No False Negatives: Accepting All Useful Schedules
in a Fast Serializable Many-Core System

Dominik Durner, Thomas Neumann
April 10, 2019

Technische Universitat Miinchen

Motivation M

» Concurrency control schemes only approximate the class of serializable
schedules, such as 2PL, OCC, TicToc

» Therefore, unexpected behavior and also unnecessary aborts are introduced
» Spurious aborts due to implementation artifacts that are hard to understand

Motivation M

» Concurrency control schemes only approximate the class of serializable
schedules, such as 2PL, OCC, TicToc

» Therefore, unexpected behavior and also unnecessary aborts are introduced
» Spurious aborts due to implementation artifacts that are hard to understand
> For example, 2PL cannot accept:

ti — % % |
r(x) w(x) rly) ¢

L Il Il |
b T T \

Motivation M

» Concurrency control schemes only approximate the class of serializable
schedules, such as 2PL, OCC, TicToc

» Therefore, unexpected behavior and also unnecessary aborts are introduced
» Spurious aborts due to implementation artifacts that are hard to understand
> For example, 2PL cannot accept:

t — I % 1
r(x) w(x) rly) ¢

b T
r(x) w(z) c

Motivation M

» Concurrency control schemes only approximate the class of serializable
schedules, such as 2PL, OCC, TicToc

» Therefore, unexpected behavior and also unnecessary aborts are introduced

v

Spurious aborts due to implementation artifacts that are hard to understand
> For example, 2PL cannot accept:

t — I —
r(x) w(x) rly) ¢

b T
r(x) w(z) c

» Only Serialization Graph Testing (SGT) accepts all valid schedules
> SGT seems to be too expensive and not scalable

Motivation: Desired Schedules M

» Conflict graphs allow to accept all conflict serializable schedules

all schedules
CSR

Motivation: Desired Schedules M

» Conflict graphs allow to accept all conflict serializable schedules
» Recoverability is independent of serializability

all schedules RC
CSR

Motivation: Desired Schedules

» Conflict graphs allow to accept all conflict serializable schedules
» Recoverability is independent of serializability
» DBMS users expect to see committed changes

all schedules RC

CSR
OCSR

COCSR

Motivation: Desired Schedules

» Conflict graphs allow to accept all conflict serializable schedules
» Recoverability is independent of serializability
» DBMS users expect to see committed changes

all schedules RC

CSR
OCSR

COCSR

Note that S2PL C COCSR N RC

Our approach leverages the conflict graph and P =

1. accepts all useful COCSR n RC schedules CSR

2. meets users’ expectations OCSR
3. has low overhead for maintaining the graph COCSR
4. scales to many-core systems

Serialization Graph Testing (SGT)

» Theorem: s € CSR < CG(s) is acylic
» Update CG(s) at operation arrival and allow if CG(s) is acyclic
» Remove all outgoing edges of a node at its deletion

Serialization Graph Testing (SGT)

» Theorem: s € CSR < CG(s) is acylic
» Update CG(s) at operation arrival and allow if CG(s) is acyclic
» Remove all outgoing edges of a node at its deletion

Example: s = ry[x] wo[x]

Serialization Graph Testing (SGT)

» Theorem: s € CSR < CG(s) is acylic
» Update CG(s) at operation arrival and allow if CG(s) is acyclic
» Remove all outgoing edges of a node at its deletion

Example: s = ry[x] wo[x] r1[X]

)
()

Serialization Graph Testing (SGT)

» Theorem: s € CSR < CG(s) is acylic
» Update CG(s) at operation arrival and allow if CG(s) is acyclic
» Remove all outgoing edges of a node at its deletion

Example: s = ry[x] wo[x] r1[x] ra[x] wa[x]

OO,
()

Serialization Graph Testing (SGT)

» Theorem: s € CSR < CG(s) is acylic
» Update CG(s) at operation arrival and allow if CG(s) is acyclic
» Remove all outgoing edges of a node at its deletion

Example: s = rp[x] wo[x] r1[X] r2[x] wa[X] wa[y] ¢z Co €1

OO,
()

= sc CSR

SGT Lacked Practical Relevance Tm

» SGT has the best theoretical properties of accepting all valid schedules
» However, previous work fails to implement SGT efficiently in practice

SGT Lacked Practical Relevance Tm

» SGT has the best theoretical properties of accepting all valid schedules
» However, previous work fails to implement SGT efficiently in practice

We developed the first practical and scalable algorithm that leverages

the theoretical superior concept of graph-based serialization testing

Prerequisites for Node Deletions Tm

Pitfall: Deletion of a committed node t,

Prerequisites for Node Deletions Tm

Pitfall: Deletion of a committed node t,

Example: s = ro[x] wo[x] r1[X] r2[X] w2 [x] w[y] c2

Prerequisites for Node Deletions Tm

Pitfall: Deletion of a committed node t,

Example: s = ro[x] wo[x] r1[X] r2[X] w2 [x] w[y] c2

)
©)

Prerequisites for Node Deletions Tm

Pitfall: Deletion of a committed node t,

Example: s = ro[x] wo[X] 1 [x] r2[x] w2[x] wa[y] c2 Foly] Co C4

)
©)

Prerequisites for Node Deletions Tm

Pitfall: Deletion of a committed node t,

Example: s = ro[x] wo[X] 1 [x] r2[x] w2[x] wa[y] c2 Foly] Co C4

(D—s
(&)

= s ¢ CSR, but not detectable if t, was deleted

Prerequisites for Node Deletions

Pitfall: Deletion of a committed node t,

Example: s = ro[x] wo[X] 1 [x] r2[x] w2[x] wa[y] c2 Foly] Co C4

(D—s
(&)

= s ¢ CSR, but not detectable if t, was deleted

Deletion of committed node is only allowed if all incoming edges are removed

(Log-) Recoverability Constraints

Every transaction commit needs to wait until it is not dependent on in-flight results

Example: s = ro[x] wo[X] r1[x] r2[X] wa[x] wa[y] c2 o €1

Ownn'O,
()

(Log-) Recoverability Constraints

Every transaction commit needs to wait until it is not dependent on in-flight results

Example: s = ro[x] wo[X] r1[x] r2[X] w2 [x] wa[y] C2 o€ ag a4

Ownn'O,
()

(Log-) Recoverability Constraints

Every transaction commit needs to wait until it is not dependent on in-flight results

Example: s = ro[x] wo[X] r1[x] r2[X] w2 [x] wa[y] C2 o€ ag a4

Ownn'O,
()

No incoming write-read, write-write edge from an uncommitted node allowed

Preserving the Commit Order Tum

No (uncommitted) incoming edge at commit time to preserve the commit order

Preserving the Commit Order Tum

No (uncommitted) incoming edge at commit time to preserve the commit order

Example: s = rp[x] wy[x] ¢

)
(©)

Preserving the Commit Order Tum

No (uncommitted) incoming edge at commit time to preserve the commit order

Example: s = rp[x] wy[x] B¢ d;

)
(©)

Preserving the Commit Order Tum

No (uncommitted) incoming edge at commit time to preserve the commit order

Example: s = ry[x] wy[x] B¢ 0 r2[y] ¢

OO,
O

Preserving the Commit Order Tum

No (uncommitted) incoming edge at commit time to preserve the commit order

Example: s = rp[x] wy[x] B¢ di r2[y] c2 woly]

)
(©)

Preserving the Commit Order Tum

No (uncommitted) incoming edge at commit time to preserve the commit order

Example: s = ro[x] w1 [x] 3¢ di r2[y] c2 woly] co

)
(©)

Preserving the Commit Order Tum

No (uncommitted) incoming edge at commit time to preserve the commit order

Example: s = rp[x] wi[x] B¢ di ra[y] ¢ woly] Co €1

©

Preserving the Commit Order Tum

No (uncommitted) incoming edge at commit time to preserve the commit order
Example: s = rp[x] wi[x] B¢ di ra[y] ¢ woly] Co €1

Sorig = rO[X] Wy [X] C1 r2[y] C2 WO[y] Co

with 8’ = byt but Sorig ¢ COCSR

Preserving the Commit Order Tum

No (uncommitted) incoming edge at commit time to preserve the commit order
Example: s = rp[x] wi[x] B¢ di ra[y] ¢ woly] Co €1

Sorig = rO[X] Wy [X] C1 r2[y] C2 WO[y] Co

with 8’ = byt but Sorig ¢ COCSR

All useful COCSR n RC schedules accepted due to commit delays

Committed nodes are deleted directly including all outgoing edges

Scaling of our SGT-based Approach M

» No incoming edges to commit simplifies cycle check
» Conflict graph is accessed concurrently by multiple threads
» No other transaction is allowed to modify a node during its final check

Scaling of our SGT-based Approach

» No incoming edges to commit simplifies cycle check
» Conflict graph is accessed concurrently by multiple threads
» No other transaction is allowed to modify a node during its final check

Transaction local shared/exclusive locks help to scale the graph

Example of our SGT-based Approach M

o —
r(X) W(X) Cstart (o]

bt — sharedLocks: {

r(x) Cstart c exclusiveLock: false

Example of our SGT-based Approach M

o ——1 — ()——()
r(X) W(X) Cstart (o]

bt — sharedLocks: {#} sharedLocks: {}

r(x) Cstart c exclusiveLock: false | |exclusiveLock: false

Example of our SGT-based Approach M

o ——1 — ()——()
r(X) W(X) Cstart (o]

bt — sharedLocks: {} sharedLocks: {}

r(x) Cstart c exclusiveLock: false | |exclusiveLock: true

Example of our SGT-based Approach M

o ——— — @
r(X) W(X) Cstart (o]

bt — sharedLocks: {} sharedLocks: {fp}

r(x) Cstart c exclusiveLock: true | | exclusivelLock: false

Example of our SGT-based Approach M

o ——1 — ()
r(X) W(X) Cstart (o]

b e — sharedLo;:ks: {}

r(x) Cstart c exclusivelLock: true

Experimental Evaluation Tm

Setup:
» 4-socket Intel Xeon server (60 cores) with 1TB DRAM
» Every transaction is scheduled on one worker thread
» Aborts require undos and restarts of the aborted transactions

Algorithms:
» Our SGT-based approach
» TicToc
» 2PL with row based atomic read-write locks and deadlock prevention

SmallBank Medium Contention (1000 Customers)

SGT
7.5 x 10%°
TicToc
Y 50x10*
a 2PL
2.5 x 107
0.0 x 10%° |
T T T T
0 20 40 60

OLTP threads

SmallBank Medium Contention (1000 Customers)

SGT 8x 10 2
7.5 x 107 - 4
TicToc @ 6x10 -2 |
Y 50x10%° - < 5
~ 2PL £ 4x10 7 2PL_=
" o) TicToc
2.5x10 < 251072 SGT
0.0 x 107 0 -
T T T T T T T T
0 20 40 60 0 20 40 60

OLTP threads OLTP threads

50% writes, 16 queries/tx, 60 threads

100% A
5
o
= 10% A
[}
-+
©
o
£ 1% o
o
Q
<
0.1%

0.00 0.25 0.50 0.75
Theta

YCSB-A, 50% writes, 16 queries/tx, 60 threads

Abort Rate (log)

100% A +6
1.2 x 107 1
0, -4
10% 8.0 x 10*° 4
Q2
ol
1% 4 4.0 x 10" 1
0.1% ¢4 : — | 0.0 x 107 -
0.00 0.25 0.50 0.75 0.00 0.25 0.50 0.75
Theta Theta

Our SGT has competitive throughput while reducing aborts significantly!

Summary: Our graph-based concurrency control algorithm M

all schedules RC

CSR
OCSR

accepts all useful
COCSR N RC schedules COCSR

Summary: Our graph-based concurrency control algorithm M

all schedules RC
CSR
accepts all useful OCSR
COCSR N RC schedules COCSR
8x10 2
© 6x10 2
2 , reduces aborted schedules
4x10 2PL ’ H
§ TicTog and meets users expectations
<, x10 24 SGT

0 20 40 60
OLTP threads

Summary: Our graph-based concurrency control algorithm M

accepts all useful
COCSR N RC schedules

2PL
TicToc

2x10 7 SGT

Abort Rate
S
X
5

0 20 40 60
OLTP threads

has low protocol overhead
and scales to many-core systems

all schedules RC

CSR
OCSR

COCSR

reduces aborted schedules
and meets users’ expectations

SGT
7.5 %10 4
TicToc
£ 50x10*
a 2PL
2.5 x 10" 4
0.0 x10*° 4
0 20 40 60

OLTP threads 15

