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ABSTRACT

Somewhat surprisingly, the behavior of analytical query en-
gines is crucially affected by the dynamic memory alloca-
tor used. Memory allocators highly influence performance,
scalability, memory efficiency and memory fairness to other
processes. In this work, we provide the first comprehensive
experimental study that analyzes and explains the impact of
memory allocation for high-performance query engines. We
test five state-of-the-art dynamic memory allocators and dis-
cuss their strengths and weaknesses within our DBMS. The
right allocator can increase the performance of TPC-DS (SF
100) by 2.7x on a 4-socket Intel Xeon server.

1. INTRODUCTION

Modern high-performance query engines are orders of mag-
nitude faster than traditional database systems. As a result,
components that hitherto were not crucial for performance
may become a performance bottleneck. One such compo-
nent is memory allocation. Most modern query engines are
highly parallel and heavily rely on temporary hash-tables for
query processing which results in a large number of short liv-
ing memory allocations of varying size. Memory allocators
therefore need to be scalable and be able to handle myri-
ads of small and medium sized allocations as well as several
huge allocations simultaneously. As we show in this paper,
memory allocation has become a large factor in overall query
processing performance.

New hardware trends exacerbate the allocation issues. The
development of multi- and many-core server architectures
with up to hundred general purpose cores is a distinct chal-
lenge for memory allocation strategies. Due to the increased
number of pure computation power, more active queries are
possible. Furthermore, multi-threaded data structure imple-
mentations lead to dense and simultaneous access patterns.
Because most multi-node machines rely on a non-uniform
memory access (NUMA) model, requesting memory from a
remote node is particularly expensive.
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Figure 1: Execution of a given query set on TPC-DS (SF
100) with different allocators.

Therefore, the following goals should be accomplished by
a dynamic memory allocator:

Performance: Minimize the overhead for malloc and free.
Scalability: Reduce overhead for multi-threaded allocs.
Memory Fairness: Give freed memory back to the OS.
Memory Efficiency: Reduce memory consumption.

In this paper, we perform the first comprehensive analysis
that highlights and explains the impact of memory alloca-
tion in modern database systems. We evaluate different ap-
proaches to the aforementioned dynamic memory allocator
requirements. Although memory allocation is on the critical
path of query processing, no empirical study on different dy-
namic memory allocators for in-memory database systems
has been conducted [1].

Figure 1 shows the effects of different allocation strate-
gies on TPC-DS with scale factor 100. We measure memory
consumption and execution time with our multi-threaded
database system on a 4-socket Intel Xeon server. In this ex-
periment, our DBMS executes the query set sequentially us-
ing all available cores. Even this relatively simple workload
already results in significant performance and memory usage
differences. Our database linked with jemalloc can reduce
the execution time to % in comparison to linking it with the
standard malloc of glibc 2.23. Moreover, the used average
and peak memory consumption of the allocators vary highly.
Although the resident memory consumption seems high for
TCMalloc, it already gives back the memory to the operating



system lazily. Consequently, the allocation strategy is cru-
cial to the performance and memory consumption behavior
of in-memory database systems.

The remainder of this paper is structured as follows: Af-
ter discussing related work in Section 2, we describe the
used allocators and their most important design details in
Section 3. Section 4 highlights important properties of our
research DBMS “umbra” and analyzes the executed work-
load according to its allocation pattern. Our comprehensive
experimental study is evaluated in Section 5. Section 6 sum-
marizes our findings.

2. RELATED WORK

Ferreira et al. [9] analyzed dynamic memory allocators for
a variety of multi-threaded workloads. However, the study
considers only up to 4 cores. Therefore, it is hard to predict
the scalability for today’s many-core systems.

In-memory DBMS and analytical query engines, such as
HyPer [15], SAP HANA [20], and Quickstep [23] are built to
utilize as many cores as possible to speed up query process-
ing. Because these system rely on allocation-heavy opera-
tors (e.g., hash joins, aggregations), a revised experimental
analysis on the scalability of the state-of-the-art allocators
is needed. In-memory hash joins and aggregations can be
implemented in many different ways which can influence the
allocation pattern heavily [2, 3, 26, 17].

Some online transaction processing (OLTP) systems try
to reduce the allocation overhead by managing their allo-
cated memory in chunks to increase performance for small
transactional queries [25, 24, 5]. However, many database
systems process both transactional and analytical queries.
Therefore, the wide variety of memory allocation patterns
for analytical queries needs to be considered as well. Cus-
tom chunk memory managers help to reduce memory calls
for small allocations but larger chunk sizes trade memory
efficiency in favor of performance. Thus, our database sys-
tem uses transaction-local chunks to speed up small allo-
cations. Despite these optimizations, allocations are still a
performance issue. Hence, the allocator choice is crucial to
maximize throughput.

Preliminary results showed that memory allocation indeed
has impact on the performance of query engines [4]. In this
study, we analyze and explain the effects of different allo-
cation strategies in order to understand all strengths and
weaknesses of current allocators on modern hardware.

With the development of non-volatile memory (NVM),
new allocation requirements were introduced. Foremost,
the defragmentation and safe release of unused memory is
important since all changes are persistent. New dynamic
memory allocators for these novel persistent memory sys-
tems have been developed and experimentally studied [22].
However, regular allocators outperform these NVM alloca-
tors in most workloads due to fewer memory constraints.

3. MEMORY ALLOCATORS

In this section, we discuss the five different allocation
strategies used for our experimental study. We explain the
basic properties of these algorithms according to memory
allocation and freeing. The tested state-of-the-art alloca-
tors are available as Ubuntu 18.10 packages. Only the glibc
malloc 2.23 implementation is part of a previous Ubuntu

package. Nevertheless, this version is still used in many cur-
rent distributions such as the stable Debian release.

Memory allocation is strongly connected with the oper-
ating system (OS). The mapping between physical and vir-
tual memory is handled by the kernel. Allocators need to
request virtual memory from the OS. Traditionally, the user
program asks for memory by calling the malloc method of
the allocator. The allocator either has memory available
that is unused and suitable or needs to request new memory
from the OS. For example, the Linux kernel has multiple
APIs for requesting and freeing memory. brk calls can in-
crease and decrease the amount of memory allocated to the
data segment by changing the program break. mmap maps
files into memory and implements demand paging such that
physical pages are only allocated if used. With anonymous
mappings, virtual memory that is not backed by a real file
can be allocated within main memory as well. The memory
allocation process is visualized below.

malloc mmap/brk
DBMS Allocator 0S
free munmap/brk

Besides freeing memory directly with the aforementioned
calls, the memory allocator can opt to release memory with
MADV_FREE (since Linux Kernel 4.5). MADV_FREE indicates
that the kernel is allowed to reuse this memory region. How-
ever, the allocator can still access the virtual memory ad-
dress and either receives the previous physical pages or the
kernel provides new zeroed pages. Only if the kernel reas-
signs the physical pages, new ones need to be zeroed. Hence,
MADV_FREE reduces the number of pages that require zeroing
compared to regular freeing since the old pages might be
reused by the same process.

3.1 malloc 2.23

The standard glibc malloc implementation is derived from
ptmalloc2 which originated from dlmalloc [19]. It uses
chunks of various sizes that exist within a larger memory
region known as the heap. malloc uses multiple heaps that
grow within their address space.

For handling multi-threaded applications, malloc uses are-
nas that consist of multiple heaps to speed up simultaneous
accesses. At program start the main arena is created and
additional arenas are chained with previous arena pointers.
The arena management is stored within the main heap of
that arena. Additional arenas are created with mmap and
are limited to eight times the number of CPU cores. For
every allocation, an arena-wide mutex needs to be acquired.
Within arenas free chunks are tracked with free-lists. Only if
the top chunk (adjacent unmapped memory) is large enough,
memory will be returned to the OS.

main heap heap #2
arena_ptr arena_ptr
previous_ptr previous_ptr
size size
arena chunks

management
top chunk
chunks

malloc is aware of multiple threads but no further multi-
threaded optimizations, such as thread locality or NUMA



awareness, is integrated. It assumes that the kernel handles
these issues.

3.2 malloc 2.28

A thread-local cache (tcache) was introduced with glibc
v2.26 [18]. This cache requires no locks and is therefore a
fast path to allocate and free memory. If there is a suitable
chunk in the tcache for allocation, it is directly returned
to the caller bypassing the rest of the malloc routine. The
deletion of a chunk works similarly. If the tcache has a free
slot, the chunk is stored within it instead of immediately
freeing it.

3.3 jemalloc 5.1

jemalloc was originally developed as scalable and low
fragmentation standard allocator for FreeBSD. Today, it is
used as the default allocator for a variety of applications
such as Facebook, Cassandra and Android. It differenti-
ates between three size categories - small (< 16KB), large
(< 4MB) and huge. These categories are further split into
different size classes. It uses arenas that act as completely
independent allocators. Arenas consist of chunks that allo-
cate multiples of 1024 pages (4MB). jemalloc implements
low address reusage for large allocations to reduce fragmen-
tation. Low address reusage, which basically scans for the
first large enough free memory region, has similar theoreti-
cal properties as more expensive strategies such as best-fit.
jemalloc tries to reduce zeroing of pages by deallocating
pages with MADV_FREE instead of unmapping them. Most
importantly, jemalloc purges dirty pages decay-based with
a wall-clock (since v4.1) which leads to a high reusage of
recently used dirty pages. The decay-based reclaiming frees
pages that were not accessed for a certain time which is
illustrated in the figure below. Consequently, the unused
memory will be purged if not requested anymore to achieve
memory fairness [6, 7].

resident memory

time

3.4 TBBmalloc 2017 U7

Intel’s Threading Building Blocks (TBB) allocator is based
on the scalable memory allocator McRT [12]. It differentiates
between small, quite large, and huge objects. Huge objects
(> 4MB) are directly allocated and freed from the OS. Small
and large objects are organized in thread-local heaps with
chunks stored in memory blocks.

Memory blocks are memory mapped regions that are mul-
tiples of the requested object size class and inserted into the
global heap of free blocks. Freed memory blocks are stored
within a global heap of abandoned blocks. If a thread-local
heap needs additional memory blocks, it requests the mem-
ory from one of the global heaps. Memory regions are un-
mapped during coalescing of freed memory allocations if no
block of the region is used anymore [16, 14].
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Figure 2: Allocations in TPC-DS (SF 100, serial execution).

3.5 TCMalloc 2.5

TCMalloc is part of Google’s gperftools. Each thread has
a local cache that is used to satisfy small (< 256KB) allo-
cations. Large objects are allocated in a central heap using
8KB pages.

TCMalloc uses different allocatable size classes for the
small objects and stores the thread cache as a singly linked
list for each of the size classes. Medium sized allocations
(< 1IMB) use multiple pages and are handled by the central
heap. If no space is available, the medium sized allocation
is treated as a large allocation. For large allocations, spans
of free memory pages are tracked within a red-black tree. A
new allocation just searches the tree for the smallest fitting
span. If no span is found, the memory is allocated from the
kernel [10].

Unused memory is freed with the help of MADV_FREE calls.
Small allocations are garbage collected if the thread-local
cache exceeds a maximum size. Freed spans are immedi-
ately released since the “aggressive decommit” option was
enabled (starting with version 2.3) to reduce memory frag-
mentation [11].

4. DBMS AND WORKLOAD ANALYSIS

Decision support systems rely on analytical queries that
gather information from a huge dataset by joining different
relations for example. In in-memory query engines joins
are often scheduled physically as hash joins resulting in a
large number of smaller allocations. In the following, we
use a database system that uses pre-aggregation hash tables
to perform multi-threaded group bys and joins [17]. Our
DBMS has a custom transaction-local chunk allocator to
speed up small allocations of less than 32KB. We store small
allocations in chunks of medium sized memory blocks. Since
only small allocations are stored within chunks, the memory
efficiency footprint of these small object chunks is marginal.
Additionally, the memory needed for tuple materialization
is acquired in chunks. These chunks grow as more tuples
are materialized. Thus, we already reduce the stress on the
allocator significantly while preserving memory efficiency.

The TPC-H and TPC-DS benchmarks were developed to
standardize common decision support workloads [21]. Be-
cause TPC-DS contains a larger workload of more complex
queries than TPC-H, we focus on TPC-DS in the following.
As a result, we expect to see a more diverse and challeng-
ing allocation pattern. TPC-DS describes a retail product
supplier with different sales channels such as stores and web
sales.

In the following, we statistically analyze the allocation
pattern for TPC-DS executing all queries without rollup and
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Figure 3: Memory consumption over time (4-socket Xeon,
A=1.25 q/s, SF 100).

window functions. Note that the specific allocation pattern
depends on the discussed implementation choices of the join
and group by operators.

Figure 2 shows the distribution of allocations in our sys-
tem for TPC-DS with scale factor 100. The most frequent
allocations are in the range of 32KB to 512KB. Larger mem-
ory regions are needed to create the bucket arrays of the
chaining hash tables. The huge amount of medium sized al-
locations are requested to materialize tuples using the afore-
mentioned chunks.

Additionally, we measure which operators require the most
allocations. The two main consumer are group by and join
operators. The percentage of allocations per operator for
a sequential execution of queries on TPC-DS (SF 100) is
shown in the table below:

Group By  Join Set  Temp Other

By Size 61.2% 25.7% 4.3% 84% 0.4%
By Count 77.9% 11.7% 85% 1.8% 0.1%

To simulate a realistic workload, we use an exponentially
distributed workload to determine query arrival times. We
sample from the exponential distribution to calculate the
time between two events. An independent constant average
rate A\ defines the waiting time of the distribution. In com-
parison to a uniformly distributed allocation pattern, the
number of concurrently active transactions varies. Thus, a
more diverse and complex allocation pattern is created. The
events happen within an expected time interval value of 1/A
and variance of 1/A?. The executed queries of TPC-DS are
uniformly distributed among the start events. Due to the
usage of the same query-set and query arrival rates, we are
able to test all allocators on the same real-world alike work-
loads.

Our main-memory query engine allows up to 10 transac-
tions to be active simultaneously. If more than 10 transac-
tions are queried, the transaction is delayed by the scheduler
of our DBMS until the active transaction count is decreased.
Due to intra-query parallelization, all cores of the system are
utilized even with a reduced number of concurrent transac-
tions.

Query latency Wait latency
1000s 4 ;
T E‘*gé
10s 4 T
]
3
100ms 4 .
1ms 99th
75th
50th Ly
%2% - +* + -
1st
& R Ofvféb N > A A N
O S N Q;Q’& . \Q}Q O NS N Q>Q><\\ X

Figure 4: Total query latency and wait time (4-socket Xeon,
A=1.25 q/s, SF 100).

S. EVALUATION

In this section, we evaluate the five allocators on three
hardware architectures with different workloads. We show
that the approaches have significant performance and scala-
bility differences. Additionally, we compare the allocator
implementations according to their memory consumption
and release strategies which shows memory efficiency and
memory fairness to other processes.

We test the allocators on a 4-socket Intel Xeon ET7-4870
server (60 cores) with 1 TB of main memory, an AMD
Threadripper 1950X (16 cores) with 64 GB main memory
(32 GB connected to each die region), and a single-die Intel
Core i9-7900X (10 cores) server with 128 GB main mem-
ory. All three systems support 2-way hyperthreading. These
three different architectures are used to analyze the behav-
ior in terms of the allocators’ ability to scale on complex
multi-socket NUMA systems. To avoid effects of loading
the database into main memory, we use the second run of
each workload to generate the execution graphs.

This section begins with a detailed analysis of a realistic
workload on the 4-socket server. We continue our evaluation
by scheduling a reduced and increased number of transac-
tions to test the allocators’ performance in varying stress
scenarios. An experimental analysis on the different archi-
tectures gives insights on the scalability of the five malloc
implementations. An evaluation of the memory consump-
tion and the memory fairness to other processes concludes
this section.

5.1 Memory Consumption and Query Latency

The first experiment measures an exponentially distributed
workload to simulate a realistic query arrival pattern on the
4-socket Intel Xeon server. Figure 3 shows the memory con-
sumption over time for TPC-DS (SF 100) and a constant
query arrival rate of A = 1.25 q/s. Although the same
workload is executed, very different memory consumption
patterns are measured. TBBmalloc and jemalloc release
most of their memory after query execution. Both malloc
implementations hold a minimum level of memory which in-
creases over time. TCMalloc releases its memory accurately
with MADV_FREE which is not visible by tracking the system
provided resident memory of the database process. Due to
huge performance degradations for tracking the lazy free-



Allocator | Local Remote Total | Page Fault
malloc 2.28 63B 172B  236B 41M

100% 100% 100% 100%
jemalloc 120% 97% 103% 400%
TBBmalloc | 121% 97% 103% 516%
TCMalloc 106% 105% 104% 153%
malloc 2.23 | 103% 100% 101% 139%

Table 1: NUMA-local and NUMA-remote DRAM accesses
and OS page faults (4-socket Xeon, A=1.25 q/s, SF 100).

ing of memory, we show the described release behavior of
TCMalloc in Section 5.4 separately. However, the overall
performance is reduced due to an increased number of ker-
nel calls.

For an in-depth performance analysis, the query and wait
latencies of the individual queries are visualized in Figure 4.
Although the overall runtime is similar between different
allocators, the individual query statistics show that only
jemalloc has minor wait latencies. TBBmalloc and jemalloc
are mostly bound by the actual execution of the query.
On the contrary, both glibc malloc implementations and
TCMalloc are dominated by the wait latencies. Thus, our
database linked with the later allocators cannot process the
queries fast enough to prevent query congestion. Query con-
gestion results from the bound number (10) of concurrently
scheduled transactions that our scheduler allows to be exe-
cuted simultaneously.

Because of these huge performance differences, we mea-
sure NUMA relevant properties to highlight advantages and
disadvantages of the algorithms. Table 1 shows page faults,
local and remote DRAM accesses. All measurements are
normalized to the current standard glibc malloc 2.28 im-
plementation for an easier comparison. The two fastest al-
locators have more local DRAM accesses and significantly
more page faults, but have a reduced number of remote ac-
cesses. Note that the system requires more remote DRAM
accesses due to NUMA-interleaved memory allocations of
the TPC-DS base relations. Thus, the highly increased
number of local accesses change the overall number of ac-
cesses only slightly. Minor page faults are not crucially
critical since both jemalloc and TBBmalloc release and ac-
quire their pages frequently. These minor page faults can
be handled without disk I/O such as a request for a zeroed
page [8]. Consequently, remote accesses for query process-
ing are the major performance indicator. Because TCMalloc
reuses MADV_FREE pages and therefore avoids unnecessary ze-
roing of pages, the number of minor page faults remains
small.

5.2 Performance with Varying Stress Levels

In the previous workload, only two allocators were able to
efficiently handle the incoming queries. This section evalu-
ates the effects for a varying constant rate A. We analyze
two additional workloads that use the rates A = 0.63 and
A = 2.5 queries per second. Thus, we respectively increase
and decrease the average waiting time before a new query is
scheduled by a factor of 2.

Figure 5 shows the query latencies of the three work-
loads. The results for the reduced and increased waiting
times confirm the previous observations. The allocators
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Figure 5: Query latency distributions for different query
rates (4-socket Xeon, SF 100).

have the same respective latency order in all three exper-
iments. jemalloc performs best again for all workloads,
followed by TBBmalloc.

All query latencies are dominated by the wait latencies in
the A = 2.5 workload due to frequent congestions. With an
increased waiting time (A = 0.63) between queries, the glibc
malloc 2.28 implementation is able to reduce the median
latency to a similar level as TBBmalloc. However, the query
latencies within the third quantile vary vastly. TCMalloc
and malloc 2.23 are still not able to process the queries
without introducing long waiting periods.

5.3 Scalability

After analyzing the allocators’ perfromance on the 4-socket
Intel Xeon architecture, this section focuses on the scalabil-
ity of the five dynamic memory allocators. We execute an
exponentially distributed workload with TPC-DS (SF 10)
on the NUMA-scale 60 core Intel Xeon server, the 16 core
AMD Threadripper (two die regions), and the single-socket
10 core Intel Skylake X.

Figure 6 shows the memory consumption during the work-
load execution. Since the AMD Threadripper has a very
similar memory consumption pattern to the Intel Skylake
X, we only show the 4-socket Intel Xeon and the single-
socket Intel Skylake. Most notable are the differences of
both glibc malloc implementations. These two allocators
have a very long initialization phase on the 4-socket system,
but are able to allocate their initial memory as fast as the
other ones on the single-socket system. Due to more cores
and the resulting different access pattern, the decay-based
deallocation pattern of jemalloc differs slightly in the be-
ginning. However, jemalloc’s decay-based purging reduces
the memory consumption on both architectures consider-
ably. TCMalloc cannot process all queries in the same time
frame as the other allocators on the 4-socket system whereas
it finishes at the same time on Skylake.

Especially the query latencies differ vastly between the
architectures. In Figure 7, we show the latencies for the
A =6 q/s workload. The more cores are utilized, the larger
are the latency differences between the allocators. On the
single-socket Skylake X, all the allocators have very similar
performance. Besides having more cores, AMD’s Thread-
ripper uses two memory regions which requires a more ad-
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Figure 6: Memory consumption over time (A=6 q/s, SF 10).
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Figure 7: Query latencies (A=6 q/s, SF 10).

vanced placement strategy to obtain fast accesses. In par-
ticular, TCMalloc and malloc 2.23 without a thread-local
cache have a reduced performance. The latency variances
are reduced on the Threadripper but the overall latencies
are worse in comparison to the Skylake architecture.

Yet, the most interesting behavior is introduced by the
multi-socket Intel Xeon. It has both the best and worst
overall query performance. jemalloc and TBBmalloc exe-
cute the queries with the overall lowest latencies and small-
est variance. On the other hand, TCMalloc is worse by more
than 10x in comparison to any other allocator. Both glibc
implementations have a similar median performance but in-
cur high variance such that a reliable query time prediction
is impossible.

To substantiate our findings that remote accesses and
large amount of cores are the major drivers, we evaluate the
queries on a single-socket of the Intel Xeon server. We use
numactl to bind the memory to the same region as the 30
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Figure 8: Query latencies (A=6 q/s, SF 10).

peak total average total
Allocator request measured! | request measured
TCMalloc 55.7GB 581 GB | 17.8 GB 53.7GB
malloc 2.23 | 614 GB 61.0 GB | 26.2 GB 41.3 GB
malloc 2.28 | 61.5 GB  62.6 GB | 20.2 GB 42.5 GB
TBBmalloc | 55.7 GB  55.7GB | 15,9 GB 27.9 GB
jemalloc 58.6 GB 59.4 GB 11.1 GB 24.7 GB

Table 2: Memory usage (4-socket Xeon, A=1.25 q/s, SF100).

threads used for execution. Figure 8 shows that the single-
socket execution on our large system behaves similarly to
the single-socket Skylake X.

The experiments show that both jemalloc and TBBmalloc
are able to scale to large systems with many cores. TCMalloc,
on the other hand, has significant performance loss on larger
servers.

To validate our findings, we evaluate a subset of the queries
on MonetDB 11.31.13 [13]. We observe a performance boost
by using jemalloc on MonetDB; however, the differences
are smaller because our DBMS parallelizes better and thus
utilizes more cores.

5.4 Memory Fairness

Because DBMS often run alongside other processes on a
single server, it is necessary that the query engines are fair
to other processes. In particular, the memory consumption
and the memory release pattern are good indicators of the
allocators’ memory fairness.

Our DBMS is able to track the allocated memory regions
with almost no overhead. Hence, we can compare the mea-
sured process memory consumption with the requested one.
The used memory differs between the allocators due to the
performance and scalability properties although we execute
the same set of queries. Table 2 shows the peak and av-
erage memory consumption for the A = 1.25 q/s workload
(SF 100) on the 4-socket Intel Xeon. We use the requested
peak and average total memory consumption as the mem-
ory efficiency indicator of the allocators. The peak memory

'Due to chunk-wise allocation with unfaulted pages and
measurement delays the measured amount of memory can
be slightly smaller than the requested one.
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consumption is similar for all tested allocators. On the con-
trary, the average consumption is highly dependant on the
used allocator. Both glibc malloc implementations demand
a large amount of average memory. jemalloc requires less
average memory than TBBmalloc. However, the DBMS re-
quested average memory is also higher for the allocators with
increased memory usage. The higher average consumption
results from an overall shorter execution time. Although the
consumption of TCMalloc seems to be higher, it actually uses
less memory than the other allocators. This results from
the direct memory release with MADV_FREE. The tracking of
MADV_FREE calls on the 4-socket Intel Xeon is very expensive
and would introduce many anomalies for both performance
and memory consumption. Therefore, we analyze the mad-
vise behavior on the single-socket Skylake X that is only
affected slightly by the MADV_FREE tracking. The memory
consumption with the A = 6 q/s workload (SF 10) is shown
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Figure 11: Query latencies (A=12 q/s, TPC-H SF 10).

in Figure 9. The only two allocators that use MADV_FREE to
release memory are jemalloc and TCMalloc. The measured
average memory curve of TCMalloc follows the DBMS re-
quired curve almost perfectly. jemalloc has a 15% reduced
consumption if the MADV_FREE pages are subtracted from the
used memory.

5.5 Scalability with TPC-H

To validate our scalability results on analytical queries,
we further analyze the TPC-H benchmark. We execute an
exponentially distributed TPC-H (SF 10) workload on the
NUMA-scale Intel Xeon server, the AMD Threadripper, and
the Intel Skylake X.

Figure 10 shows the memory consumption over time ex-
ecuting the TPC-H workload. Due to an increased query
rate, the allocation pattern is less smooth with TPC-H than
with TPC-DS. jemalloc purges pages according to its de-
cay strategy and the malloc implementations need an initial
start-up phase. Thus, the allocation pattern of TPC-H is
similar to the pattern of TPC-DS.

The query latencies for TPC-H are shown in Figure 11.
Similar to our previous findings, jemalloc and TBBmalloc
scale best. The allocators show only on the large Intel Xeon
system huge performance differences.

5.6 Raw Allocation

Because our DBMS uses a custom chunkwise allocator
with free-lists to speed up small allocations, we also evalu-
ate the experiments without this 2-layered allocation setup.
Every allocation request gets directly forwarded to the allo-
cator instead of using the DBMS small allocation logic.

Figure 12 shows the query latencies of the three workloads
for TPC-DS (SF 100) with direct allocator usage. jemalloc
outperforms the other allocators. In comparison to the 2-
layered allocation process, TBBmalloc cannot efficiently pro-
cess the medium sized workload anymore. The other allo-
cators behave similar, however the query latencies are in-
creased. Overall, the usage of an additional small allocation
is beneficial to reduce query processing time.

The memory consumption over time on the Intel Xeon
and the Intel Skylake is shown in Figure 13. Interestingly,
the release strategy of TBBmalloc is very different to the
experiments with our additional small allocation logic. Re-
gardless of the used system, the memory is only returned to
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Figure 12: Query latency distributions for different query
rates (4-socket Xeon, SF 100, raw allocation).

the operating system at the end of the execution. TBBmalloc
stores small allocations in thread-local heaps which are held
during the execution of the query set. The other allocators
show a similar allocation pattern.

6. CONCLUSIONS

In this work, we provided a thorough experimental analy-
sis and discussion on the impact of dynamic memory alloca-
tors for high-performance query processing. We highlighted
the strength and weaknesses of the different state-of-the-art
allocators according to scalability, performance, memory ef-
ficiency, and fairness to other processes. For our allocation
pattern, which is probably not unlike to that of most high-
performance query engines, we can summarize our findings
as follows:

scalable fast mem.fair mem. efficient

TCMalloc —— ~ 4+ +
malloc 2.23 — ~ + ~
malloc 2.28 ~ + — ~
TBBmalloc + + + +
jemalloc +4 + + +

As a result of this work, we choose jemalloc as the stan-
dard allocator for our DBMS.

7. ACKNOWLEDGMENTS

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No 725286). M -

——— TCMalloc

malloc 2.23

malloc 2.28 —— TBBmalloc

jemalloc

continues until 226s
] M f

UoBX 81| 184008

Memory consumption [GB]

X eIS [

Execution time [s]

Figure 13: Memory consumption over time (A=6 q/s, SF
10, raw allocation).

8. REFERENCES

[1] R. Appuswamy, A. Anadiotis, D. Porobic, M. Iman,
and A. Ailamaki. Analyzing the impact of system
architecture on the scalability of OLTP engines for
high-contention workloads. PVLDB, 11(2):121-134,
2017.

[2] C. Balkesen, J. Teubner, G. Alonso, and M. T. Ozsu.
Main-memory hash joins on multi-core cpus: Tuning
to the underlying hardware. In ICDE, pages 362-373,
2013.

[3] S. Blanas, Y. Li, and J. M. Patel. Design and
evaluation of main memory hash join algorithms for
multi-core CPUs. In SIGMOD, pages 3748, 2011.

[4] D. Durner, V. Leis, and T. Neumann. On the impact
of memory allocation on high-performance query
processing. In DaMoN, pages 21:1-21:3, 2019.

[5] D. Durner and T. Neumann. No false negatives:
Accepting all useful schedules in a fast serializable
many-core system. In ICDE, 2019.

[6] J. Evans. Tick tock, malloc needs a clock [talk]. In
ACM Applicative, 2015.

[7] J. Evans. jemalloc changelog. https://github.com/
jemalloc/jemalloc/blob/dev/ChangeLog, 2018.

[8] P. Ezolt. A study in malloc: A case of excessive minor
faults. In Linuz Showcase € Conference, 2001.

[9] T. B. Ferreira, R. Matias, A. Macedo, and L. B.
Araujo. An experimental study on memory allocators
in multicore and multithreaded applications. In 2011
12th International Conference on Parallel and
Distributed Computing, Applications and Technologies,
pages 92-98. IEEE, 2011.

[10] Google. Tcmalloc documentation. https://
gperftools.github.io/gperftools/tcmalloc.html,
2007.

[11] Google. gperftools repository. https://github.com/



[14]

[15]

[16]

[17]

[18]

[19]

gperftools/gperftools/tree/gperftools-2.5.93,
2017.

R. L. Hudson, B. Saha, A. Adl-Tabatabai, and

B. Hertzberg. Mcrt-malloc: a scalable transactional
memory allocator. In ISMM, pages 74-83, 2006.

S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S.
Mullender, and M. L. Kersten. Monetdb: Two decades
of research in column-oriented database architectures.
IEEE Data Eng. Bull., 35(1):40-45, 2012.

Intel. Threading building blocks repository.
https://github.com/0lorg/tbb/tree/tbb_2017,
2017.

A. Kemper and T. Neumann. Hyper: A hybrid
oltp&olap main memory database system based on
virtual memory snapshots. In ICDE, pages 195-206,
2011.

A. Kukanov and M. J. Voss. The foundations for
scalable multi-core software in intel threading building
blocks. Intel Technology Journal, 11(4), 2007.

V. Leis, P. A. Boncz, A. Kemper, and T. Neumann.
Morsel-driven parallelism: a numa-aware query
evaluation framework for the many-core age. In
SIGMOD, pages 743-754, 2014.

G. C. Library. The gnu c library version 2.26 is now
available. https://sourceware.org/ml/libc-alpha/
2017-08/msg00010.html, 2017.

G. C. Library. Malloc internals: Overview of malloc.

20]

21]

(22]

24]

[25]

(26]

https:
//sourceware.org/glibc/wiki/MallocInternals,
2018.

N. May, A. Béhm, and W. Lehner. SAP HANA - the
evolution of an in-memory DBMS from pure OLAP
processing towards mixed workloads. In BT'W, pages
545-563, 2017.

R. O. Nambiar and M. Poess. The making of
TPC-DS. In VLDB, pages 1049-1058, 2006.

I. Oukid, D. Booss, A. Lespinasse, W. Lehner,

T. Willhalm, and G. Gomes. Memory management
techniques for large-scale persistent-main-memory
systems. PVLDB, 10(11):1166-1177, 2017.

J. M. Patel, H. Deshmukh, J. Zhu, N. Potti, Z. Zhang,
M. Spehlmann, H. Memisoglu, and S. Saurabh.
Quickstep: A data platform based on the scaling-up
approach. PVLDB, 11(6):663-676, 2018.

R. Stoica and A. Ailamaki. Enabling efficient OS
paging for main-memory OLTP databases. In DaMoN,
page 7, 2013.

S. Tu, W. Zheng, E. Kohler, B. Liskov, and

S. Madden. Speedy transactions in multicore
in-memory databases. In SOSP, pages 18-32, 2013.
Z. Zhang, H. Deshmukh, and J. M. Patel. Data
partitioning for in-memory systems: Myths,
challenges, and opportunities. In CIDR, 2019.



