

o Worker threads don't idle during
single-threaded LLVM optimisations

thread

NN ¢ NN

peaiy) |

TTTTTINTTTEITNNN\\\\\Y
| IS NN

spealy) g

NN\

speaiy}

0 20 40
time [ms]

60

33

@ CedarDB
SCh ed U I i ng Scheduler E3 Our Scheduler E3 PostgreSQL

i
o
)

e Low latencies under high load

Relative Slowdown
=
Q,
|

] =]

o Compute burned on heavy queries

10° : .
o Finish light queries quickly Short Running Query Type 8 Running
o Example: 95% system load, 75% light + 25% heavy
Light queries almost not affected by load.
g / I OO T T T T T ITT >
e Adaptive morsel sizes | DML &
[N RN NARNNARNNARNRIRNARNNAREN] 5
_ _ _ _ AN 11 TR |
o Fairness through normalized time slices § m | | | “ | | —
o Simplifies adaptive compilation I R ‘| 5
00 1 T | o
L] [[]
0 10 20 30 4

Time [ms]

