
Scalable and Robust Latches for Database Systems
Jan Böttcher Viktor Leis★ Jana Giceva Thomas Neumann Alfons Kemper

Technische Universität München Friedrich-Schiller-Universität Jena★
{boettcher,giceva,neumann,kemper}@in.tum.de,viktor.leis@uni-jena.de

ABSTRACT
Multi-core scalability is one of the most important features for
database systems running on today’s hardware. Not surprisingly,
the implementation of locks is paramount to achieving efficient
and scalable synchronization. In this work, we identify the key
database-specific requirements for lock implementations and eval-
uate them using both micro-benchmarks and full-fledged database
workloads. The results indicate that optimistic locking has superior
performance in most workloads due to its minimal overhead and
latency. By complementing optimistic locking with a pessimistic
shared mode lock we demonstrate that we can also process HTAP
workloads efficiently. Finally, we show how lock contention can
be handled gracefully without slowing down the uncontended fast
path or increasing space requirements by using a lightweight park-
ing lot infrastructure.
ACM Reference Format:
Jan Böttcher Viktor Leis★ Jana Giceva Thomas Neumann Alfons Kemper
. 2020. Scalable and Robust Latches for Database Systems. In International
Workshop on Data Management on New Hardware (DAMON’20), June 15,
2020, Portland, OR, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3399666.3399908

1 INTRODUCTION
Efficient and scalable synchronization is one of the key require-
ments for systems that run onmodernmulti-core processors. Hence,
there is also a variety of locking techniques to protect and synchro-
nize data structure access, e.g., mutexes, optimistic locks, rw locks,
etc. However, while it has been shown that every lock1 type has
its own area of application [4], to the best of our knowledge there
has been no work that analyzes which one is best suited for high-
performance database systems. This is a non-trivial problem since a
DBMS must support a broad range of workloads: from write-heavy
transactions to read-only analytics, and even hybrid workloads.

When designing our new database systemUmbra [27], we started
investigating different locking techniques in search for an optimal
lock. We quickly discovered that it is not possible to find a lock
that performs best across all workloads and on all machines. How-
ever, we noticed that there are some re-occurring best practices
for locking and synchronization. Therefore, we first summarize the
1In this paper, we always use the term “lock” instead of “latch” since we focus on
low-level data structure synchronization, not high-level concurrency control.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DaMoN’20, June 15, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8024-9/20/06.
https://doi.org/10.1145/3399666.3399908

Locking Modes (§2) Space
(§4.3)

Optimistic Pessimistic Hybrid Locking
Contention Handling Strategies (§3)

Busy-Waiting Kernel-Supported
Spinning, Local, Ticket, Backoff Mutex, Futex, ParkingLot

Figure 1: Locking dimensions – and sections in paper

database specific demands on locking and then address them by
analyzing and evaluating different locking techniques accordingly.

Which features and functionality should a “database-friendly”
lock have? In general, most database workloads, even OLTP transac-
tions, mostly read data, and thus reading should be fast and scalable.
This includes table scans but also indexes like B-Trees or tries. For
indexes, efficient synchronization is challenging as every lookup
traverses the same root and upper levels have high traffic. Such read
patterns or repetitively scanning small tables lead to hotspot areas
in databases which should be lockable with minimal overhead
as they are accessed so frequently.

Many modern in-memory database systems compile queries to
efficient machine code to keep the latency as low as possible [26].
A lock should therefore integrate well with query compilation and
avoid external function calls. This requirement makes pure OS-
based locks unattractive for frequent usage during query execution.

To protect fine-granular data like index nodes, or hash table
buckets, the lock itself should be space efficient. This does not
necessarilymeanminimal, but it should also notwaste unreasonable
amount of space. For instance, a std::mutex (40-80 bytes) would
almost double the size required for an ART node [17].

Last but not least, another important aspect is efficient con-
tention handling. While we assume that heavy contention is
usually rare in a well-designed DBMS, some workloads make it
unavoidable. The lock should, thus, handle contention gracefully
without sacrificing its fast, uncondented path. While this is a goal
for most production systems, during query execution we may have
some additional demands. Imagine, for example, that the user wants
to cancel a long-running query, but the working thread is currently
sleeping while waiting for a lock. Waiting too long can lead to an
unpleasant user experience. For this reason, it would be desirable if
the lock’s API would allow one to incorporate periodic cancellation
checks while a thread is waiting.

In this paper, we show how we have addressed all the demands
identified above, across the different dimensions of locking shown
in Figure 1. More specifically, after discussing the advantages and
shortcomings of optimistic and pessimistic locking modes, we
present the design of a new hybrid lock that combines both modes
to serve the various demands of versatile database workloads. Fur-
thermore, after summarizing different contention handling strate-
gies, we show how we avoid busy-waiting in Umbra by using the

https://doi.org/10.1145/3399666.3399908
https://doi.org/10.1145/3399666.3399908
https://doi.org/10.1145/3399666.3399908

DaMoN’20, June 15, 2020, Portland, OR, USA J. Böttcher et al.

lightweight ParkingLot mechanism. Finally, we validate our pro-
posed solution by comparing it to other standard locking techniques
across a variety of factors and evaluating their performance with
both micro-benchmarks and full-fledged database workloads.

2 LOCKING TECHNIQUES
For databases we need locks with minimal overhead and maximal
scalability. Therefore, this section mostly focuses on optimistic
locking as recent work shows that it has superior performance and
advantages compared to pessimistic or lock-free designs [12, 20,
32]. Nevertheless, in write-heavy scenarios there is also a raison
d’être for pessimistic locking. In Section 2.3, we show how both
approaches can be combined into a single hybrid lock to handle all
database workloads efficiently.

2.1 Optimistic Locking
The basic idea of optimistic locking is to validate that the data read
in a critical section has not changed in the meantime, i.e., one has
read consistent data. Therefore, the lock keeps a version that is
incremented by every writer when releasing the lock. To validate
that a reader has read consistent data, it must check that the version
has not changed during its read. If the version has changed or if the
lock bit (also encoded in the version field) is set, the reader must
restart its read operation. Restarting can either be handled by the
application, or transparently by the lock itself using a lambda-API
as shown in Algorithm 1.

Optimistic locking avoids atomic writes and its cache line stays
in shared mode. Pessimistic locks must always modify the cache
line and thus their performance is bound by cache-coherency la-
tencies [4].

Optimistic locking is particularly beneficial for frequently read
data as it avoids the expensive atomic writes required by pessimistic
lock acquisitions. Typical read hot-spots are certain shared tables,
tuples, and index structures. In tree-like index structures, the top-
most nodes are highly contended as every lookup or update must
traverse them. Every index access would, thus, create unnecessary
cache line bouncing on the nodes if they are locked pessimistically.
With optimistic locking, cache invalidations are only needed when
a node is updated, which in most cases will only happen on the
lower, less frequented levels of the tree. Prior work shows how effec-
tive optimistic lock coupling is compared to traditional pessimistic
locking, or even complex lock-free implementations [16, 32].

However, there are also some downsides and limitations to opti-
mistic locking. First, optimistic locking can fail if there is a concur-
rent writer, and thus you can only use it, when it is safe to “fail” and
to restart the read operation. This usually holds true for reading
contiguous memory like tuples in tables, but can require some ad-
ditional precautions when accessing index nodes or MVCC version
chains, which might have been deleted or garbage collected [2].
For ART, we use an epoch guard to keep the memory of deleted
nodes alive, until it is safe that no optimistic reader can access them
anymore, i.e., every thread has advanced to the next epoch [20].
The deleted nodes are marked with a special obsolete bit to notify
the reader of its deletion upon version validation.

Listing 1: Optimistic Locking
void readOptimistically(Lambda& readCallback)} {
// Attempt to read optimistically
for (i in [1 : MAX−ATTEMPTS]) {
preVersion = getVersion();
if (isLocked(preVersion))
continue;
readCallback();
postVersion = getVersion();
if (preVersion == postVersion)
return;

}
// Fallback to pessimistic locking
lockPessimistic();
readCallback();
unlock();

}

Another challenge of optimistic reading is that all operations
must be restartable without any side effects. The user of the op-
timistic lock must be aware of this and implement some sort of
restart logic. For instance, in a DBMS, this usually means that one
must buffer the optimistically read tuples and only push them into
query pipelines after a successful validation. Otherwise, the same
tuples could be pushed again into the pipelines during a restart.

Further, when there is too much write contention, optimistic
locking can also suffer from starvation. For this reason, one must
include a fallback to pessimistic locking as shown in Algorithm 1. If
the lock does not support a shared mode, this means that the reader
has to acquire the lock exclusively which limits its concurrency
unnecessarily. For this reason, we propose the use of a hybrid lock
which can fall back to shared locking in Section 2.3.

Another technique that guarantees fast, successful reads without
any restarts is Read-Optimized Write EXclusion (ROWEX) [1, 20].
In contrast to optimistic locking, readers do not require any syn-
chronization, not even version checking, while the writers must
guarantee that all reads are consistent. In contrast to optimistic lock-
ing, ROWEX is a more involved synchronization technique, that
can require major changes to the used algorithm or data structures
as all writes now have to appear atomic to the readers [20].

2.2 Speculative Locking (HTM)
A special form of optimistic locking is Intel’s hardware-supported
speculative locking [18, 19, 21]. Speculative locking allows multiple
threads to hold the same lock as long as their operations do not con-
flict [8]. In contrast to pure version-based optimistic locking, this
also allows for non-conflicting concurrent writers within the same
critical section. All conflicts are detected on L1-cache line granular-
ity (usually 64 bytes) and the addresses of the joint read/write-set
must fit into L1 cache. Additionally, the critical section should be
short to avoid interrupts or context switches and must avoid certain
system calls [9]. A major downside of hardware-based locking is
the hardware itself. Only modern Intel and ARM processors sup-
port this or a similar feature [22]; other manufactures and older
or low-end processors cannot use it at the moment. Thus, when
using it, the system always needs a fallback to a traditional lock to

Scalable and Robust Latches for Database Systems DaMoN’20, June 15, 2020, Portland, OR, USA

reader excl
63 bits 1 bit

RW-Mutex
reader excl

version

63 bits 1 bit

Hybrid-Lock

version excl
63 bits 1 bit

Optimistic-Lock

Figure 2: Hybrid-Lock – Combining optimistic and pessimistic

handle aborts (e.g., conflicts, read/write-set too big, etc.) or missing
hardware support.

2.3 Hybrid Locking
While optimistic locking works best for read-only and low con-
tention cases, it can easily suffer from frequent restarts or even
starvation in mixed workloads. Alternatively, pessimistic modes
like exclusive or shared, which guarantee that the execution of a
critical section succeeds, can be used. However, unlike optimistic
locking, they also add an overhead as every lock operation requires
at least one atomic write. Table 1 summarizes their use cases based
on their strengths and weaknesses and shows that shared-locking
is a more robust solution in mixed workloads.

These insights are especially useful for database systems with
diverse workloads. However, to use these findings, we must be able
to lock the same data differently depending on the current context.
For instance, when we access the pages (e.g., B-Tree nodes) in a
buffer manager, we want to traverse the read-contended top-level
nodes with minimal overhead, i.e., optimistically, but when we scan
an entire leaf page, we prefer to do this pessimistically to avoid
the risk of expensive restarts. So, the same node lock must support
both optimistic and pessimistic locking.

For this reason, we have designed a Hybrid-Lock that extends
a pessimistic RW-Mutex with support for optimistic locking. In
theory, this would be possible by combining all fields of both locks
into a single 64-bit word. However, for a more efficient and robust
implementation, we decided to keep the version in a separate 64-bit
field as shown in Figure 2.

Separating the lock from the version also allows one to reuse ar-
bitrary, existing read-write lock implementations without changing
their code as shown in Listing 2. Unlocking requires some precau-
tions: We must increment the version before we release the lock to
avoid races in the optimistic validation phase. On Intel platforms
one could also use a CMPXCHG16B instruction to update the version
and release the lock at the same time, but one must never release
the lock before incrementing the version. Otherwise, the optimistic
reader could miss an exclusive writer during its validation.

Reading optimistically still works like in Algorithm ??, with the
small but decisive difference that we can now fall back to shared in-
stead of exclusive locking when the optimistic validation fails. This
makes the lock very versatile and is the reason we use it throughout
our database systems2. For graceful contention handling, we back
it with a ParkingLot as described in Section 3.4. The additional
bit required to indicate parking threads is encoded into the RW-
Mutex and—in combination with the exclusive bits—also serves the
purpose to indicate pending writers to the readers.

2We replaced the “Versioned Latches” described in earlier work [15, 27].

Listing 2: Hybrid Locking
class HybridLock {
RWMutex rwLock;
std::atomic<uint64_t> version;

public:
// Simply call rwLock
void lockShared() { rwLock.lockShared(); }
void unlockShared() { rwLock.unlockShared(); }
void lockExclusive() { rwLock.lockExclusive(); }

// Always increment the version before unlocking to avoid races!
void unlockExclusive() { ++version; rwLock.unlockExclusive(); }

bool tryReadOptimistically(Lambda& readCallback) {
if (rwLock.isLockedExclusive())
return false;
auto preVersion = version.load();
// Execute read callback
readCallback();

// Was locked meanwhile?
if (rwLock.isLockedExclusive())
return false;

// Version still the same?
return preVersion == version.load();

}

void readOptimisticIfPossible(Lambda& readCallback) {
if (!tryReadOptimistically(readCallback)) {
// Fall back to pessimistic locking
lockShared();
readCallback();
unlockShared();

}
}

};

3 CONTENTION HANDLING
Actual lock contention must be rare in a database system designed
for scalability. However, some workloads make it unavoidable and
when it occurs, we want to handle it gracefully without slowing
down the fast path. Here we present different contention handling
strategies and discuss their advantages and pitfalls.

3.1 Busy-Waiting/Spinning
A common approach is to busy-wait, or “spin” until a lock is free
again. While this approach itself sounds straightforward, there exist
several variations of spinning and, especially without precautions,
it has several pitfalls. For instance, spinning can lead to priority
inversion, as spinning threads seem very busy to a scheduler they
might receive higher priority than a thread that does useful work.
Especially in the case of over-subscription, this can cause criti-
cal problems. Additionally, heavy spinning wastes resources and
energy [6] and increases cache pollution, which is caused by
additional bus traffic. Following the MESI-protocol, every atomic
write needs to invalidate all existing copies in other cores. Ideally,

DaMoN’20, June 15, 2020, Portland, OR, USA J. Böttcher et al.

Table 1: Qualitative overview –Which locking mode is best for a certain workload?

Workload Type Exclusive Shared Optimistic

Read-Only Too restrictive “Read-Read Contention” No Overhead
Read-Mostly: cheap reads Too restrictive Still some contention Restarts unlikely and cheap

Read-Mostly: big read set Too restrictive Lock overhead diminishes Restarts can be expensive
Write-Heavy Restrictive Good Many Aborts/Starvation
Write-Only Equally good (all writes are locked exclusively)

lock protected data
Cache Line

𝑇𝑤𝑎𝑖𝑡

spin
𝑇ℎ𝑎𝑠𝐿𝑜𝑐𝑘
updateload shared inva

lida
te

Figure 3: False-sharing – Spinning can cause false-sharing with
the writing thread and unnecessary bus traffic due to invalidations

a core owns a cache line exclusively and does not need to send
any invalidation messages. However, if other threads are spinning
on the same lock, they constantly request this cache line, causing
contention. The negative effects are worst when the waiting thread
does write-for-ownership cycles, as those cause expensive invalida-
tion messages [30]. For this reason, a waiting thread should use the
test-test-and-set pattern and only do the write-for-ownership
cycle when it sees that the lock is available. In other words, it only
reads the lock state in the busy loop to keep the lock’s cache line
in shared mode.

However, even with the test-test-and-set pattern, spinning
can still lead to cache pollution when the protected data is on the
same cache line as the lock itself (cf. Figure 3). By spinning on
the lock the waiting thread 𝑇𝑤𝑎𝑖𝑡 constantly loads the cache line
in shared mode. Whenever the lock owning 𝑇ℎ𝑎𝑠𝐿𝑜𝑐𝑘 updates the
protected data, it must invalidate 𝑇𝑤𝑎𝑖𝑡 ’s copy of the cache line.
Having to send these invalidation messages, slows down 𝑇ℎ𝑎𝑠𝐿𝑜𝑐𝑘
and increases the time spent in the critical section.

To limit the described problems, there exist several backoff strate-
gies that add pause instructions to put the CPU into a lower power
state, or call sched_yield to encourage the scheduler to switch to
another thread. However, since the scheduler cannot guess when
the thread wants to proceed, yielding is generally not recommended
as its behavior is largely unpredictable [31].

3.2 Local Spinning using Queuing
The performance degradation of cache contention due to spinning
becomes worse with an increasing number of cores or NUMA sock-
ets [4, 30]. To overcome the problem of cache line bouncing, some
spinlock implementations spin only on thread-local copies of the
lock. Examples are the MCS-lock or a read-write mutex adaptation
by Krieger et al. [13, 25]. When acquiring a lock, every thread cre-
ates a thread-local instance of the lock structure including its lock

Global lock
tail*

𝑇ℎ𝑎𝑠𝐿𝑜𝑐𝑘

next*

Locked: 1

𝑇𝑤𝑎𝑖𝑡

next*

Locked: 0

Figure 4: Queuing lock – Threads spin on local copies only.

state and a next pointer to build a linked list of waiting threads.3
Then, it exchanges the next pointer of the global lock, making it
point to its own local instance. If the previous next entry was nil,
the lock acquisition was successful. Otherwise, if the entry already
pointed to another instance, the thread enqueues itself in the wait-
ing list by updating the next-pointer of the found instance (current
tail) to itself. Figure 4 sketches the system’s state when𝑇ℎ𝑎𝑠𝐿𝑜𝑐𝑘 is
holding the lock and 𝑇𝑤𝑎𝑖𝑡 is waiting. While waiting, every thread
spins on its own local Locked flag, until its predecessor releases
the lock and updates the lock state. Besides reducing the amount
of cache line bouncing, this queuing procedure also preserves the
order of threads and, thus, guarantees fairness.

3.3 Ticket Spinlock
A ticket spinlock is another variant of spinlocks, which guaran-
tees fairness without using queues. It does so by maintaining two
counters: next-ticket and now-serving. A thread gets a ticket
using an atomic fetch_and_add and waits until its ticket number
matches that of now-serving. Besides giving fairness, this also en-
ables more precise backoff in case of contention by estimating the
wait time. The wait time can be estimated by multiplying the posi-
tion in the queue and the expected time spent in the critical section.
Mellor-Crummey and Scott argue that it is best to use the minimal
possible time for the critical section, as overshooting in backoff will
delay all other threads in line due to the FIFO nature [25].

3.4 Kernel-Supported ParkingLot
While some of the discussed busy-waiting strategies can reduce
unnecessary cache contention or guarantee fairness, there is still no
suitable solution for over-subscription or waste of energy. For this
reason, many locks build on kernel-level locking, such as pthread
mutexes, to suspend a thread until the lock becomes available again.
As these system calls have a significant overhead, adaptive locks

3Some rw-mutex implementations also use a doubly-linked list, as readers should be
able to release the lock in arbitrary order.

Scalable and Robust Latches for Database Systems DaMoN’20, June 15, 2020, Portland, OR, USA

Parking Lot

&lock

W L ...

1 1 ...

lock

Parking Space

Mutex mutex

Condition Variable cv
#Waiting Threads

park(callback)

ha
sh
(&
lo
ck
)

Figure 5: Parking Lot – All waiting threads park themselves in the
Parking Lot (global hash table) until the callback-condition is fulfilled.
The suitable Parking Space is determined using the lock’s address.

like Linux’ futexes (fast user-space mutexes) only block using the
kernel when there is contention [23].

Building on the idea of futexes, WebKit proposed a more versatile
form of adaptive locking called the Parking Lot [29]. A Parking Lot
is a global hash table that maps arbitrary locks to wait queues using
their addresses as keys. Unlike Linux’ futexes, this design is portable
and does not rely on non-standard, platform-specific system calls. It
also allows additional functionality like passing a callback function
that is invoked while “parking”. In Umbra, we use this to integrate
additional logic like checking for query cancellation, or in the buffer
manager to ensure that the page we are currently waiting for has
not been evicted in the meantime.

Figure 5 sketches our implementation of a ParkingLot. In the
uncontended case, nothing changes and a thread acquires the lock as
usual by setting the lock bit (L). However, when another thread tries
to get the same lock, it will now wait in the parking lot. Therefore,
it first brings the lock in a “someone-is-waiting” state by setting the
wait bit (W). Then, it uses the lock’s address to find a parking space
in the global parking lot. If the user-defined waiting condition is
still fulfilled, the thread starts waiting on the condition variable.
When the first thread releases the lock, it sees that someone is
waiting because the wait-bit was set. It looks up the parking space
in the Parking Lot and wakes all parking thread(s). To avoid races
during these parking operations, every parking space is guarded
by a separate mutex.

The parking lot itself is implemented as a fixed-sized global hash
table with 512 slots. More spaces are not necessary as the maximum
number of contended locks is always smaller than the number of
threads. For the unlikely case of hash collisions, we use chaining.
When we park a thread that waits for a lock during query execution,
we wake it up sporadically (every 10ms) to check if the query was
canceled meanwhile.

Listing 3 shows the pseudo code of our park() implementation.
Note that while the implementation of the ParkingLot itself is fairly
straightforward, the locks using it require a careful design. One
must ensure that the information that a thread is parked is never
lost; otherwise threads might remain in the parking state forever.
So every operation that changes the state of the lock must respect
the wait-bit, and wake waiting threads if necessary.

Listing 3: Parking Lot Implementation
void park(void∗ lockAddr, Cb& callback, unsigned timeoutInMs)
// Park a thread until the callback's condition becomes true
{
ParkingSpace& parkingSpace = getParkingSpace(lockAddr);
// Lock the parking space
parkingSpace.mutex.lock()
++parkingSpace.waiting;

// Go to sleep after confirming that we still have to block (callback())
if (!timeoutInMs) {
while (!callback())
parkingSpace.cv.wait();

} else {
// Sporadically call the callback, e.g., to check for query cancellation
while (!callback()) {
parkingSpace.cv.waitWithTimeout(timeoutInMs);

}
}

// Leave the parking space
−−parkingSpace.waiting;
parkingSpace.mutex.unlock()
}

4 EVALUATION
We evaluate the different locking approaches on an Ubuntu 18.04
machine with two Intel Xeon E5-2660 v2 CPUs running at 2.20 GHz
with 10 physical cores (20 HT) each and a total of 256 GB DDR3.
The sockets communicate using a high-speed QPI interconnect
(16 GB/s). During all experiments we do not pin any threads to cores
or NUMA sockets to allow the scheduler to distribute them freely.
Table 2 lists all evaluated locking approaches and their concrete
implementations.

4.1 TPC-C and TPC-H
We run TPC-C and TPC-H with lock representatives of the different
locking modes (optimistic, shared, exclusive, and hybrid) and also
a kernel-based RW-Mutex (std::shared_mutex). For the experi-
ments, we replaced all locks in our DBMS HyPer that are relevant
for query execution (table/tuple locks and the ART node locks) [11].
As HyPer is an in-memory DBMS, the results are not affected by any
interrupts caused by IO. To see the effects of contention and cross-
partition transactions, we do not pin any threads to warehouses
in TPC-C. Figure 6 shows that the Optimistic and Hybrid-Locks
dominate the throughput performance in TPC-C. This is mostly
because their non-optimistic counterparts experience increasing
“read-read contention” on the top-level nodes of the indexes. These
read-read contention effects in the indexes were also very visible
for the TPC-H benchmark. Only after disabling all index scans in
TPC-H did the curves start to converge completely. This is because
the lock acquisitions during table scans are more evenly distributed
which reduces cache line contention. Also, scanning a chunk of
tuples (1024 in our system [12]) amortizes the cost of acquiring a
lock. Based on these findings, we always run the Hybrid-Lock in
pessimistic mode when scanning bigger chunks of data as using

DaMoN’20, June 15, 2020, Portland, OR, USA J. Böttcher et al.

Hyper-Threading
0

200k

400k

1 5 10 15 20 25 30 35 40

number of threads

th
ro

u
g

h
p
u

t
(t

xn
/s

)

Exclusive-Spinlock
Optimistic-Lock
Hybrid-Lock
RW-Spinlock
RW-Mutex (Blocking)

(a) TPC-C – Increasing the number of threads (100 warehouses)

Hyper-Threading
0

50

100

150

1 5 10 15 20 25 30 35 40

number of threads

th
ro

u
g

h
p
u

t
(q

u
e

ri
e

s
/s

)

Exclusive-Spinlock
Optimistic-Lock
Hybrid-Lock
RW-Spinlock
RW-Mutex (Blocking)

(b) TPC-H – Increasing the number of threads (sf-1, no indexes)

Figure 6: Full database benchmarks – Impact of lock choice

Low overhead

enables fine-

grained

locking...

but concurrent

writes lead to

starvation...

while we can

fall back to

shared locking.

Exc-Spinlock Speculative RW-Spinlock RW-Mutex Optimistic Hybrid-Lock

0
%

 W
rite

s
R

e
a

d
-O

n
ly

1
0

%
 W

rite
s

5
0

%
 W

rite
s

1

0

1
k

1
0

0
k

1

0

1
k

1
0

0
k

1

0

1
k

1
0

0
k

1

0

1
k

1
0

0
k

1

0

1
k

1
0

0
k

1

0

1
k

1
0

0
k

25k

50k

75k

100k

25k

50k

75k

25k

50k

75k

increasing the lock granularity of (tuples/lock)
 (tuple size = 8 bytes, 40 threads)

th
ro

u
g
h
p
u
t
(f

u
ll

ta
b
le

 s
ca

n
s/

s)

Figure 7: Granularity – Exploring the sweet spot between lock
granularity and overhead for mixed scans and updates

optimistic mode hardly brings any benefit to justify the risk of an
expensive restart.

4.2 Lock Granularity
The granularity, i.e., the number of tuples protected per lock, can
have a big impact on the system’s performance. For point accesses
like updates, or key lookups, the granularity determines the maxi-
mum number of concurrent accesses. Thus, write-heavy workloads
can benefit from fine-grained locking. However, during a full table
scan, every additional lock increases the required number of lock
acquisitions and reduces its effective memory bandwidth. In this
experiment, we want to find the fine line between high concurrency
and low overhead. Figure 7 shows that the Optimistic and Hybrid-
Lock reach their sweet spots at a granularity of 1000 tuples, while
the pessimistic locks need 10×more tuples to amortize the costs for
lock acquisitions. While this does affect the peak performance in
the read-only case, the more fine-grained locking starts to pay off
when the number of writes increases. With 10% or more writes, the

Table 2: Space consumption – in bytes, using Linux, C++17

Lock Implementation Size

Optimistic-Lock version (Fig. 2) 8
RW-Speculative tbb::speculative_spin_rw_mutex 192
RW-Spinlock tbb::spin_rw_mutex 8
RW-Local-Spinning tbb::queuing_rw_mutex 8
RW-Mutex std::shared_mutex 56
Exclusive-Spinlock atomic-flag 1-8
TicketSpinLock next-ticket + now-serving 8-128
OS-Mutex std::mutex 40
Hybrid-Lock RW-Mutex + version (Fig. 2) 16

Optimistic and Hybrid-Locks outperform all other configurations
while keeping their granularity at 1000 tuples.

4.3 Space Consumption
The space consumption of locks is important to support fine-grained
concurrency. The smaller the area of protected data is, the more
significant the lock’s size is. Especially for cache line optimized
index structures like ART [17], a lock should not extend the re-
quired space per node significantly. In general, user-space locks are
more space efficient as they only use 1-2 atomic values. However,
some techniques like speculative locking, or some TicketSpinLock
implementations require additional padding to avoid false-sharing
between cache lines. The locks relying on the OS generally also
require more memory, as they are often implemented as a combi-
nation of condition variables and locks. Their sizes can also vary
depending on the underlying OS and library. The exact sizes for
the lock implementations used throughout this paper are listed in
Table 2. For the Exclusive-Spinlock, we use a 64-bit atomic, as we
saw 2-3× better throughput in micro-benchmarks compared to a
single byte implementation.

Scalable and Robust Latches for Database Systems DaMoN’20, June 15, 2020, Portland, OR, USA

Table 3: Performance Counters – with and w/o contention

Read-Only
1 thread 40 threads

cyc. instr. IPC cyc. instr. IPC L1-m

RW-Speculative 76 117 1.55 5135 119 0.02 1.3
RW-Local-Spinning 141 126 0.90 77,584 26,864 0.35 91.0
RW-Spinlock 57 57 1.00 4,531 59 0.01 1.2
RW-Mutex 81 108 1.34 9,583 118 0.01 3.0
Optimistic 8 30 3.77 12 30 2.58 0.0
Hybrid-Lock 11 35 3.05 17 35 1.85 0.0
+ParkingLot 11 35 3.07 17 35 2.06 0.0

Write-Only
1 thread 40 threads

cyc. instr. IPC cyc. instr. IPC L1-m

RW-Speculative 74 101 1.36 67,918 12,413 0.19 48.9
RW-Local-Spinning 70 86 1.23 79,928 28,058 0.35 84.0
RW-Spinlock 60 42 0.70 52,215 9,656 0.18 38.1
RW-Mutex 95 98 1.03 29,201 5,631 0.19 27.6
Optimistic 97 20 0.21 8,636 1,663 0.19 23.7
Hybrid-Lock 69 53 0.77 4,082 1,229 0.30 12.8
+ParkingLot 82 64 0.78 421 150 0.35 2.1

4.4 Efficiency of Lock Acquisition
In this experiment, we analyze the efficiency andmicro-architectural
properties of lock acquisitions. Table 3 shows the normalized cy-
cles (cyc.), instructions (instr.), instructions per cycle (IPC), and
L1-misses (L1-m) per lock acquisitions. An efficient lock keeps the
number of instructions low, while maintaining a high throughput.
When the code allows optimal branch predictions and caching, mod-
ern CPUs can issue up to four instructions per cycle [10]. Optimistic
locking has such near-optimal IPC in the read-only case as it can
keep the cache line with the version shared between all threads. In
contrast, all pessimistic locks have a significant worse IPC, as their
instructions are stalled by atomic writes at the start and end of ev-
ery critical section. In the contended case, these operations become
very expensive due to L1-cache contention and CAS-operations
have to be repeated multiple times consuming many cycles.

For uncondented exclusive locking, all locks show about the
same performance in terms of cycles although their number of
instructions varies. For instance, the Local-Spinning lock uses more
instructions as it creates a local copy for every lock acquisition,
whereas normal Spinlocks only set a lock bit. When many threads
are competing for the same lock, the consumed cycles and L1-misses
go up. Whereas, the ParkingLot mechanism significantly helps to
keep these effects minimal and the cache contention under control.

4.5 Contention Handling Strategies
Finally, although we believe that lock contention should be rare
in a database system, it is sometimes unavoidable and requires a
robust solution. Ideally, a contended exclusive lock gives the same
throughput as serial execution. For this reason, we test and compare
common contention handling strategies by “smashing” the same
lock with increasing number of threads. We compare the perfor-
mance of different spinlocks (traditional, ticket-based, and local

 + Exp Backoff
 + Relax

Local Spinning

OS (std::mutex)

ParkingLot

Test-and-set

Test-test-and-set
TicketLock

TicketLock+Backoff

0

500

1000

1500

1 5 10 15 20 25 30 35 40

number of threads

a
vg

 t
im

e
 [

m
s]

Figure 8: Contention Handling – Measuring the latency when
locking the same lock exclusively with an increasing number of threads

spinning) to a kernel-based mutex and our hybrid ParkingLot imple-
mentation. The results, in Figure 8, show that OS-supported locks
achieve the best performance. Both the std::mutex and our Park-
ingLot are hardly affected by increasing the number of threads. The
lock acquisition itself is slightly more efficient in our ParkingLot im-
plementation, which makes its baseline throughput superior to the
full mutex. In contrast to the kernel-supported locks, the spinlocks
suffer from increasing cache line contention. Thus, we tested sev-
eral techniques to reduce this cache line contention. We achieved
the biggest improvement by switching from a test-and-set to
a test-test-and-set pattern. The cache pressure can be further
reduced by adding additional pause/cpu_relax instructions. The
best result was achieved when using them in combination with an
exponential backoff based on the number of retries. For the ticket
spinlock we can use a smarter backoff, as every thread can estimate
its required waiting time from the its ticket number as described
in Section 3.3. The bigger the difference between its ticket number
and the currently active number is, the longer the wait time. An-
other cache contention avoidance strategy is local spinning. Here,
every thread reduces the cache line contention by spinning only
on its local copy of the lock. While this gives fairly stable perfor-
mance, creating a local copy and inserting it into the queue adds a
significant overhead to the approach.

5 RELATEDWORK
There has been intensive work on locks and synchronization over
the past decades. Most research was driven by the (operating) sys-
tems community and geared towards developing new or tuning
existing locks [4, 30]. In the database community, different locks
were mostly analyzed considering only index structures or high-
level concurrency control [5, 7, 14, 20, 28, 32]. Optimistic (versioned)
locks have been used to synchronize a growing number of data
structures [3, 20, 24]. Falsafi et al. [6] show how the energy effi-
ciency of software, in particular database systems, can be improved
by interchanging locks. Surprisingly, no one has yet investigated

DaMoN’20, June 15, 2020, Portland, OR, USA J. Böttcher et al.

the performance impacts of different locks in a holistic approach
for entire database systems. In this paper, we perform database-
focused experiments and combine those results with the findings
of the systems community to infer best practices for locking in a
DBMS.

6 CONCLUSION
In this paper, we analyzed locks based on the specific demands for
databases. We showed how optimistic locking can be used to keep
the overhead and latency of locking minimal. We also showed the
implementation of a Hybrid-Lock, which can fall back to pessimistic
locking when needed. This is particularly useful in general-purpose
database systems that need to support a broad range of workloads.
Through a series of experiments and evaluation criteria, we iden-
tified that ParkingLot-based contention handling works best for
database systems supporting heterogeneous workloads. In the com-
mon, uncontended case they do not add any overhead and keep
the size of the lock minimal. If there is contention, they handle
contention gracefully by waiting in the kernel-space. Furthermore,
its callback API allows one to integrate database specific logic like
query cancellation checks.

Acknowledgments
This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 725286).

REFERENCES
[1] Robert Binna, Eva Zangerle, Martin Pichl, Günther Specht, and Viktor Leis. 2018.

HOT: A Height Optimized Trie Index for Main-Memory Database Systems. In
SIGMOD. 521–534.

[2] Jan Böttcher, Viktor Leis, Thomas Neumann, and Alfons Kemper. 2019. Scalable
Garbage Collection for In-Memory MVCC Systems. VLDB 13, 2 (2019). https:
//doi.org/10.14778/3364324.3364328

[3] Sang Kyun Cha, Sangyong Hwang, Kihong Kim, and Keunjoo Kwon. 2001. Cache-
Conscious Concurrency Control of Main-Memory Indexes on Shared-Memory
Multiprocessor Systems. In VLDB.

[4] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2013. Everything you
always wanted to know about synchronization but were afraid to ask. In ACM
SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13, Farmington,
PA, USA, November 3-6, 2013. https://doi.org/10.1145/2517349.2522714

[5] Jose M. Faleiro and Daniel J. Abadi. 2017. Latch-free Synchronization in Database
Systems: Silver Bullet or Fool’s Gold?. In CIDR.

[6] Babak Falsafi, Rachid Guerraoui, Javier Picorel, and Vasileios Trigonakis. 2016.
Unlocking Energy. In USENIX ATC 16. USENIX Association, Denver, CO. https:
//www.usenix.org/conference/atc16/technical-sessions/presentation/falsafi

[7] Goetz Graefe. 2010. A survey of B-tree locking techniques. ACM Trans. Database
Syst. 35, 3 (2010). https://doi.org/10.1145/1806907.1806908

[8] Intel. 2019. Intel® 64 and IA-32 Architectures Optimization Reference
Manual. https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-
architectures-optimization-manual.pdf.

[9] Intel. 2019. Speculative locking (Transactional Lock Elision). https://software.
intel.com/en-us/node/506266.

[10] Intel. 2020. Intel® VTuneTM Profiler User Guide. Chapter CPU Metrics Reference.
[11] Alfons Kemper and Thomas Neumann. 2011. HyPer: A Hybrid OLTP&OLAP

Main Memory Database System based on Virtual Memory Snapshots. In ICDE.
[12] Andreas Kipf, Varun Pandey, Jan Böttcher, Lucas Braun, Thomas Neumann, and

Alfons Kemper. 2019. Scalable Analytics on Fast Data. ACM TODS 44, 1, Article
1 (Jan. 2019). https://doi.org/10.1145/3283811

[13] Orran Krieger, Michael Stumm, Ronald C. Unrau, and Jonathan Hanna. 1993. A
Fair Fast Scalable Reader-Writer Lock. In Proceedings of the 1993 International
Conference on Parallel Processing, Syracuse University, NY, USA, August 16-20, 1993.
Volume II: Software. https://doi.org/10.1109/ICPP.1993.21

[14] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M Pa-
tel, and Mike Zwilling. 2011. High-performance concurrency control mechanisms
for main-memory databases. PVLDB 5, 4 (2011).

[15] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.
LeanStore: In-Memory Data Management beyond Main Memory. In ICDE. 185–
196.

[16] Viktor Leis, Michael Haubenschild, and Thomas Neumann. 2019. Optimistic Lock
Coupling: A Scalable and Efficient General-Purpose Synchronization Method.
IEEE Data Eng. Bull. 42, 1 (2019). http://sites.computer.org/debull/A19mar/p73.
pdf

[17] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix
tree: ARTful indexing for main-memory databases. In IEEE. https://doi.org/10.
1109/ICDE.2013.6544812

[18] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2014. Exploiting hardware
transactional memory in main-memory databases. In ICDE. 580–591.

[19] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2016. Scaling HTM-
Supported Database Transactions to Many Cores. IEEE 28, 2 (2016). https:
//doi.org/10.1109/TKDE.2015.2411272

[20] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016. The
ART of practical synchronization. In DaMoN.

[21] Darko Makreshanski, Justin J. Levandoski, and Ryan Stutsman. 2015. To Lock,
Swap, or Elide: On the Interplay of Hardware Transactional Memory and Lock-
Free Indexing. PVLDB 8, 11 (2015).

[22] Berenice Mann. 2019. New Technologies for the Arm A-Profile Architecture.
https://community.arm.com/developer/ip-products/processors/b/processors-
ip-blog/posts/new-technologies-for-the-arm-a-profile-architecture.

[23] Linux Programmer’s Manual. 2020. futex - fast user-space locking. http://man7.
org/linux/man-pages/man2/futex.2.html.

[24] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache craftiness
for fast multicore key-value storage.. In EuroSys.

[25] John M. Mellor-Crummey and Michael L. Scott. 1991. Algorithms for Scalable
Synchronization on Shared-Memory Multiprocessors. ACM Trans. Comput. Syst.
9, 1 (1991), 21–65. https://doi.org/10.1145/103727.103729

[26] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. PVLDB 4, 9 (2011). https://doi.org/10.14778/2002938.2002940

[27] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In CIDR. http://cidrdb.org/cidr2020/papers/p29-
neumann-cidr20.pdf

[28] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree
for Storage Class Memory. In SIGMOD, Fatma Özcan, Georgia Koutrika, and Sam
Madden (Eds.). ACM. https://doi.org/10.1145/2882903.2915251

[29] Filip Pizlo. 2016. Locking in WebKit. https://webkit.org/blog/6161/locking-in-
webkit/.

[30] Hermann Schweizer, Maciej Besta, and Torsten Hoefler. 2015. Evaluating the
Cost of Atomic Operations on Modern Architectures. In International Conference
on Parallel Architectures and Compilation, PACT. https://doi.org/10.1109/PACT.
2015.24

[31] Linus Torvalds. 2020. No nuances, just buggy code. https://www.realworldtech.
com/forum/?threadid=189711&curpostid=189723.

[32] ZiqiWang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang,Michael
Kaminsky, and David G. Andersen. 2018. Building a Bw-Tree Takes More Than
Just Buzz Words. In SIGMOD.

https://doi.org/10.14778/3364324.3364328
https://doi.org/10.14778/3364324.3364328
https://doi.org/10.1145/2517349.2522714
https://www.usenix.org/conference/atc16/technical-sessions/presentation/falsafi
https://www.usenix.org/conference/atc16/technical-sessions/presentation/falsafi
https://doi.org/10.1145/1806907.1806908
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/en-us/node/506266
https://software.intel.com/en-us/node/506266
https://doi.org/10.1145/3283811
https://doi.org/10.1109/ICPP.1993.21
http://sites.computer.org/debull/A19mar/p73.pdf
http://sites.computer.org/debull/A19mar/p73.pdf
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/TKDE.2015.2411272
https://doi.org/10.1109/TKDE.2015.2411272
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/new-technologies-for-the-arm-a-profile-architecture
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/new-technologies-for-the-arm-a-profile-architecture
http://man7.org/linux/man-pages/man2/futex.2.html
http://man7.org/linux/man-pages/man2/futex.2.html
https://doi.org/10.1145/103727.103729
https://doi.org/10.14778/2002938.2002940
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
https://doi.org/10.1145/2882903.2915251
https://webkit.org/blog/6161/locking-in-webkit/
https://webkit.org/blog/6161/locking-in-webkit/
https://doi.org/10.1109/PACT.2015.24
https://doi.org/10.1109/PACT.2015.24
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723
https://www.realworldtech.com/forum/?threadid=189711&curpostid=189723

	Abstract
	1 Introduction
	2 Locking Techniques
	2.1 Optimistic Locking
	2.2 Speculative Locking (HTM)
	2.3 Hybrid Locking

	3 Contention Handling
	3.1 Busy-Waiting/Spinning
	3.2 Local Spinning using Queuing
	3.3 Ticket Spinlock
	3.4 Kernel-Supported ParkingLot

	4 Evaluation
	4.1 TPC-C and TPC-H
	4.2 Lock Granularity
	4.3 Space Consumption
	4.4 Efficiency of Lock Acquisition
	4.5 Contention Handling Strategies

	5 Related Work
	6 Conclusion
	References

