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» Concurrency control schemes only approximate the class of serializable
schedules, such as 2PL, OCC, TicToc

» Therefore, unexpected behavior and also unnecessary aborts are introduced
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Spurious aborts due to implementation artifacts that are hard to understand
> For example, 2PL cannot accept:
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» Only Serialization Graph Testing (SGT) accepts all valid schedules
> SGT seems to be too expensive and not scalable
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Note that S2PL C COCSR N RC



Our approach leverages the conflict graph and P =

1. accepts all useful COCSR n RC schedules CSR

2. meets users’ expectations OCSR
3. has low overhead for maintaining the graph COCSR
4. scales to many-core systems
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Serialization Graph Testing (SGT)

» Theorem: s € CSR < CG(s) is acylic
» Update CG(s) at operation arrival and allow if CG(s) is acyclic
» Remove all outgoing edges of a node at its deletion

Example: s = rp[x] wo[x] r1[X] r2[x] wa[X] wa[y] ¢z Co €1

OO,
()
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SGT Lacked Practical Relevance Tm

» SGT has the best theoretical properties of accepting all valid schedules
» However, previous work fails to implement SGT efficiently in practice

We developed the first practical and scalable algorithm that leverages

the theoretical superior concept of graph-based serialization testing
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Pitfall: Deletion of a committed node t,

Example: s = ro[x] wo[X] 1 [x] r2[x] w2[x] wa[y] c2 Foly] Co C4

(D—s
(&)

= s ¢ CSR, but not detectable if t, was deleted

Deletion of committed node is only allowed if all incoming edges are removed
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(Log-) Recoverability Constraints

Every transaction commit needs to wait until it is not dependent on in-flight results

Example: s = ro[x] wo[X] r1[x] r2[X] w2 [x] wa[y] C2 o€ ag a4

Ownn'O,
()

No incoming write-read, write-write edge from an uncommitted node allowed
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Preserving the Commit Order Tum

No (uncommitted) incoming edge at commit time to preserve the commit order
Example: s = rp[x] wi[x] B¢ di ra[y] ¢ woly] Co €1

Sorig = rO[X] Wy [X] C1 r2[y] C2 WO[y] Co

with 8’ = byt but Sorig ¢ COCSR

All useful COCSR n RC schedules accepted due to commit delays

Committed nodes are deleted directly including all outgoing edges
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» Conflict graph is accessed concurrently by multiple threads
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Transaction local shared/exclusive locks help to scale the graph
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Example of our SGT-based Approach M

o ——1 — ()
r(X) W(X) Cstart (o]

b e — sharedLo;:ks: {}

r(x) Cstart c exclusivelLock: true




Experimental Evaluation Tm

Setup:
» 4-socket Intel Xeon server (60 cores) with 1TB DRAM
» Every transaction is scheduled on one worker thread
» Aborts require undos and restarts of the aborted transactions

Algorithms:
» Our SGT-based approach
» TicToc
» 2PL with row based atomic read-write locks and deadlock prevention
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YCSB-A, 50% writes, 16 queries/tx, 60 threads
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Our SGT has competitive throughput while reducing aborts significantly!
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has low protocol overhead
and scales to many-core systems
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reduces aborted schedules
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