
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Effects of Linux VFIO for User Space I/O

Adrian Simon Würth

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Effects of Linux VFIO for User Space I/O

Effekt von Linux VFIO auf User Space E/A

Author: Adrian Simon Würth
Supervisor: Prof. Dr. Thomas Neumann
Advisor: Simon Ellmann, M.Sc.
Submission Date: August 15, 2024

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, August 15, 2024 Adrian Simon Würth

Abstract

Peripheral devices like SSDs need access to main memory in order to perform I/O
operations. High-performance drivers take advantage of Direct Memory Access (DMA),
a feature that allows devices to access system memory independently of the CPU. This
can be a huge security risk as malicious firmware attacks or faulty operations could
lead to detrimental consequences, potentially extracting data or corrupting the system.
The workaround to this is the IOMMU (Input-Output Memory Management Unit),
which maps physical to I/O virtual addresses, similar to the CPU’s MMU, providing
access rights enforcement. As address translation can be a memory- and performance-
intensive operation, it is necessary to examine how impactful the IOMMU is on the
whole driver’s performance. In this thesis, we implement IOMMU support for a user
space NVMe driver written in Rust and examine its performance, directly comparing
DMA performance with physical addresses and IOMMU I/O virtual addresses. We
demonstrate that essentially identical performance may be achieved with 2 MiB pages,
along with enhanced system security and the ability to run the driver without root
privileges. We also add support for the new user API IOMMUFD, which can be used
as a modern backend for VFIO.

iii

Contents

Abstract iii

1 Introduction 1

2 Background 2
2.1 vroom . 2
2.2 Memory Management Unit . 2
2.3 I/O Memory Management Unit . 3
2.4 Direct Memory Access . 4
2.5 Hugepages . 4
2.6 Peripheral Component Interconnect Express 5
2.7 Rust . 6

3 Related Work 7
3.1 Ixy . 7
3.2 Data Plane Development Kit . 7
3.3 Storage Performance Development Kit . 7

4 Implementation 9
4.1 Virtual Function I/O . 9

4.1.1 Groups and Containers . 11
4.1.2 Binding NVMe to vfio-pci . 11
4.1.3 IOMMU container initialization 11
4.1.4 Device register access . 12
4.1.5 DMA (Un-)Mapping . 13
4.1.6 NVMe initialization . 15
4.1.7 I/O operations with VFIO . 15

4.2 IOMMUFD . 16
4.3 Linux Systemcalls . 19

5 Evaluation 20
5.1 Setup . 20

iv

Contents

5.2 Results . 21
5.2.1 Latencies . 21
5.2.2 Throughput . 23

5.3 Impact of 4 KiB pages . 27
5.3.1 Throughput . 27
5.3.2 Determining IOTLB size . 29

6 Conclusion 32

List of Figures 33

List of Tables 34

Listings 35

Bibliography 36

v

1 Introduction

During his speech "Null Reference: The Billion Dollar Mistake" in 2009, Tony Hoare,
a renowned computer scientist well known for the invention of Quick-sort, proposed
the idea of how null pointers are the reason for at least a billion dollars in damages
[18]. This quote could not be more important than at this time. In July 2024, Microsoft
devices faced what has been described as the "most spectacular IT meltdown the world
has ever seen" [22]. This meltdown affected 8.5 million Microsoft Windows devices and
severely impacted public institutions, including critical infrastructure like hospitals and
airports [5]. In the root cause analysis paper, Crowdstrike, the cybersecurity company
that deployed the faulty code, revealed that improper compile time validation and
missing runtime array bounds checks were a big part of the error [9].

The damage that can be caused by a single ring 0 driver like Crowdstrike’s Falcon
software shows how critical it is to ensure memory safety. By using Rust, a memory-safe
yet highly performant programming language with a restrictive compiler, we could
drastically improve security and memory safety. We can witness Rust’s influence on the
systems development community since even the Linux kernel, which has been using C
for almost 30 years without accepting other languages like C++, now allows Rust code
in its codebase [21].

However, it is also essential to consider Rust’s safety limits. While using Rust for a
driver improves the overall safety of the process, direct memory and I/O operations
have to be implemented in a memory-unsafe way. A user space driver using physical
DMA addresses enables a device to have full access to the memory and potentially do
detrimental I/O operations. To enforce safety at the device level, we need to use the
IOMMU, a safe way of performing direct memory access. The IOMMU acts as a layer
of isolation between devices and memory, through which memory access rights are
enforced [2].

The primary goal of this thesis is to examine how the IOMMU impacts performance
in the context of user space I/O. We demonstrate this by implementing IOMMU support
on vroom, an NVMe driver written in Rust [20], and comparing it to using physical
addresses. We use the Linux framework VFIO to implement the IOMMU functionality,
which has the additional benefit of enabling the driver to run without root privileges.
We will also implement IOMMUFD, a modern user API for managing I/O page tables
from user space, which can replace the backend for VFIO.

1

2 Background

2.1 vroom

vroom is a user space NVMe driver written in Rust. As of this writing, it offers high
performance and the functionality required for general I/O operations, but it is not yet
production-ready. Unlike interrupt-driven drivers, vroom uses polling to determine the
state of the I/O operations. Polling is often preferable in high-performance applications,
as interrupts are relatively performance-intensive operations [24]. When using vroom
without the IOMMU, the device registers are accessed via the pseudo-filesystem sysfs.
Direct memory access is performed on hugepages using physical addresses.

An NVMe driver consists of submission and completion queues implemented as
ring buffers. The driver adds commands to the submission queue, which the NVMe
controller reads and executes. The executed command gets placed on a corresponding
completion queue. A deeper explanation of the steps will be provided in chapter 4. As
vroom does not have a kernel driver part that can bind to the driver slot, we unbind
the kernel driver and bind it to PCI-STUB. PCI-STUB is a dummy driver that occupies
the PCI driver such that the kernel or another application cannot bind to the device.

2.2 Memory Management Unit

Memory Management Units (MMU) for the CPU have been used since the 1980s. After
their first integrated application featuring on Intel’s 80286 chip [13], they have since
become the de facto standard for addressing computer memory. By providing processes
with virtual addresses instead of physical addresses, every process is isolated and only
has access to memory assigned to its virtual address space. Each translated address
points to a region of memory called a page. These pages can have different sizes, with
the default being 4 KiB pages on modern x86-64 architectures.

The translations of these pages are stored in so-called page tables. As one page table
does not offer enough address space, multiple tables are linked together, consisting
of pointers to a lower-level page table. One page table walk thus includes fetching
multiple tables from memory, resulting in a high latency. To avoid performing a page
walk every time an address is used, a Translation Lookaside Buffer (TLB) is used to

2

2 Background

cache translations.
The TLB is very performant to access. Frequent access to the same address can be

done at a fraction of the time needed for a page table walk. A TLB miss describes the
scenario in which a physical address needs to be translated, but it has no entry in the
TLB, resulting in an expensive page walk.

2.3 I/O Memory Management Unit

The advantages and success of the CPU’s MMU and the introduction of the PCIe
bus specification have incentivized hardware manufacturers to apply this concept to
peripheral device buses. In 2006, Intel introduced their "Virtualization Technology
for Directed I/O" (Intel VT-d) and AMD their "AMD I/O Virtualization Technology"
(AMD-Vi/IOMMU). In this thesis, the term IOMMU references both technologies. The
IOMMU was originally only used for "solving the addressing problems of devices with
limited address space" [26], but nowadays is used mainly for virtualization and device
isolation.

The IOMMU works similarly to the MMU, but instead of mapping memory to a
process’s virtual address space, it maps it to an I/O virtual address space for device
access. The addresses used are called I/O Virtual Addresses (IOVA).

The IOMMU, like the MMU, has a TLB called the I/O Translation Lookaside Buffer
(IOTLB). The size of the IOTLB is not officially documented by Intel nor AMD [11].

Virtual Address (VA)

Process Device

MMU IOMMU

Memory

I/O Virtual Address (IOVA)

Physical Address

Figure 2.1: MMU and IOMMU relation to physical memory, adapted from [19]

The IOMMU paging structures of Intel’s VT-d consist of 4 KiB page tables storing
512 8-byte entries. The IOMMU uses the upper portions to determine the location of
the stored page tables and the lower portion of the address as page offset. In the case
of 4 KiB pages this offset consists of 12 bits, for 2 MiB pages it consists of 21 bits. In

3

2 Background

Figure 2.2, a 4-level page table structure for translating a 48-bit address to a 4 KiB page
with Intel VT-d is shown. A page table walk for one 4 KiB page results in four memory
accesses.

3-7 Intel® Virtualization Technology for Directed I/O Architecture Specification, Rev. 4.1, Order Number: D51397-016

DMA Remapping—Intel® Virtualization Technology for Directed I/O

Figure 3-5 illustrates the paging structure for translating a 48-bit address to a 4-KByte page.

Figure 3-6 illustrates the paging structure for translating a 48-bit address to a 2-MByte large page.

Figure 3-5. Address Translation to a 4-KByte Page

Figure 3-6. Address Translation to a 2-MByte Large Page

3
8

1
2

1
1 0

3
0

+

+

+

2
0

2
1

2
9

9-bits

,Page Directory

Page Table

4KB Page

4
7

3
9

6
3

,

+

<< 3

Page Directory
Pointer Table

PS = 0

,

+

<< 3

PML4 Table

<< 3

<< 3

9-bits 9-bits 9-bits

Paging Structure
Pointer

PS = 0

PS = 0

12-bits

3
8 0

3
0

+

+

2
0

2
1

2
9

9-bits

,Page Directory

2MB Page

4
7

3
9

6
3

,

+

<< 3

Page Directory
Pointer Table

,

+

<< 3

PML4 Table

<< 3

9-bits 9-bits 21-bits

Paging Structure
Pointer

PS = 0

PS = 1

PS = 0

Figure 2.2: Intel VT-d Paging structure for translating a 48-bit address to a 4 KiB page,
from [14]

2.4 Direct Memory Access

Using Direct Memory Access, we can bypass the CPU for I/O operations. Previously,
this was handled by a separate DMA-controller hardware (third-party DMA), but using
PCI, we can directly access it through bus mastering (first-party DMA) [6]. Using the
IOMMU, the request is intercepted and translated to the physical address.

2.5 Hugepages

As the demand for bigger memory mappings, e.g., for big files, increased, the amount
of TLB cache misses rose proportionally. With modern CPUs, a TLB typically has space
for only 4096 4 KiB pages, and so, only an address space of 16 MiB can be stored and
accessed quickly [8]. To increase the virtual memory space, hardware producers reacted
by providing bigger page sizes on their architectures than the default 4 KiB. Linux
currently provides two ways of using Hugepages. In the optimal case, using a 2 MiB

4

2 Background

or 1 GiB page size should result in a 512- or 262144-times reduction in cache misses
compared to 4 KiB pages. This makes a huge difference, especially in high-performance
computing.

• Persistent Hugepages: Persistent Hugepages are reserved in the kernel and
cannot be swapped or used for another purpose [12]. These hugepages can be
mounted as a (pseudo) filesystem called hugetlbfs. The amount and size of
the pages can be specified either during boot on the kernel command line with,
e.g., hugepagesz=1g hugepages=16 or dynamically using the Linux proc virtual
filesystem [12].

• Transparent Hugepages: Transparent Hugepages (THP) are a more recent ad-
dition to the kernel. THPs are not fixed or reserved in the kernel and therefore
provide a way of utilizing the TLB effectively without reserving vast amounts of
memory [25].

vroom currently uses hugepages for DMA and locks them with the Linux syscall
mlock to prevent the kernel from swapping them out. When using 4 KiB pages with
mlock, it is not guaranteed that the kernel does not migrate the page to another physical
location. This is the reason why persistent hugepages have to be used. The kernel
cannot move these pages like 4 KiB pages. Other user space drivers like SPDK or DPDK
also rely on this to perform DMA without the IOMMU.

2.6 Peripheral Component Interconnect Express

PCIe is a standard for peripheral device buses. Each device on the PCI bus has a unique
PCI address, segmented into three parts, as seen in Figure 2.3.

Bus # Device # Func #

8 Bits 5 Bits 3 Bits

Figure 2.3: Segmented PCI identifier

Each device on the bus uses a PCIe configuration space, which includes registers for
controlling the device’s behavior, e.g., enabling DMA in the command register. It also
includes the Base Address Registers (BAR), which are used to access the device’s actual

5

2 Background

controller. The configuration space can be seen on Figure 2.4. The marked fields are
needed for vroom.

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7

Vendor ID Device ID Command Register Status Register0x00

Revision
ID

Class Code
Cache
Line

Latency
Timer

Header
Type

BIST0x08

Base Address 0 Base Address 10x10

Base Address 2 Base Address 30x18

Base Address 4 Base Address 50x20





Base Address Registers

CardBus
Subsystem vendor

ID
Subsystem ID0x28

Expansion ROM Base Address
Cap.

Pointer
Reserved0x30

Reserved
Interrupt

Line
Interrupt

Pin
MIN GNT MAX LAT0x38

Figure 2.4: PCIe configuration space, adapted from [20]

2.7 Rust

While user space drivers can be written in any language having access to syscalls
and aligned structs, as proven by the network driver Ixy [15], Rust excels as it offers
high performance and memory safety without garbage collection. This is especially
important, as garbage-collected languages have overhead and latency spikes, which can
lower performance. Another critical factor is that, like C, Rust does not use exceptions.
Being forced to handle errors ensures that no unhandled exception can take down
critical code infrastructure. Additionally, Rust provides low-level access while offering
a high-level development experience through zero-cost abstractions.

6

3 Related Work

3.1 Ixy

Ixy is a network interface card (NIC) driver for Intel’s 82599 10GbE NICs (ixgbe family)
[8]. Ixy has been implemented in many languages, e.g., C, Go, and Rust. Ixy.rs is the
Rust implementation of the Ixy driver [7]. Stefan Huber implemented IOMMU support
for the Ixy.rs driver. It was concluded that while using the IOMMU with 2 MiB pages,
the performance matches the performance without the IOMMU. On the other hand, it
was found that using 4 KiB pages can lead to a potential 75% performance decrease.
Additionally, Huber found that the tested Intel Xeon E5-2620 v3 6-core 2.4GHz CPU
IOMMU TLB has a maximum size of 64 entries [11]. Rolf Neugebauer et al. determined
the same 64 IOTLB size on the tested Intel Xeon E5-2630v4 2.2GHz [17].

3.2 Data Plane Development Kit

The Data Plane Development Kit (DPDK) is a framework for developing user space
network card drivers. It allows for high-performance network applications. It can run
using direct memory access with physical addresses or with VFIO [1]. DPDK offers
polling drivers for a variety of network cards. It is one of the most successful projects
in the world of user space drivers and has influenced many advances in the IOMMU
space.

3.3 Storage Performance Development Kit

The demand for high-speed user space drivers in storage applications inspired the
development of the Storage Performance Development Kit (SPDK). SPDK uses some
shared libraries and architecture with DPDK. Primarily through the wide adoption
of the NVMe protocol and the standardization of said protocol, only one driver for
all NVMe SSDs has to be developed. NVMe is a storage protocol that is widely
used, modern, and highly performant. Therefore, it is a protocol for which many
drivers, including user space drivers, have been written. The Storage Performance
Development Kit (SPDK) provides “a collection of tools and libraries for writing high

7

3 Related Work

performance, scalable, user-mode storage applications” [23]. It includes a user space
NVMe driver, which is fast and production-ready. While this driver supports using the
driver without the IOMMU, the SPDK Documentation recommends using the IOMMU
as it is the "future proof...long-term foundation" for SPDK [4]. Even though SPDK
is the established user space NVMe driver option, the drawbacks include its high
complexity, even for simple applications, as well as it being written in C, potentially
causing memory safety issues.

8

4 Implementation

The VFIO implementation of Ixy.rs [16] was used as a reference but was massively
changed to fit the project structure and use case. The implementation for IOMMU
support includes the initialization of the IOMMU, the steps needed to create mappings
to the I/O virtual address space, and the access to the device registers. The complete
code of the driver can be found on GitHub [27].

4.1 Virtual Function I/O

Virtual Function I/O (VFIO) is an IOMMU agnostic framework for exposing devices
to user space. VFIO acts like the kernel module to user space drivers, allowing
unprivileged, regulated access to physical memory and device registers.

As seen on Figure 4.2a, VFIO consists of an IOMMU API for management of IOMMU
mappings (VFIO backend) and a device API for device access, which uses the backend
to perform the access. With the new introduction of IOMMUFD, the native backend
of VFIO is considered the "legacy" backend. Legacy VFIO uses the type1 IOMMU
API for x86 architectures or the SPAPR IOMMU API for ppc64 architectures. As our
implementation is for x86, we will equate legacy VFIO with the type1 API.

The vfio-pci driver (device API) is used for interaction with the device, i.e., reading,
writing, and mapping the device registers. Only the backend gets replaced when
VFIO is used with IOMMUFD, as IOMMUFD still relies on vfio-pci to access device
registers. We will first focus on the legacy VFIO implementation and then compare it
to the implementation of IOMMUFD. The layers of VFIO with both backends can be
seen on Figure 4.2.

To use vroom with the IOMMU, we need to initialize the IOMMU, VFIO, DMA, and
the NVMe device:

1. IOMMU container initialization: As the first step, the VFIO container for IOVAs
is initialized. With this container and the NVMe IOMMU group, we obtain the
device file descriptor.

2. Device register access: Using the device fd, we write to the PCIe configuration
space to enable DMA and map the NVMe BAR to memory.

9

4 Implementation

3. DMA (Un-)Mapping: Using the container fd, we create a mapping in the IOMMU
and, therefore, place it in the virtual address space of the NVMe controller for
DMA.

4. NVMe initialization: The final step is to initialize the NVMe controller for I/O
operations.

Interaction with the VFIO interface works using ioctl system calls. ioctl or control
device syscall, uses a file descriptor (fd), operation id (op), and optional arguments to
perform actions on devices that are not covered by other system calls. The operation
IDs used for VFIO are defined as constants or enums in the vfio.h header file in the
Linux kernel. To use these constants in Rust, they must be defined manually or with a
crate like bindgen, which automates bindings for C and C++ libraries [3]. We chose the
manual implementation to keep the binary and dependency list as small as possible.
Many ioctl calls used for VFIO also take in a mutable reference to a struct, which is
used for specific input and output. These structs are also defined in vfio.h and can
be ported over to Rust using the #[repr(C)] attribute, which ensures the same struct
alignment as in C.

To model the IOMMU, we implement the struct Vfio and the enum VfioBackend,
as seen in Listing 4.1. The shared functionality, e.g., accessing the device registers,
is implemented on the struct Vfio, while the enum VfioBackend takes care of the
backend-specific behavior, i.e., mapping DMA addresses.

Listing 4.1: Structs used to model VFIO

pub struct Vfio {
pci_addr: String,
device_fd: RawFd,
page_size: Pagesize,
iommu: VfioBackend,

}

enum VfioBackend {
Legacy {

container_fd: RawFd,
},
IOMMUFD {

ioas_id: u32,
iommufd: RawFd,

},
}

10

4 Implementation

4.1.1 Groups and Containers

VFIO works using (IOMMU-)groups and containers. Each group can contain one or
multiple devices. As many devices use DMA between each other, a single IOMMU
group has to be created, as these devices cannot function in an isolated environment.
The other way round can also be the case, with one device exposing two interfaces,
which get their own group each. Therefore, groups are the smallest unit that can be
isolated by the IOMMU. While groups are supposed to provide the highest amount
of isolation, the need for shared memory between devices often exists. This need can
be solved by using containers. Containers consist of one or more groups. The groups
in one container share the same I/O virtual address space created by the IOMMU,
allowing both to access the same memory. A new container can be created by opening
the file /dev/vfio/vfio. The groups of devices bound to vfio-pci can be found under
the path /dev/vfio/$GROUP.

4.1.2 Binding NVMe to vfio-pci

To use the IOMMU for the driver, we first need to initialize the VFIO kernel module
using modprobe and bind the vfio-pci driver to the NVMe device. By changing the
owner of the container and group file to an unprivileged user, vroom can use the VFIO
driver to create memory mappings and interact with the device without root.

4.1.3 IOMMU container initialization

To initialize the IOMMU, we first need to get the container file descriptor. The container
is accessible under the path /dev/vfio/vfio. Using the raw container file descriptor,
we can use the following ioctl calls:

Listing 4.2: ioctl calls needed for VFIO container initialization

ioctl_unsafe!(container_fd, VFIO_GET_API_VERSION)
ioctl_unsafe!(container_fd, VFIO_CHECK_EXTENSION, VFIO_TYPE1_IOMMU)
ioctl_unsafe!(group_fd, VFIO_GROUP_GET_STATUS, &group_status)
ioctl_unsafe!(group_fd, VFIO_GROUP_SET_CONTAINER, &container_fd)
ioctl_unsafe!(container_fd, VFIO_SET_IOMMU, VFIO_TYPE1_IOMMU)
ioctl_unsafe!(group_fd, VFIO_GROUP_GET_DEVICE_FD, pci_addr)
ioctl_unsafe!(container_fd, VFIO_IOMMU_GET_INFO, &iommu_info)

Excluding the status and info calls, the functionality consists of initializing the
IOMMU for the device groups by setting the container on the groups, enabling Type1
for the IOMMU, and fetching the device file descriptor. With the device file descriptor,

11

4 Implementation

we gain access to the device regions through the VFIO device API, allowing us to access
the device registers.

4.1.4 Device register access

Previously, device access was done through the sysfs (pseudo-)filesystem. sysfs
exposes the device registers under the path /sys/bus/pci/devices/$PCI_ADDRESS/.
As seen in Figure 2.4, we need to access the command register and the NVMe BAR0
register. In sysfs, these are the config and resource0 files in the device directory. The
config file points to the address 0x0 of the PCI configuration space. By adding the
command register offset (0x4), we can access the command register.

Using the offset 0x2 in the command register, we can set the bit for bus mastering,
allowing the device to perform DMA. To map the BAR0 register to memory, we can
use mmap with a file descriptor to resource0.

To do the same using VFIO, we use the VFIO device API. We can access the de-
vice registers using the VFIO_DEVICE_GET_REGION_INFO ioctl operation on the de-
vice fd. This operation requires the struct vfio_region_info as the third parameter,
which needs to be initialized with a given index from vfio.h. We use the indices
VFIO_PCI_CONFIG_REGION_INDEX and VFIO_PCI_BAR0_REGION_INDEX to access the con-
fig and BAR register respectively. The struct is used as an input/output struct. After
After performing the syscall, the other fields are set, e.g., size or offset, and can be used
to read/write or memory map device registers.

Using VFIO_PCI_CONFIG_REGION_INDEX as the index, we again get the PCIe configu-
ration space address 0x0. By adding the command register offset, we can set the bus
mastering bit to enable DMA. After this, we can map the NVMe base address register
to memory using the VFIO_PCI_BAR0_REGION_INDEX index. The offset and size can be
directly passed into mmap to map the BAR0 register to memory, as seen on Listing 4.3.

12

4 Implementation

Listing 4.3: Mapping the BAR0 NVMe register to memory

let mut region_info = vfio_region_info {
argsz: mem::size_of::<vfio_region_info>() as u32,
flags: 0,
index: Self::VFIO_PCI_BAR0_REGION_INDEX,
cap_offset: 0,
size: 0,
offset: 0,

};

ioctl_unsafe!(
self.device_fd,
IoctlOp::VFIO_DEVICE_GET_REGION_INFO,
&mut region_info

)?;

let len = region_info.size as usize;

let ptr = mmap_unsafe!(
ptr::null_mut(),
len,
libc::PROT_READ | libc::PROT_WRITE,
libc::MAP_SHARED,
self.device_fd,
region_info.offset as i64

)?;

4.1.5 DMA (Un-)Mapping

When using physical addresses for DMA, several steps have to be performed to ensure
that the page is not moved. Firstly, hugepages must be used, as the kernel cannot
move these. The allocated memory is also locked using mlock to prevent the page from
being swapped out of memory. The hugepage file is created in the directory where
hugetlbfs is mounted, in our case /mnt/huge. By using mmap with the file descriptor
and locking it, we can create a statically mapped page in memory. To get the physical
address for DMA, the address translation entry in the MMU needs to be fetched from
/proc/self/pagemap. As mmap uses 4 KiB by default, we have to specify the use of
hugepages with the MAP_HUGETLB flag. The resulting pagesize depends on the default

13

4 Implementation

hugepage size of the system but can be specified with either the MAP_HUGE_2MB or the
MAP_HUGE_1GB flag.

As seen in Listing 4.4, VFIO greatly simplifies this, as using IOVAs alleviates the need
for ensuring the physical address does not change. This is handled by VFIO. Firstly, we
can either allocate or map a file to the process virtual space using mmap. As we do not
have the restriction of using hugepages, we can also perform the mapping using the de-
fault 4 KiB pages. To get the IOVA for a corresponding page in memory, we need to use
the vfio_iommu_type1_dma_map struct with the VFIO operation VFIO_IOMMU_MAP_DMA.
To map an address correctly, we need to specify the address mapping in the struct.
vaddr is the address in the process virtual address space, i.e., the address returned by
mmap. By setting the field iova to the same address, we can conveniently use the same
address for the IOVA. We do this to avoid manually managing the IOVAs. Finally, the
size has to be specified to the length passed to mmap. In the flags field, we can specify
if the memory is accessible with read and/or write. By default, we set both. This IOVA
can then be used just like the physical address by the NVMe controller.

Listing 4.4: Mapping memory for DMA

let mut iommu_dma_map = vfio_iommu_type1_dma_map {
argsz: mem::size_of::<vfio_iommu_type1_dma_map>() as u32,
flags: IoctlFlag::VFIO_DMA_MAP_FLAG_READ

| IoctlFlag::VFIO_DMA_MAP_FLAG_WRITE,
vaddr: ptr as u64,
iova: ptr as u64,
size,

};

ioctl_unsafe!(
*container_fd,
IoctlOp::VFIO_IOMMU_MAP_DMA,
&mut iommu_dma_map

)?;

let iova = iommu_dma_map.iova as usize;

Unmapping DMA The implementation includes a function for unmapping IOVAs.
As the mappings automatically get unmapped when the driver exits, it is still nice to
have when repeatedly mapping huge files. Using the VFIO_IOMMU_UNMAP_DMA ioctl
operation, we can unmap the memory and finally free it using munmap.

14

4 Implementation

4.1.6 NVMe initialization

Using the mapped NVMe BAR and the ability to create DMA mappings, we can
now initialize the NVMe controller. This mainly consists of allocating the queues and
mapping them to be accessed by the NVMe controller through DMA. The IOVAs of the
admin queues can be written to the mapped BAR. The BAR is also used to configure
the NVMe, e.g., setting the queue entry sizes. When the NVMe is configured and ready,
an I/O queue pair can be created using the admin queues.

4.1.7 I/O operations with VFIO

After initialization, the NVMe is ready to use. An example for an I/O operation is
shown in Figure 4.1.

Host
Memory

4

CQ

56

NVMe Device

1
Application

SQ

9

2

3

8

3

vroom

Target Memory
Mapped

NVMe BAR
Region

NVMe
BAR

7

CPU/MMU

IOMMU

CQ
Doorbell

SQ
Doorbell

Figure 4.1: I/O operation using vroom with enabled IOMMU

15

4 Implementation

The sequence of events in Figure 4.1 are as followed:

1. I/O function call: The application calls a read/write method on vroom

2. Command Submission: vroom creates a NvmeCommand struct and places it on the
Submission Queue (SQ) head.

3. Ring SQ Doorbell: vroom places the submission queue head address in the
doorbell register in the mapped NVMe BAR.

4. Take Command: The NVMe takes the command from the SQ using DMA.

5. Perform I/O: The NVMe uses the IOMMU to access the host memory via DMA
and performs the read/write command.

6. Complete I/O: The NVMe uses DMA to place a NvmeCompletion struct instance
on the head of the Completion Queue (CQ).

7. Polled CQ: By polling the CQ, vroom can process the CQ entry.

8. Ring CQ Doorbell: After processing the CQ entry, vroom rings the CQ Doorbell
to notify the NVMe controller that the Completion Queue has been processed.

9. Notify application : vroom notifies the application of the success of the I/O
operation. The application can continue running.

4.2 IOMMUFD

The IOMMU File Descriptor user API (IOMMUFD) offers a way of controlling the
IOMMU subsystem using file descriptors in user space [10]. IOMMUFD offers a more
granular management of the IOMMU, using devices instead of groups. Additionally,
it supports a more user-friendly interface, allowing the user to manage IOVAs easily.
Although IOMMUFD could be used as a standalone to provide simple IOMMU func-
tionality like mapping or unmapping, it is not suited user space drivers without VFIO.
Device registers still need to be accessed through the vfio-pci driver. Consequently,
IOMMUFD is used with VFIO, replacing its backend, i.e., the interaction with the
IOMMU, but still relying on the functionality of parts of VFIO. IOMMUFD was only
recently added to the Linux Kernel in December 2022. For example, Debian 12 does not
include it. Considering that it is not widely available or enabled on many distributions,
our driver offers both options of using the IOMMU. Instead of containers or groups,
IOMMUFD uses I/O address spaces (IOAS) and character device file descriptors. Just
like containers, IOAS can be used to provide shared memory mappings for multiple

16

4 Implementation

devices. Implementing IOMMUFD is similar to VFIO, but there are some key dif-
ferences. As with VFIO, to interact with IOMMUFD, we use the syscall ioctl. The
needed bindings, flags, and operations are defined in the Linux kernel under the path
include/uapi/linux/iommufd.h. Again, we manually port the needed structs and
constants to Rust.

The first change is the acquisition of the group/device and the container/IOMMU fd.
In VFIO, a container can be created using the file /dev/vfio/vfio. For IOMMUFD, the
iommu fd must first be acquired from /dev/iommu. Using the IOMMU_IOAS_ALLOC ioctl,
a new IOAS can be allocated. The device file descriptor, which was previously acquired
with VFIO_GROUP_GET_DEVICE_FD, can now simply be obtained through opening the
character device /dev/vfio/devices/vfioX [26]. In order to use the device with VFIO,
it still has to be bound to IOMMUFD, using VFIO_DEVICE_BIND_IOMMUFD.

The IOAS can then be assigned to the device using VFIO_DEVICE_ATTACH_IOMMUFD_PT.
As with containers, this operation can be performed on multiple devices for a shared
IOAS. The equivalent in VFIO is VFIO_GROUP_SET_CONTAINER.

When using VFIO with IOMMUFD, the interaction with vfio-pci stays the same.
Primarily, the functionality of reading, writing, and mapping to the device registers is
unchanged, except that instead of the VFIO device fd, the character device fd is used.

As for (un-)mapping DMA, the IOMMU_IOAS_MAP and IOMMU_IOAS_UNMAP are used
instead of VFIO_IOMMU_MAP_DMA and VFIO_IOMMU_UNMAP_DMA.

Listing 4.5: Mapping memory for DMA with IOMMUFD

let mut ioas_map = iommu_ioas_map {
size: mem::size_of::<iommu_ioas_map>() as u32,
flags: IoctlFlag::IOMMU_IOAS_MAP_WRITEABLE | IoctlFlag::

↪→ IOMMU_IOAS_MAP_READABLE,
ioas_id: *ioas_id,
__reserved: 0,
user_va: ptr as u64,
length: size as u64,
iova: 0,

};

ioctl_unsafe!(*iommufd, IoctlOp::IOMMU_IOAS_MAP, &mut ioas_map)?;

let iova = ioas_map.iova as usize;

17

4 Implementation

/dev/vfio/vfio /dev/vfio/X

vroom

VFIO-IOMMU

IOMMU Driver

IOMMU NVMe

Userspace

Kernelspace

Hardware

VFIO PCI Driver
"vfio-pci"

VFIO Interface

(a) VFIO with Containers

/dev/iommu /dev/vfio/devices/vfioX

vroom

IOMMUFD

IOMMU Driver

IOMMU NVMe

Userspace

Kernelspace

Hardware

VFIO PCI Driver
"vfio-pci"

VFIO InterfaceIOMMUFD
Interface (IOAS)

(b) VFIO with IOMMUFD (IOAS)

Figure 4.2: Layer diagrams of VFIO with VFIO Container API and IOMMUFD, adapted
from [28]

18

4 Implementation

4.3 Linux Systemcalls

A variety of Linux Systemcalls (syscalls) are used in vroom. The syscalls that are used
by vroom are mmap, ioctl, pread, pwrite (and mlock for the non-IOMMU version).
While there are crates that implement the syscall functionality, we only use the libc
crate to avoid inflating the dependency list and executable size. As these require C-like
syntax and unsafe code in Rust, we implement wrapper macros to provide locality of
behavior and secure error handling. In Listing 4.6, the macro for the mmap syscall can
be seen. As part of our error handling, we introduce an error enum variant for each
syscall. To not hide the innate unsafety of these macros, we add the suffix "_unsafe".

Listing 4.6: Syscall mmap macro, with own error variant

#[macro_export]
macro_rules! mmap_unsafe {

($addr:expr, $len:expr, $prot:expr, $flags:expr, $fd:expr, $offset:
↪→ expr) => {{
let ptr = unsafe { libc::mmap($addr, $len, $prot, $flags, $fd,

↪→ $offset) };
if ptr == libc::MAP_FAILED {

Err(Error::Mmap {
error: (format!("Mmap␣with␣len␣{}␣failed", $len)),
io_error: (std::io::Error::last_os_error()),

})
} else {

Ok(ptr)
}

}};
}

19

5 Evaluation

In this chapter, we analyze the performance impact of the IOMMU, directly comparing
it to the physical address approach. To compare both approaches fairly, we allocate and
map the memory upfront. The focus lies on the IOMMU itself and how it performs.
All performance tests use legacy VFIO instead of IOMMUFD as it currently remains
the widely supported way of using the IOMMU.

5.1 Setup

We use two systems to benchmark the driver’s performance. Both systems run Ubuntu
23.10 with Linux kernel version 6.5.0-42 and are NUMA systems with two nodes each.
We stick to NUMA locality, ensuring that the tested processes access memory from
their nearest available memory node to improve performance.

CPU Memory NVMe Capacity Count

Intel Xeon E5-2660v2 251 GiB Samsung Evo 970 Plus 1 TB 1

AMD EPYC 7713 1007 GiB Samsung PM9A3 1.92 TB 8

Table 5.1: Specifications of systems used in performance testing

CPU Clock Cores Virtualization Year

Intel Xeon E5-2660v2 2.2 GHz 10 VT-d 2012
AMD EPYC 7713 2.0 GHz 64 AMD-V 2021

Table 5.2: CPUs of the systems

20

5 Evaluation

NVMe
Maximum Maximum

Turbowrite Usage
Queue Count Queue Size

Samsung Evo 970 Plus 128 16384 Yes Consumer
Samsung PM9A3 128 16384 No Enterprise

Table 5.3: NVMe(s) of the systems

Despite the NVMe specification’s maximum capability of 65536 I/O queues, our
SSDs support a more reasonable amount of 128 I/O queues, which seems to be typical
for modern SSDs. Turbowrite is a Samsung technology that drastically speeds up write
latencies in the so-called "Turbowrite" buffer with the size of 42 GB of the NVMe, as
shown in [20]. All NVMe SSDs used were formatted to 512-byte blocks.

We use one thread per 1 I/O queue in our multithreaded tests. All writes are
performed on an empty SSD to avoid overhead through garbage collection on the
NVMe. As the NVMe can optimize reads on an empty SSD, all reads will be performed
on a full SSD. We exclusively use random writes/reads for the tests, as the NVMe can
drastically optimize sequential requests, which can lead to altered results. Unless stated
otherwise, we configure the submission and completion queue length to the maximum
amount supported by the NVMes. Additionally, all standard tests are run with the
iommu.strict=1 kernel parameter. When this parameter is set, the IOMMU invalidates
the complete IOTLB when an unmapping occurs. As we unmap IOVAs in between
tests, this ensures that the IOTLB is flushed before each test.

5.2 Results

For the following performance tests, we will compare the latencies and throughput
of vroom without the IOMMU and with the IOMMU, both utilizing 2 MiB pages. All
latency and throughput tests are run with a 1 GiB buffer in memory. For 2 MiB pages,
this equates to 512 pages being accessed. We use a unit size of 4 KiB, i.e., each I/O
operation reads/writes 4 KiB to the the NVMe.

5.2.1 Latencies

All latency performance measurements are done singlethreaded with queue depth 1
over a timespan of 60 seconds.

21

5 Evaluation

0 20 40 60 80 100 120 140 160 180 200

100

10−2

10−4

Latency [µs]

C
C
D
F

vroom
vroom IOMMU

(a) Random read

0 5 10 15 20 25 30 35

100

10−2

10−4

Latency [µs]

C
C
D
F

vroom
vroom IOMMU

90th percentile

99th percentile

99.99th percentile

99.999th percentile

(b) Random write

Figure 5.1: Tail latencies (60s) on Intel System

22

5 Evaluation

0 20 40 60 80 100 120 140 160 180 200

100

10−2

10−4

Latency [µs]

C
C
D
F

vroom
vroom IOMMU

(a) Random read

0 5 10 15 20 25 30 35

100

10−2

10−4

Latency [µs]

C
C
D
F

vroom
vroom IOMMU

90th percentile

99th percentile

99.99th percentile

99.999th percentile

(b) Random write

Figure 5.2: Tail latencies (60s) on AMD System

Figure 5.1 and Figure 5.2 show that the latency distribution is the same with IOMMU
as without. The lines are mostly overlapping. This shows that there are no significant
latency spikes that occur due to the IOMMU.

5.2.2 Throughput

To test the overall throughput we perform random reads/writes over 60 seconds once
with singlethreaded I/O and queue depth 1 and once with queue depth 32 and 4
threads. As seen on Figure 5.3, the IOMMU has no noticeable performance impact.
Even with the higher queue depth and thread count, the performance is identical.

23

5 Evaluation

read write
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

14

137

14

137

17

138

17

138

T
h
ro
u
g
h
p
u
t
[K

IO
P
S
]

vroom Intel System + IOMMU

vroom AMD System + IOMMU

(a) Queue depth 1 and 1 thread

read write
0

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200

434

607

438

608

874

713

874

715

T
h
ro
u
gh

p
u
t
[K

IO
P
S
]

vroom Intel System + IOMMU

vroom AMD System + IOMMU

(b) Queue depth 32 and 4 threads

Figure 5.3: Throughput of singlethreaded and multithreaded I/O over 60s

We also take a look at throughput performance with larger queue depths. The
performance is mostly the same, but a slight performance difference is noticeable on
the AMD system, where the maximum throughput of vroom with IOMMU is around
3% higher than without the IOMMU.

24

5 Evaluation

1 2 4 8 16 32 64
0

100

200

300

400

500

600

700

Queue Depth

K
IO

P
S

vroom
vroom VFIO

(a) Intel System

1 2 4 8 16 32 64
0

200

400

600

800

Queue Depth

K
IO

P
S

vroom
vroom VFIO

(b) AMD System

Figure 5.4: Random write throughput with increasing Queue Depth over 60s

Using multiple SSDs We further push the throughput by using 8 NVMes with
high queue depth and thread counts in parallel in Figure 5.5. Again, no significant
performance impact occurs. Each NVMe has a slightly higher throughput than when
tested alone.

25

5 Evaluation

read write
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

17

142

17

141

T
h
ro
u
g
h
p
u
t
[K

IO
P
S
]
p
er

N
V
M
e

vroom + IOMMU

(a) Queue depth 1 and 1 thread

read write
0

100

200

300

400

500

600

700

800

900 877

725

876

722

T
h
ro
u
gh

p
u
t
[K

IO
P
S
]
p
er

N
V
M
e

vroom + IOMMU

(b) Queue depth 32 and 4 threads

read write
0

100

200

300

400

500

600

700

800

900

1,000
942

822

940

832

T
h
ro
u
g
h
p
u
t
[K

IO
P
S
]
p
er

N
V
M
e

vroom + IOMMU

(c) Queue depth 128 and 16 threads

Figure 5.5: Throughput over 60s on 8 NVMe SSDs on the AMD system

26

5 Evaluation

5.3 Impact of 4 KiB pages

5.3.1 Throughput

As Linux, as well as our IOMMUs, support 4 KiB, 2 MiB and 1 GiB page sizes, we will
test and analyze how it affects the latencies and overall performance. A performance
impact should be noticeable, especially using 4 KiB pages. As we use a typical unit size
of 4 KiB, using 4 KiB pages should result in TLB-thrashing, i.e., every I/O operation
resulting in a page walk. To test this hypothesis, we focus on the Intel system and only
write to the Turbowrite buffer of the Samsung Evo 970 Plus to reach the maximum
performance and lowest latencies. We test this using an increasing number of threads
in Figure 5.6 and an increasing queue depth in Figure 5.7.

1 2 4 8 16 32 64
0

100

200

300

400

500

600

Threads

K
IO

P
S

NO IOMMU 2MiB
VFIO 4KiB
VFIO 2MiB

(a) 1 4 KiB buffer per thread

1 2 4 8 16 32 64
0

100

200

300

400

500

600

Threads

K
IO

P
S

NO IOMMU 2MiB
VFIO 4KiB
VFIO 2MiB

(b) 1 2 MiB buffer per thread

Figure 5.6: Random write throughput over 20s with increasing thread count and queue
depth 1 on the Intel system

27

5 Evaluation

In Figure 5.6, when comparing the performance of vroom without the IOMMU
against vroom with IOMMU using 4 KiB and 2 MiB pages on a 2MiB buffer, a perfor-
mance difference of around 10% between 4 KiB pages and 2 MiB pages can be observed.
This stems from the aforementioned IOTLB-thrashing. Noticeable is that no perfor-
mance impact can be seen when using a 4KiB buffer, as all pages can fit into the IOTLB.
The lines of both implementations using 2 MiB pages overlap with both buffer sizes.

1 2 4 8 16 32 64
0

200

400

600

800

Queue depth

K
IO

P
S

NO IOMMU 2M
VFIO 4K
VFIO 2M

(a) 1 4 KiB buffer per thread

1 2 4 8 16 32 64
0

200

400

600

800

Queue depth

K
IO

P
S

NO IOMMU 2M
VFIO 4K
VFIO 2M

(b) 1 2 MiB buffer per thread

Figure 5.7: Singlethreaded random write throughput over 20s with increasing queue
depth on the Intel system

In Figure 5.7, a 10% performance decrease can be seen at queue depth 4. This
difference grows smaller as we further increase the queue depth, though. At 16 or
more queue depth the throughput caps at around 890KIOPS, and no more substantial
difference between the implementations can be measured. As we have seen a constant
decrease of 10% in performance when testing multiple threads in Figure 5.6, we suspect

28

5 Evaluation

that the PCIe bus is the bottleneck and limiting the performance.

PCIe limitations The Intel System SSD is mounted on a PCIe 3.0 4x width bus with
a maximum payload of 256 bytes. This PCI bus has a maximum throughput of 3.938
GB/s. Using the SSD to its full capability, i.e. using random writes with high queue
depths in the Turbowrite buffer, can result in the bus being the bottleneck. With the
highest throughput measured being 890K IOPS with one I/O operation containing
4096 bytes of data, we achieve 3.64 GB/s. Including the headers for each TLP and
submission- and completion queue entries, we come to a result of 3.908 GB/s. This
roughly equates the PCIe bus limit and leads us to conclude, that the missing overhead
of using 4 KiB pages on high queue depths stems from this bottleneck.

5.3.2 Determining IOTLB size

As the size of the IOTLB is not stated in hardware and VT-d or AMD-V specifications,
we use a latency test to analyze the behaviour of the IOMMU. In order to isolate the
effect of the IOMMU we track the latencies of the fastest operation the NVMe can
perform. The lowest latency is achieved by carrying out a random write using the
smallest block size of 512 B.

If we then write from a single block from each page to the NVMe, repeat it 65536
times on an increasing page count that are a power of two, we can figure out where
a latency spike occurs. The page count right before the latency spike should equal
the IOTLB entry count. We configure the queues, buffer and prp-list to each take up
one page, resulting in a maximum of 6 pages in the IOTLB before the actual workload.
The test is performed with VFIO with 4 KiB, 2 MiB and 1 GiB pages and without the
IOMMU with 2 MiB pages as reference. As we have limited available memory, the
1 GiB pages could only be tested to 112 pages on the Intel system and 128 on the AMD
system.

29

5 Evaluation

16 32 64 128 256 512 1024
8,000

8,050

8,100

8,150

8,200

8,250

8,300

8,350

Pages

L
at
en
cy

in
n
s

NO IOMMU 2MiB
IOMMU 4KiB
IOMMU 2MiB
IOMMU 1GiB

Figure 5.8: Latencies of random writes on an emptied SSD with increasing pages in
memory on the Intel system

Results of Intel Xeon E5-2660v2 In the resulting graph Figure 5.8 we can observe
a performance spike of around 250 nanoseconds for each write between 64 and 128
allocated pages. In the case of 4 KiB pages, this is a memory size of only 512 KiB. Using
this information, we can assume that the IOTLB has the same size for each pagesize, as
well as it being 64 entries of size. This matches the page size Stefan Huber and Rolf
Neugebauer found [11][17].

30

5 Evaluation

16 32 64 128 256 512 1024

7,060

7,080

7,100

7,120

7,140

7,160

7,180

7,200

7,220

7,240

Pages

L
at
en
cy

in
n
s

NO IOMMU 2MiB
IOMMU 4KiB
IOMMU 2MiB
IOMMU 1GiB

Figure 5.9: Latencies of random writes on an emptied SSD with increasing pages in
memory on the AMD system

Results of AMD EPYC 7713 On the AMD IOMMU, we can see three performance
spikes. Each occurs between 32-64 pages for 1 GiB pages, 64-128 pages for 2 MiB, and
256-512 for 4 KiB pages. We can therefore assume that the IOTLB size depends on the
pagesize unlike on the Intel CPU. This leads us to suspect an IOTLB size of 32 for
1 GiB pages, 64 for 2 MiB pages and 256 for 4 KiB pages. The latencies only decrease
by about 60 ns, which is a about four times less than page walks on the Intel system.

31

6 Conclusion

In this thesis, we investigated the effects of using Linux VFIO for user space I/O. As
part of our implementation, we added support for the IOMMU in the user space NVMe
driver vroom. We tested the performance and discussed the security benefits of VFIO.
Additionally, we implemented the new IOMMUFD user API and compared it to legacy
VFIO.

Our findings include the IOTLB size of two IOMMU models by Intel and AMD,
which, when exceeded, can introduce address translation overhead for 4 KiB pages,
reaching up to a 10% decrease in throughput. When not exceeding the IOTLB or using
hugepages, the IOMMU performs exceptionally well, and we could not measure any
overhead versus using physical addresses. As the IOMMU provides bigger address
spaces, access rights enforcement, and the ability for the driver to run without root
privileges, it is a clear improvement for driver security and versatility.

Considering that in recent years, IOMMU technology has seen a rise in popularity in
the use of hardware passthrough for virtualization, it is likely that in the future, the
IOMMU performance and the IOTLB size will increase, further closing any existing
gap. The ability to improve security drastically and increase address space while not
compromising on performance is the reason the MMU succeeded, and it is likely that
the IOMMU will as well.

Future Work Future Work on the driver could include expanding the NVMe capa-
bilities. Currently, the driver is fixed to one namespace. Furthermore, the driver does
not support a block device layer or file system. Exploring these areas could enhance
the functionality and versatility of the driver. Also, it could be investigated if and how
many threads could operate on one I/O queue to further push the throughput. Finally,
a performance investigation into IOMMUFD could be conducted, as we only tested the
legacy VFIO implementation’s performance.

32

List of Figures

2.1 MMU and IOMMU relation to physical memory, adapted from [19] . . 3
2.2 Intel VT-d Paging structure for translating a 48-bit address to a 4 KiB

page, from [14] . 4
2.3 Segmented PCI identifier . 5
2.4 PCIe configuration space, adapted from [20] 6

4.1 I/O operation using vroom with enabled IOMMU 15
4.2 Layer diagrams of VFIO with VFIO Container API and IOMMUFD,

adapted from [28] . 18

5.1 Tail latencies (60s) on Intel System . 22
5.2 Tail latencies (60s) on AMD System . 23
5.3 Throughput of singlethreaded and multithreaded I/O over 60s 24
5.4 Random write throughput with increasing Queue Depth over 60s 25
5.5 Throughput over 60s on 8 NVMe SSDs on the AMD system 26
5.6 Random write throughput over 20s with increasing thread count and

queue depth 1 on the Intel system . 27
5.7 Singlethreaded random write throughput over 20s with increasing queue

depth on the Intel system . 28
5.8 Latencies of random writes on an emptied SSD with increasing pages in

memory on the Intel system . 30
5.9 Latencies of random writes on an emptied SSD with increasing pages in

memory on the AMD system . 31

33

List of Tables

5.1 Specifications of systems used in performance testing 20
5.2 CPUs of the systems . 20
5.3 NVMe(s) of the systems . 21

34

Listings

4.1 Structs used to model VFIO . 10
4.2 ioctl calls needed for VFIO container initialization 11
4.3 Mapping the BAR0 NVMe register to memory 13
4.4 Mapping memory for DMA . 14
4.5 Mapping memory for DMA with IOMMUFD 17
4.6 Syscall mmap macro, with own error variant 19

35

Bibliography

[1] About DPDK. DPDK. url: https://www.dpdk.org/about/ (visited on 08/08/2024).

[2] M. Ben-Yehuda, J. Xenidis, M. Ostrowski, K. Rister, A. Bruemmer, and L. van
Doorn. “The price of safety: Evaluating IOMMU performance.” In: Ottawa Linux
Symposium (OLS) (Jan. 2007), p. 13.

[3] Crate bindgen. url: https://docs.rs/bindgen/0.69.4/bindgen/ (visited on
07/22/2024).

[4] Direct Memory Acccess (DMA) From User Space. url: https://spdk.io/doc/
memory.html (visited on 07/22/2024).

[5] L. Doan and M. Day. “CrowdStrike Crash Affected 8.5 Million Microsoft Windows
Devices.” In: Bloomberg (July 20, 2024). url: https://www.bloomberg.com/
news/articles/2024- 07- 20/crowdstrike- crash- affected- 8- 5- million-
microsoft-windows-devices (visited on 07/23/2024).

[6] S. Ellmann. “Investigating Effects of Hardware Isolation in High-Speed Network
Environments.” MA thesis. Technical University of Munich, 2021.

[7] S. Ellmann. “Writing Network Drivers in Rust.” BA thesis. Technical University
of Munich, 2018. url: https : / / www . net . in . tum . de / fileadmin / bibtex /
publications/theses/2018-ixy-rust.pdf (visited on 08/12/2024).

[8] P. Emmerich, M. Pudelko, S. Bauer, S. Huber, T. Zwickl, and G. Carle. “User Space
Network Drivers.” In: 2019 ACM/IEEE Symposium on Architectures for Networking
and Communications Systems (ANCS). IEEE. 2019, pp. 1–12. url: https://www.
net.in.tum.de/fileadmin/bibtex/publications/papers/ixy-writing-user-
space-network-drivers.pdf (visited on 08/11/2024).

[9] External Technical Root Cause Analysis — Channel File 291. Crowdstrike, Aug. 6, 2024.
url: https://www.crowdstrike.com/wp-content/uploads/2024/08/Channel-
File - 291 - Incident - Root - Cause - Analysis - 08 . 06 . 2024 . pdf (visited on
08/08/2024).

[10] J. Gunthorpe and K. Tian. IOMMUFD. url: https : / / docs . kernel . org /
userspace-api/iommufd.html (visited on 07/08/2024).

36

https://www.dpdk.org/about/
https://docs.rs/bindgen/0.69.4/bindgen/
https://spdk.io/doc/memory.html
https://spdk.io/doc/memory.html
https://www.bloomberg.com/news/articles/2024-07-20/crowdstrike-crash-affected-8-5-million-microsoft-windows-devices
https://www.bloomberg.com/news/articles/2024-07-20/crowdstrike-crash-affected-8-5-million-microsoft-windows-devices
https://www.bloomberg.com/news/articles/2024-07-20/crowdstrike-crash-affected-8-5-million-microsoft-windows-devices
https://www.net.in.tum.de/fileadmin/bibtex/publications/theses/2018-ixy-rust.pdf
https://www.net.in.tum.de/fileadmin/bibtex/publications/theses/2018-ixy-rust.pdf
https://www.net.in.tum.de/fileadmin/bibtex/publications/papers/ixy-writing-user-space-network-drivers.pdf
https://www.net.in.tum.de/fileadmin/bibtex/publications/papers/ixy-writing-user-space-network-drivers.pdf
https://www.net.in.tum.de/fileadmin/bibtex/publications/papers/ixy-writing-user-space-network-drivers.pdf
https://www.crowdstrike.com/wp-content/uploads/2024/08/Channel-File-291-Incident-Root-Cause-Analysis-08.06.2024.pdf
https://www.crowdstrike.com/wp-content/uploads/2024/08/Channel-File-291-Incident-Root-Cause-Analysis-08.06.2024.pdf
https://docs.kernel.org/userspace-api/iommufd.html
https://docs.kernel.org/userspace-api/iommufd.html

Bibliography

[11] S. Huber. “Using the IOMMU for Safe and Secure User Space Network Drivers.”
MA thesis. Technical University of Munich, 2019. url: https://www.net.in.tum.
de/fileadmin/bibtex/publications/theses/2019-ixy-iommu.pdf (visited on
08/11/2024).

[12] HugeTLB Pages. url: https://docs.kernel.org/admin-guide/mm/hugetlbpage.
html (visited on 07/25/2024).

[13] Intel. 80286 Microprocessor with memory management and protection. Sept. 1993. url:
https://datasheets.chipdb.org/Intel/x86/286/datashts/210253-016.pdf
(visited on 07/23/2024).

[14] Intel. Intel Virtualization Technology for Directed I/O Architecture Specification Revision
4.1. Mar. 22, 2023. url: https://www.intel.com/content/www/us/en/content-
details/774206/intel- virtualization- technology- for- directed- i- o-
architecture-specification.html (visited on 08/02/2024).

[15] ixy-languages GitHub. url: https://github.com/ixy-languages/ixy-languages
(visited on 08/11/2024).

[16] ixy.rs source code. url: https://github.com/ixy-languages/ixy.rs (visited on
08/15/2024).

[17] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-Buedo, and A. W.
Moore. “Understanding PCIe performance for end host networking.” In: Proceed-
ings of the 2018 Conference of the ACM Special Interest Group on Data Communication.
SIGCOMM ’18. Budapest, Hungary: Association for Computing Machinery, 2018,
327–341. isbn: 9781450355674. doi: 10.1145/3230543.3230560. url: https:
//doi.org/10.1145/3230543.3230560.

[18] Null References: The Billion Dollar Mistake. url: https : / / www . infoq . com /
presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
(visited on 07/23/2024).

[19] O. Peleg and A. Morrison. Utilizing the IOMMU Scalably. USENIX ATC ’15. 2015.
url: https://www.youtube.com/watch?v=kL0Roes_cy0 (visited on 08/06/2024).

[20] T. Pirhonen. “Writing an NVMe Driver in Rust.” BA thesis. Technical University
of Munich, 2024. url: https://db.in.tum.de/~ellmann/theses/finished/24/
pirhonen_writing_an_nvme_driver_in_rust.pdf (visited on 08/11/2024).

[21] L. Proven. “Linux 6.1: Rust to hit mainline kernel.” In: The Register (Oct. 5, 2022).
url: https://www.theregister.com/2022/10/05/rust_kernel_pull_request_
pulled/ (visited on 08/02/2024).

37

https://www.net.in.tum.de/fileadmin/bibtex/publications/theses/2019-ixy-iommu.pdf
https://www.net.in.tum.de/fileadmin/bibtex/publications/theses/2019-ixy-iommu.pdf
https://docs.kernel.org/admin-guide/mm/hugetlbpage.html
https://docs.kernel.org/admin-guide/mm/hugetlbpage.html
https://datasheets.chipdb.org/Intel/x86/286/datashts/210253-016.pdf
https://www.intel.com/content/www/us/en/content-details/774206/intel-virtualization-technology-for-directed-i-o-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/774206/intel-virtualization-technology-for-directed-i-o-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/774206/intel-virtualization-technology-for-directed-i-o-architecture-specification.html
https://github.com/ixy-languages/ixy-languages
https://github.com/ixy-languages/ixy.rs
https://doi.org/10.1145/3230543.3230560
https://doi.org/10.1145/3230543.3230560
https://doi.org/10.1145/3230543.3230560
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare/
https://www.youtube.com/watch?v=kL0Roes_cy0
https://db.in.tum.de/~ellmann/theses/finished/24/pirhonen_writing_an_nvme_driver_in_rust.pdf
https://db.in.tum.de/~ellmann/theses/finished/24/pirhonen_writing_an_nvme_driver_in_rust.pdf
https://www.theregister.com/2022/10/05/rust_kernel_pull_request_pulled/
https://www.theregister.com/2022/10/05/rust_kernel_pull_request_pulled/

Bibliography

[22] D. Rovella. “Tech Meltdown Collapses Systems Worldwide.” In: Bloomberg (July 20,
2024). url: https://www.bloomberg.com/news/newsletters/2024- 07- 19/
bloomberg-evening-briefing-tech-meltdown-collapses-systems-worldwide
(visited on 07/23/2024).

[23] Storage performance Development Kit. url: https://spdk.io/ (visited on 07/22/2024).

[24] Submitting I/O to an NVMe Device. SPDK. url: https://spdk.io/doc/nvme_spec.
html (visited on 08/05/2024).

[25] Transparent Hugepage Support. url: https://docs.kernel.org/admin-guide/mm/
transhuge.html (visited on 07/23/2024).

[26] VFIO - "Virtual Function I/O". url: https://docs.kernel.org/driver-api/vfio.
html (visited on 07/08/2024).

[27] vroom source code. url: https : / / github . com / adwuerth / vroom (visited on
08/10/2024).

[28] C. Xia and Y. Cao. Introducing New VFIO and IOMMU Framework to DPDK.
DPDK Summit 2023. Sept. 13, 2023. url: https://www.youtube.com/watch?v=
ZhI0HEv50e0 (visited on 08/02/2024).

38

https://www.bloomberg.com/news/newsletters/2024-07-19/bloomberg-evening-briefing-tech-meltdown-collapses-systems-worldwide
https://www.bloomberg.com/news/newsletters/2024-07-19/bloomberg-evening-briefing-tech-meltdown-collapses-systems-worldwide
https://spdk.io/
https://spdk.io/doc/nvme_spec.html
https://spdk.io/doc/nvme_spec.html
https://docs.kernel.org/admin-guide/mm/transhuge.html
https://docs.kernel.org/admin-guide/mm/transhuge.html
https://docs.kernel.org/driver-api/vfio.html
https://docs.kernel.org/driver-api/vfio.html
https://github.com/adwuerth/vroom
https://www.youtube.com/watch?v=ZhI0HEv50e0
https://www.youtube.com/watch?v=ZhI0HEv50e0

	Abstract
	Introduction
	Background
	vroom
	Memory Management Unit
	I/O Memory Management Unit
	Direct Memory Access
	Hugepages
	Peripheral Component Interconnect Express
	Rust

	Related Work
	Ixy
	Data Plane Development Kit
	Storage Performance Development Kit

	Implementation
	Virtual Function I/O
	Groups and Containers
	Binding NVMe to vfio-pci
	IOMMU container initialization
	Device register access
	DMA (Un-)Mapping
	NVMe initialization
	I/O operations with VFIO

	IOMMUFD
	Linux Systemcalls

	Evaluation
	Setup
	Results
	Latencies
	Throughput

	Impact of 4 KiB pages
	Throughput
	Determining IOTLB size

	Conclusion
	List of Figures
	List of Tables
	Listings
	Bibliography

