
No False Negatives: Accepting All Useful Schedules
in a Fast Serializable Many-Core System

Dominik Durner, Thomas Neumann

April 10, 2019

Technische Universität München

Motivation

I Concurrency control schemes only approximate the class of serializable
schedules, such as 2PL, OCC, TicToc

I Therefore, unexpected behavior and also unnecessary aborts are introduced
I Spurious aborts due to implementation artifacts that are hard to understand

I For example, 2PL cannot accept:

t1
r(x) w(x) r(y) c

t2
r(x) w(z) c

I Only Serialization Graph Testing (SGT) accepts all valid schedules
I SGT seems to be too expensive and not scalable

2

Motivation

I Concurrency control schemes only approximate the class of serializable
schedules, such as 2PL, OCC, TicToc

I Therefore, unexpected behavior and also unnecessary aborts are introduced
I Spurious aborts due to implementation artifacts that are hard to understand
I For example, 2PL cannot accept:

t1
r(x) w(x) r(y) c

t2
r(x) w(z) c

I Only Serialization Graph Testing (SGT) accepts all valid schedules
I SGT seems to be too expensive and not scalable

2

Motivation

I Concurrency control schemes only approximate the class of serializable
schedules, such as 2PL, OCC, TicToc

I Therefore, unexpected behavior and also unnecessary aborts are introduced
I Spurious aborts due to implementation artifacts that are hard to understand
I For example, 2PL cannot accept:

t1
r(x) w(x) r(y) c

t2
r(x) w(z) c

I Only Serialization Graph Testing (SGT) accepts all valid schedules
I SGT seems to be too expensive and not scalable

2

Motivation

I Concurrency control schemes only approximate the class of serializable
schedules, such as 2PL, OCC, TicToc

I Therefore, unexpected behavior and also unnecessary aborts are introduced
I Spurious aborts due to implementation artifacts that are hard to understand
I For example, 2PL cannot accept:

t1
r(x) w(x) r(y) c

t2
r(x) w(z) c

I Only Serialization Graph Testing (SGT) accepts all valid schedules
I SGT seems to be too expensive and not scalable

2

Motivation: Desired Schedules

I Conflict graphs allow to accept all conflict serializable schedules

I Recoverability is independent of serializability
I DBMS users expect to see committed changes

all schedules

CSR

OCSR

COCSR

RC

Note that S2PL (COCSR ∩ RC

3

Motivation: Desired Schedules

I Conflict graphs allow to accept all conflict serializable schedules
I Recoverability is independent of serializability

I DBMS users expect to see committed changes

all schedules

CSR

OCSR

COCSR

RC

Note that S2PL (COCSR ∩ RC

3

Motivation: Desired Schedules

I Conflict graphs allow to accept all conflict serializable schedules
I Recoverability is independent of serializability
I DBMS users expect to see committed changes

all schedules

CSR
OCSR

COCSR

RC

Note that S2PL (COCSR ∩ RC

3

Motivation: Desired Schedules

I Conflict graphs allow to accept all conflict serializable schedules
I Recoverability is independent of serializability
I DBMS users expect to see committed changes

all schedules

CSR
OCSR

COCSR

RC

Note that S2PL (COCSR ∩ RC

3

Contribution

Our approach leverages the conflict graph and
1. accepts all useful COCSR ∩ RC schedules
2. meets users’ expectations
3. has low overhead for maintaining the graph
4. scales to many-core systems

all schedules

CSR
OCSR

COCSR

RC

4

Serialization Graph Testing (SGT)

I Theorem: s ∈ CSR ⇔ CG(s) is acylic
I Update CG(s) at operation arrival and allow if CG(s) is acyclic
I Remove all outgoing edges of a node at its deletion

Example: s = r0[x]w0[x]

r1[x] r2[x]w2[x]w2[y] c2 c0 c1

t0

t1 t2

⇒ s ∈ CSR

5

Serialization Graph Testing (SGT)

I Theorem: s ∈ CSR ⇔ CG(s) is acylic
I Update CG(s) at operation arrival and allow if CG(s) is acyclic
I Remove all outgoing edges of a node at its deletion

Example: s = r0[x]w0[x]

r1[x] r2[x]w2[x]w2[y] c2 c0 c1

t0

t1 t2

⇒ s ∈ CSR

5

Serialization Graph Testing (SGT)

I Theorem: s ∈ CSR ⇔ CG(s) is acylic
I Update CG(s) at operation arrival and allow if CG(s) is acyclic
I Remove all outgoing edges of a node at its deletion

Example: s = r0[x]w0[x] r1[x]

r2[x]w2[x]w2[y] c2 c0 c1

t0

t1

t2

⇒ s ∈ CSR

5

Serialization Graph Testing (SGT)

I Theorem: s ∈ CSR ⇔ CG(s) is acylic
I Update CG(s) at operation arrival and allow if CG(s) is acyclic
I Remove all outgoing edges of a node at its deletion

Example: s = r0[x]w0[x] r1[x] r2[x]w2[x]

w2[y] c2 c0 c1

t0

t1 t2

⇒ s ∈ CSR

5

Serialization Graph Testing (SGT)

I Theorem: s ∈ CSR ⇔ CG(s) is acylic
I Update CG(s) at operation arrival and allow if CG(s) is acyclic
I Remove all outgoing edges of a node at its deletion

Example: s = r0[x]w0[x] r1[x] r2[x]w2[x]w2[y] c2 c0 c1

t0

t1 t2

⇒ s ∈ CSR

5

SGT Lacked Practical Relevance

I SGT has the best theoretical properties of accepting all valid schedules
I However, previous work fails to implement SGT efficiently in practice

We developed the first practical and scalable algorithm that leverages
the theoretical superior concept of graph-based serialization testing

6

SGT Lacked Practical Relevance

I SGT has the best theoretical properties of accepting all valid schedules
I However, previous work fails to implement SGT efficiently in practice

We developed the first practical and scalable algorithm that leverages
the theoretical superior concept of graph-based serialization testing

6

Prerequisites for Node Deletions

Pitfall: Deletion of a committed node tc

Example: s = r0[x]w0[x] r1[x] r2[x]w2[x]w2[y] c2

r0[y] c0 c1

t0

t1 t2

⇒ s 6∈ CSR, but not detectable if t2 was deleted

Deletion of committed node is only allowed if all incoming edges are removed

7

Prerequisites for Node Deletions

Pitfall: Deletion of a committed node tc

Example: s = r0[x]w0[x] r1[x] r2[x]w2[x]w2[y] c2

r0[y] c0 c1

t0

t1 t2

⇒ s 6∈ CSR, but not detectable if t2 was deleted

Deletion of committed node is only allowed if all incoming edges are removed

7

Prerequisites for Node Deletions

Pitfall: Deletion of a committed node tc

Example: s = r0[x]w0[x] r1[x] r2[x]w2[x]w2[y] c2

r0[y] c0 c1

t0

t1

t2

⇒ s 6∈ CSR, but not detectable if t2 was deleted

Deletion of committed node is only allowed if all incoming edges are removed

7

Prerequisites for Node Deletions

Pitfall: Deletion of a committed node tc

Example: s = r0[x]w0[x] r1[x] r2[x]w2[x]w2[y] c2 r0[y] c0 c1

t0

t1

t2

⇒ s 6∈ CSR, but not detectable if t2 was deleted

Deletion of committed node is only allowed if all incoming edges are removed

7

Prerequisites for Node Deletions

Pitfall: Deletion of a committed node tc

Example: s = r0[x]w0[x] r1[x] r2[x]w2[x]w2[y] c2 r0[y] c0 c1

t0

t1 t2

⇒ s 6∈ CSR, but not detectable if t2 was deleted

Deletion of committed node is only allowed if all incoming edges are removed

7

Prerequisites for Node Deletions

Pitfall: Deletion of a committed node tc

Example: s = r0[x]w0[x] r1[x] r2[x]w2[x]w2[y] c2 r0[y] c0 c1

t0

t1 t2

⇒ s 6∈ CSR, but not detectable if t2 was deleted

Deletion of committed node is only allowed if all incoming edges are removed

7

(Log-) Recoverability Constraints

Every transaction commit needs to wait until it is not dependent on in-flight results

Example: s = r0[x]w0[x] r1[x] r2[x]w2[x]w2[y] c2 c0 c1

t0

t1 t2

No incoming write-read, write-write edge from an uncommitted node allowed

8

(Log-) Recoverability Constraints

Every transaction commit needs to wait until it is not dependent on in-flight results

Example: s = r0[x]w0[x] r1[x] r2[x]w2[x]w2[y] c2���XXXc0 c1 a0 a1

t0

t1 t2

No incoming write-read, write-write edge from an uncommitted node allowed

8

(Log-) Recoverability Constraints

Every transaction commit needs to wait until it is not dependent on in-flight results

Example: s = r0[x]w0[x] r1[x] r2[x]w2[x]w2[y] c2���XXXc0 c1 a0 a1

t0

t1 t2

No incoming write-read, write-write edge from an uncommitted node allowed

8

Preserving the Commit Order

No (uncommitted) incoming edge at commit time to preserve the commit order

Example: s = r0[x] w1[x] c1

d1 r2[y] c2 w0[y] c0 c1

t0

t1 t2sorig = r0[x] w1[x] c1 r2[y] c2 w0[y] c0

with s′ = t2 t0 t1, but sorig /∈ COCSR

All useful COCSR ∩ RC schedules accepted due to commit delays

Committed nodes are deleted directly including all outgoing edges

9

Preserving the Commit Order

No (uncommitted) incoming edge at commit time to preserve the commit order

Example: s = r0[x] w1[x] c1

d1 r2[y] c2 w0[y] c0 c1

t0

t1

t2sorig = r0[x] w1[x] c1 r2[y] c2 w0[y] c0

with s′ = t2 t0 t1, but sorig /∈ COCSR

All useful COCSR ∩ RC schedules accepted due to commit delays

Committed nodes are deleted directly including all outgoing edges

9

Preserving the Commit Order

No (uncommitted) incoming edge at commit time to preserve the commit order

Example: s = r0[x] w1[x] ��ZZc1 d1

r2[y] c2 w0[y] c0 c1

t0

t1

t2sorig = r0[x] w1[x] c1 r2[y] c2 w0[y] c0

with s′ = t2 t0 t1, but sorig /∈ COCSR

All useful COCSR ∩ RC schedules accepted due to commit delays

Committed nodes are deleted directly including all outgoing edges

9

Preserving the Commit Order

No (uncommitted) incoming edge at commit time to preserve the commit order

Example: s = r0[x] w1[x] ��ZZc1 d1 r2[y] c2

w0[y] c0 c1

t0

t1 t2

sorig = r0[x] w1[x] c1 r2[y] c2 w0[y] c0

with s′ = t2 t0 t1, but sorig /∈ COCSR

All useful COCSR ∩ RC schedules accepted due to commit delays

Committed nodes are deleted directly including all outgoing edges

9

Preserving the Commit Order

No (uncommitted) incoming edge at commit time to preserve the commit order

Example: s = r0[x] w1[x] ��ZZc1 d1 r2[y] c2 w0[y]

c0 c1

t0

t1

t2sorig = r0[x] w1[x] c1 r2[y] c2 w0[y] c0

with s′ = t2 t0 t1, but sorig /∈ COCSR

All useful COCSR ∩ RC schedules accepted due to commit delays

Committed nodes are deleted directly including all outgoing edges

9

Preserving the Commit Order

No (uncommitted) incoming edge at commit time to preserve the commit order

Example: s = r0[x] w1[x] ��ZZc1 d1 r2[y] c2 w0[y] c0

c1

t0

t1

t2sorig = r0[x] w1[x] c1 r2[y] c2 w0[y] c0

with s′ = t2 t0 t1, but sorig /∈ COCSR

All useful COCSR ∩ RC schedules accepted due to commit delays

Committed nodes are deleted directly including all outgoing edges

9

Preserving the Commit Order

No (uncommitted) incoming edge at commit time to preserve the commit order

Example: s = r0[x] w1[x] ��ZZc1 d1 r2[y] c2 w0[y] c0 c1

t0

t1

t2sorig = r0[x] w1[x] c1 r2[y] c2 w0[y] c0

with s′ = t2 t0 t1, but sorig /∈ COCSR

All useful COCSR ∩ RC schedules accepted due to commit delays

Committed nodes are deleted directly including all outgoing edges

9

Preserving the Commit Order

No (uncommitted) incoming edge at commit time to preserve the commit order

Example: s = r0[x] w1[x] ��ZZc1 d1 r2[y] c2 w0[y] c0 c1

t0

t1 t2

sorig = r0[x] w1[x] c1 r2[y] c2 w0[y] c0

with s′ = t2 t0 t1, but sorig /∈ COCSR

All useful COCSR ∩ RC schedules accepted due to commit delays

Committed nodes are deleted directly including all outgoing edges

9

Preserving the Commit Order

No (uncommitted) incoming edge at commit time to preserve the commit order

Example: s = r0[x] w1[x] ��ZZc1 d1 r2[y] c2 w0[y] c0 c1

t0

t1 t2

sorig = r0[x] w1[x] c1 r2[y] c2 w0[y] c0

with s′ = t2 t0 t1, but sorig /∈ COCSR

All useful COCSR ∩ RC schedules accepted due to commit delays

Committed nodes are deleted directly including all outgoing edges

9

Scaling of our SGT-based Approach

I No incoming edges to commit simplifies cycle check
I Conflict graph is accessed concurrently by multiple threads
I No other transaction is allowed to modify a node during its final check

Transaction local shared/exclusive locks help to scale the graph

10

Scaling of our SGT-based Approach

I No incoming edges to commit simplifies cycle check
I Conflict graph is accessed concurrently by multiple threads
I No other transaction is allowed to modify a node during its final check

Transaction local shared/exclusive locks help to scale the graph

10

Example of our SGT-based Approach

t0
r(x) w(x) cstart c

t1
r(x) cstart c

wait for t0

t0

t1

sharedLocks: {}
exclusiveLock: false
sharedLocks: {}
exclusiveLock: true
sharedLocks: {t0}
exclusiveLock: false
sharedLocks: {}
exclusiveLock: true

sharedLocks: {}
exclusiveLock: false

sharedLocks: {t1}
exclusiveLock: false
sharedLocks: {}
exclusiveLock: false
sharedLocks: {}
exclusiveLock: true

11

Example of our SGT-based Approach

t0
r(x) w(x) cstart c

t1
r(x) cstart c

wait for t0

t0 t1

sharedLocks: {}
exclusiveLock: false

sharedLocks: {}
exclusiveLock: true
sharedLocks: {t0}
exclusiveLock: false
sharedLocks: {}
exclusiveLock: true

sharedLocks: {}
exclusiveLock: false

sharedLocks: {t1}
exclusiveLock: false

sharedLocks: {}
exclusiveLock: false
sharedLocks: {}
exclusiveLock: true

11

Example of our SGT-based Approach

t0
r(x) w(x) cstart c

t1
r(x) cstart c

wait for t0

t0 t1

sharedLocks: {}
exclusiveLock: false

sharedLocks: {}
exclusiveLock: true

sharedLocks: {t0}
exclusiveLock: false
sharedLocks: {}
exclusiveLock: true

sharedLocks: {}
exclusiveLock: false
sharedLocks: {t1}
exclusiveLock: false

sharedLocks: {}
exclusiveLock: false

sharedLocks: {}
exclusiveLock: true

11

Example of our SGT-based Approach

t0
r(x) w(x) cstart c

t1
r(x) cstart c

wait for t0

t0 t1

sharedLocks: {}
exclusiveLock: false
sharedLocks: {}
exclusiveLock: true

sharedLocks: {t0}
exclusiveLock: false

sharedLocks: {}
exclusiveLock: true

sharedLocks: {}
exclusiveLock: false
sharedLocks: {t1}
exclusiveLock: false
sharedLocks: {}
exclusiveLock: false

sharedLocks: {}
exclusiveLock: true

11

Example of our SGT-based Approach

t0
r(x) w(x) cstart c

t1
r(x) cstart c

wait for t0

t0

t1

sharedLocks: {}
exclusiveLock: false
sharedLocks: {}
exclusiveLock: true
sharedLocks: {t0}
exclusiveLock: false

sharedLocks: {}
exclusiveLock: true

sharedLocks: {}
exclusiveLock: false
sharedLocks: {t1}
exclusiveLock: false
sharedLocks: {}
exclusiveLock: false
sharedLocks: {}
exclusiveLock: true

11

Experimental Evaluation

Setup:
I 4-socket Intel Xeon server (60 cores) with 1TB DRAM
I Every transaction is scheduled on one worker thread
I Aborts require undos and restarts of the aborted transactions

Algorithms:
I Our SGT-based approach
I TicToc
I 2PL with row based atomic read-write locks and deadlock prevention

12

SmallBank Medium Contention (1000 Customers)

0.0 × 10+0

2.5 × 10+6

5.0 × 10+6

7.5 × 10+6

0 20 40 60

OLTP threads

T
X

/s

2PL

TicToc

SGT

0

2 × 10 2

4 × 10 2

6 × 10 2

8 × 10 2

0 20 40 60

OLTP threads

A
b

o
rt

 R
a
te

SGT
TicToc

2PL

-

-

-

-

13

SmallBank Medium Contention (1000 Customers)

0.0 × 10+0

2.5 × 10+6

5.0 × 10+6

7.5 × 10+6

0 20 40 60

OLTP threads

T
X

/s

2PL

TicToc

SGT

0

2 × 10 2

4 × 10 2

6 × 10 2

8 × 10 2

0 20 40 60

OLTP threads

A
b

o
rt

 R
a
te

SGT
TicToc

2PL

-

-

-

-

13

YCSB-A, 50% writes, 16 queries/tx, 60 threads

100%

0.00 0.25 0.50 0.75

Theta

A
b

o
rt

 R
a
te

 (
lo

g
) 2PL

TicToc

SGT

10%

1%

0.1%

0.0 × 10+0

4.0 × 10+5

8.0 × 10+5

1.2 × 10+6

0.00 0.25 0.50 0.75

Theta

T
X
/s

TicToc

2PL SGT

Our SGT has competitive throughput while reducing aborts significantly!

14

YCSB-A, 50% writes, 16 queries/tx, 60 threads

100%

0.00 0.25 0.50 0.75

Theta

A
b

o
rt

 R
a
te

 (
lo

g
) 2PL

TicToc

SGT

10%

1%

0.1% 0.0 × 10+0

4.0 × 10+5

8.0 × 10+5

1.2 × 10+6

0.00 0.25 0.50 0.75

Theta

T
X
/s

TicToc

2PL SGT

Our SGT has competitive throughput while reducing aborts significantly!

14

Summary: Our graph-based concurrency control algorithm

accepts all useful
COCSR ∩ RC schedules

all schedules

CSR
OCSR

COCSR

RC

0

2 × 10 2

4 × 10 2

6 × 10 2

8 × 10 2

0 20 40 60

OLTP threads

A
b
o
rt

 R
a
te

SGT
TicToc

2PL

-

-

-

-

reduces aborted schedules
and meets users’ expectations

has low protocol overhead
and scales to many-core systems

0.0 × 10+0

2.5 × 10+6

5.0 × 10+6

7.5 × 10+6

0 20 40 60

OLTP threads

T
X

/s

2PL

TicToc

SGT

15

Summary: Our graph-based concurrency control algorithm

accepts all useful
COCSR ∩ RC schedules

all schedules

CSR
OCSR

COCSR

RC

0

2 × 10 2

4 × 10 2

6 × 10 2

8 × 10 2

0 20 40 60

OLTP threads

A
b
o
rt

 R
a
te

SGT
TicToc

2PL

-

-

-

-

reduces aborted schedules
and meets users’ expectations

has low protocol overhead
and scales to many-core systems

0.0 × 10+0

2.5 × 10+6

5.0 × 10+6

7.5 × 10+6

0 20 40 60

OLTP threads

T
X

/s

2PL

TicToc

SGT

15

Summary: Our graph-based concurrency control algorithm

accepts all useful
COCSR ∩ RC schedules

all schedules

CSR
OCSR

COCSR

RC

0

2 × 10 2

4 × 10 2

6 × 10 2

8 × 10 2

0 20 40 60

OLTP threads

A
b
o
rt

 R
a
te

SGT
TicToc

2PL

-

-

-

-

reduces aborted schedules
and meets users’ expectations

has low protocol overhead
and scales to many-core systems

0.0 × 10+0

2.5 × 10+6

5.0 × 10+6

7.5 × 10+6

0 20 40 60

OLTP threads

T
X

/s

2PL

TicToc

SGT

15

