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Motivation

I Concurrency control schemes only approximate the class of serializable
schedules, such as 2PL, OCC, TicToc

I Therefore, unexpected behavior and also unnecessary aborts are introduced
I Spurious aborts due to implementation artifacts that are hard to understand

I For example, 2PL cannot accept:

t1
r(x) w(x) r(y) c

t2
r(x) w(z) c

I Only Serialization Graph Testing (SGT) accepts all valid schedules
I SGT seems to be too expensive and not scalable
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Motivation: Desired Schedules

I Conflict graphs allow to accept all conflict serializable schedules

I Recoverability is independent of serializability
I DBMS users expect to see committed changes

all schedules

CSR

OCSR

COCSR

RC

Note that S2PL ( COCSR ∩ RC
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Contribution

Our approach leverages the conflict graph and
1. accepts all useful COCSR ∩ RC schedules
2. meets users’ expectations
3. has low overhead for maintaining the graph
4. scales to many-core systems

all schedules

CSR
OCSR

COCSR

RC
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Serialization Graph Testing (SGT)

I Theorem: s ∈ CSR ⇔ CG(s) is acylic
I Update CG(s) at operation arrival and allow if CG(s) is acyclic
I Remove all outgoing edges of a node at its deletion

Example: s = r0[x ]w0[x ]

r1[x ] r2[x ]w2[x ]w2[y ] c2 c0 c1

t0

t1 t2

⇒ s ∈ CSR
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SGT Lacked Practical Relevance

I SGT has the best theoretical properties of accepting all valid schedules
I However, previous work fails to implement SGT efficiently in practice

We developed the first practical and scalable algorithm that leverages
the theoretical superior concept of graph-based serialization testing
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Prerequisites for Node Deletions

Pitfall: Deletion of a committed node tc

Example: s = r0[x ]w0[x ] r1[x ] r2[x ]w2[x ]w2[y ] c2

r0[y] c0 c1

t0

t1 t2

⇒ s 6∈ CSR, but not detectable if t2 was deleted

Deletion of committed node is only allowed if all incoming edges are removed
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(Log-) Recoverability Constraints

Every transaction commit needs to wait until it is not dependent on in-flight results

Example: s = r0[x ]w0[x ] r1[x ] r2[x ]w2[x ]w2[y ] c2 c0 c1

t0

t1 t2

No incoming write-read, write-write edge from an uncommitted node allowed
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Preserving the Commit Order

No (uncommitted) incoming edge at commit time to preserve the commit order

Example: s = r0[x ] w1[x ] c1

d1 r2[y ] c2 w0[y ] c0 c1

t0

t1 t2sorig = r0[x ] w1[x ] c1 r2[y ] c2 w0[y ] c0

with s′ = t2 t0 t1, but sorig /∈ COCSR

All useful COCSR ∩ RC schedules accepted due to commit delays

Committed nodes are deleted directly including all outgoing edges
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Scaling of our SGT-based Approach

I No incoming edges to commit simplifies cycle check
I Conflict graph is accessed concurrently by multiple threads
I No other transaction is allowed to modify a node during its final check

Transaction local shared/exclusive locks help to scale the graph
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Example of our SGT-based Approach

t0
r(x) w(x) cstart c

t1
r(x) cstart c

wait for t0

t0

t1

sharedLocks: {}
exclusiveLock: false
sharedLocks: {}
exclusiveLock: true
sharedLocks: {t0}
exclusiveLock: false
sharedLocks: {}
exclusiveLock: true

sharedLocks: {}
exclusiveLock: false

sharedLocks: {t1}
exclusiveLock: false
sharedLocks: {}
exclusiveLock: false
sharedLocks: {}
exclusiveLock: true
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Experimental Evaluation

Setup:
I 4-socket Intel Xeon server (60 cores) with 1TB DRAM
I Every transaction is scheduled on one worker thread
I Aborts require undos and restarts of the aborted transactions

Algorithms:
I Our SGT-based approach
I TicToc
I 2PL with row based atomic read-write locks and deadlock prevention
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YCSB-A, 50% writes, 16 queries/tx, 60 threads
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Our SGT has competitive throughput while reducing aborts significantly!
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Summary: Our graph-based concurrency control algorithm
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