
Concurrent Online Sampling for All, for Free
Altan Birler

TUM
altan.birler@tum.de

Bernhard Radke
TUM

radke@in.tum.de

Thomas Neumann
TUM

neumann@in.tum.de

ABSTRACT
Database systems rely upon statistical synopses for cardinality
estimation. A very versatile and powerful method for estimation
purposes is to maintain a random sample of the data. However,
drawing a random sample of an existing data set is quite expensive
due to the resulting random access pattern, and the sample will get
stale over time. It is much more attractive to use online sampling,
such that a fresh sample is available at all times, without additional
data accesses. While clearly superior from a theoretical perspective,
it was not clear how to efficiently integrate online sampling into a
database system with high concurrent update and query load.

We introduce a novel highly scalable online sampling strategy
that allows for sample maintenance with minimal overhead. We
can trade off strict freshness guarantees for a significant boost in
performance in many-core shared memory scenarios, which is ideal
for estimation purposes. We show that by replacing the traditional
periodical sample reconstruction in a database system with our
online sampling strategy, we get virtually zero overhead in insert
performance and completely eliminate the slow random I/O needed
for sample construction.

CCS CONCEPTS
• Information systems→Query optimization;Database query
processing; • Theory of computation → Sketching and sam-
pling.

KEYWORDS
online sampling, database statistics, query optimization

ACM Reference Format:
Altan Birler, Bernhard Radke, and Thomas Neumann. 2020. Concurrent
Online Sampling for All, for Free. In International Workshop on Data Man-
agement on New Hardware (DAMON’20), June 15, 2020, Portland, OR, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3399666.3399924

1 INTRODUCTION
A random sample of a large dataset is an effective tool to estimate
the number of data items satisfying an arbitrary predicate [14, 18].
Many database management systems, thus, maintain samples of
base relations as part of their statistics collection. These samples can
then be used during query optimization to estimate the selectivity
of filter predicates and cardinalities of intermediate results [11, 16].
Accurately estimating these selectivities and cardinalities is vital for
the system to generate efficient query execution plans [12, 15, 23].

DAMON’20, June 15, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in International
Workshop on Data Management on New Hardware (DAMON’20), June 15, 2020, Portland,
OR, USA, https://doi.org/10.1145/3399666.3399924.

0

20

40

60

lineitem orders partsupp
Relation

T
im

e
in

 S
ec

on
ds

Figure 1: Time to read 1000 random tuples from TPC-H SF5

While querying a small, materialized sample is fast, maintaining the
sample usually incurs high costs due to the required random reads.
These random reads are of course especially painful in a disk-based
system, where e.g. reading 1,000 random tuples can take multiple
seconds as can be seen in Figure 1. But even on modern systems,
where most of the data resides in main memory, building such a
random sample on demand can cause noticeable latency in query
execution. To mitigate this latency impact, some systems, such as
HyPer [10], accept the sample to become stale and only recalculate
it once a certain amount of the underlying data changed.

The cost of periodical sampling can be alleviated by utilizing
an online approach where the samples are kept up-to-date while
incoming items are processed, avoiding the need to go back and re-
read data when the sample is needed. However, an online approach
must be able to work within existing software that process data,
which raises the requirements for adaptability and performance.

Furthermore, in today’s hardware landscape, performance gains
are no longer achieved through improved computational power of
a single core, but instead through an increased number of cores
running in parallel. To fully reap the benefits of modern hard-
ware, software and algorithms must be designed to allow for maxi-
mum parallelism, potentially adaptively allocating and deallocating
threads depending on the workload. Thus, a sampling approach
with a goal of integrating into such systems, must also be capable of
adapting to the needs of any parallel workload, scaling as needed.

These requirements lead us to develop a generic online sampling
algorithm which

(1) keeps samples up-to-date while processing incoming items,
(2) has negligible overhead in terms of both, per thread work

and contention,
(3) uses a constant amount of memory per thread,
(4) eases integration into existing solutions due to a simple

interface,
(5) provides a single, continuously available sample of high

quality for each relation,
(6) performs a minimum amount of shared memory writes in

bulk loading scenarios.

https://doi.org/10.1145/3399666.3399924
https://doi.org/10.1145/3399666.3399924

DAMON’20, June 15, 2020, Portland, OR, USA Altan Birler, Bernhard Radke, and Thomas Neumann

The concurrent online sampling approach we describe is based
on Vitter’s reservoir sampling [22], where incoming tuples are
placed into a reservoir with a probability reciprocally proportional
to the total number of items processed so far. A multi-threaded
implementation of this algorithm is described in [21]. This imple-
mentation guarantees the sample to represent the entirety of the
population seen by all threads at any point in time. Due to this
guarantee, the synchronization overhead of this implementation
increases with the number of collaborating threads. Thus, the key
idea of the algorithm proposed in this paper is to relax this re-
quirement on the freshness of the sample to allow for maximum
scalability. Our algorithm can construct two types of samples: (1) a
sample that is up-to-date, but potentially misses tuples that have
not yet been inserted by threads lagging behind or (2) a perfectly
correct representation of a subset of the dataset that has been seen
up to the point the sample is requested.

The rest of this paper is organized as follows: In Section 2 we
discuss the foundations and describe prior work on online sampling.
We give an overview over the proposed algorithm in Section 3. After
performing a theoretical analysis of the algorithm in Section 4 we
show the results of an experimental evaluation in Section 5. Finally
we conclude the paper in Section 6.

2 FOUNDATIONS & RELATEDWORK
In his seminal work on random sampling from a source of unknown
size, Vitter describes reservoir sampling as Algorithm R [22]. This
algorithm draws a uniform sample S of sizem from a data set D of
an unknown size n in a single pass. Building a sample is of course
only relevant if the data set is larger than the sample. For the rest
of this paper we thus assume n > m.

To obtain a random sample, anym item subset ofD must have the
same probability of being S . Vitter achieves this by probabilistically
deciding for each processed item of D, whether it has to be placed
in the reservoir or not. We call an item to be placed in the reservoir
a “reservoir tuple”. The set of all reservoir tuples constitutes the
“reservoir”. We say that an item that has not been placed into the
reservoir has been “skipped”. The downside of this approach is that
it requires a probabilistic decision for each item in D.

In the samework, Vitter also describes an optimal single-threaded
sampling algorithm which makes use of the fact that the number of
items skipped between two consecutive reservoir tuples follows a
geometric distribution. Instead of deciding for each incoming item,
whether it has to be placed in the reservoir, the “skip length”s be-
tween consecutive reservoir tuples is generated randomly. A “skip
length” is the number of consecutively skipped tuples between two
tuples that have been consecutively placed in the reservoir. As the
expected total number of reservoir tuples for a data set of size n is
O(m · (1 + log(n/m))) [22], the number of discarded items grows
exponentially with increasing n. Thus, only O(m · (1 + log(n/m)))

random numbers need to be generated to obtain a sample of sizem
from a data set of size n.

Li’s Algorithm L [13] uses a different interpretation of sampling:
Each item inD is assigned a uniform random value between 0 and 1.
Them tuples with the smallest such random value then constitute
the sample. Algorithm L additionally makes use of a compact and
efficient computation of the skip lengths.

Vitter’s and Li’s algorithms allow for efficient online sampling on
a single core. To achieve maximum performance on the nowadays
omnipresent many-core systems, these algorithms must be empow-
ered to run on multiple cores in parallel. Two principles can be
applied to parallelize reservoir sampling. Either multiple indepen-
dent samples are built per thread and merged into a global sample
on demand, or a single, shared sample is maintained and accesses to
this sample are synchronized between threads. We call the former
the “distributed” setting, whereas the latter is called the “shared”
setting. Both approaches are described in literature [1, 20, 21].

The first approach to concurrent online sampling, the distributed
setting, keeps local samples for every thread. Its main advantage is
that t threads can build their samples locally without communica-
tion. The final sample is obtained by merging the local samples. If
we require that the final sample has a certain size, all local samples
must be of the same size, if there are no guarantees given as to how
much data each thread will process. This implies O(t ·m) memory
use for a sample of sizem. Sanders et al. [20] propose merges that
result in larger final samples, if one were to accept a certain error
bound. Al-Kateb et al. [1] describe a mechanism to adaptively ad-
just the size of these thread-local samples, shrinking and growing
them as needed. Hübschle-Schneider and Sanders [8] communi-
cate information among threads that allows to trim the local set
of tuples which are sampled. However, these systems do not an
ensure optimal memory bound of O(m+ t) and are not designed for
situations where threads are established and terminated arbitrarily.

The second approach to concurrent online sampling, the shared
setting, keeps a single shared sample, usually maintained by a cen-
tral coordinator. Note that, even though we call such approaches
”shared“, they are not restricted to shared memory architectures,
but can also be used in shared-nothing environments. While in
shared-nothing environments, communication is achieved through
message-passing, in shared memory, threads communicate through
synchronized reads from andwrites tomemory shared by all threads.

There has been much research on this kind of sampling [4–6, 21],
however, the communication costs of all these algorithms depend
on the number of employed threads. Tirthapura and Woodruff [21]
prove that the lower bound of expected messages to build a sample
of sizemwith t threads isΩ

(
t

loд(1+t/m)
· log

(n
m
))
. Thus, increased

parallelism results in higher communication cost, which ultimately
impedes the algorithms scalability to higher thread counts. The
dependency on the number of threads is rooted in a strict definition
of the correctness of a sample: All proposed algorithms aim to, at
any time, provide a correct uniform sample of all tuples processed
by all threads so far. By slightly relaxing this requirement, we
propose an algorithm optimized for a shared-memory architecture
that provides high quality samples and scales perfectly to higher
thread counts. Our approach is based on prior work [3], which we
improve upon by imposing tighter memory bounds, presenting a
better analysis of the quality of the resulting sample, as well as
providing a more thorough experimental evaluation.

3 OUR APPROACH
We will now describe how to extend optimal single-threaded reser-
voir sampling approaches to support scalable concurrent execution
efficiently. We assume that the sample has initially been filled with

Concurrent Online Sampling for All, for Free DAMON’20, June 15, 2020, Portland, OR, USA

Skip #1
Length 2

Skip #2
Length 3

Skip #3
Length 3

Skip #4
Length 6

Skip #5
Length 9

…

Skip #1
Length 2

Skip #2
Length 3

Skip #3
Length 3

Skip #4
Length 6

Skip #5
Length 9

…

T1 T2 T2 upcoming

upcoming

Skip #1
Length 2

upcoming

Skip #1
Length 2

Skip #3
Length 3

Skip #4
Length 6

T1 T2 upcoming

(A)

(A)

(B)

(B)

Figure 2: Infinite list of skips

Skip #1
Length 2

Skip #2
Length 3

Skip #3
Length 3

Skip #4
Length 6

Skip #5
Length 9

…

Skip #1
Length 2

Skip #2
Length 3

Skip #3
Length 3

Skip #4
Length 6

Skip #5
Length 9

…

T1 T2 T2 upcoming

upcoming

Skip #1
Length 2

upcoming

Skip #1
Length 2

Skip #3
Length 3

Skip #4
Length 6

T1 T2 upcoming

(A)

(A)

(B)

(B)

Figure 3: Memory optimized list of skips

the first tuples as described in Section 3.7. Every thread receives
an independent sequence of tuples that need to be sampled. The
number of tuples each thread will receive is initially unknown, and
threads might stop receiving further tuples at any time. The single-
threaded approach determines a set of tuples that will be included
in the reservoir, the reservoir tuples. Between these reservoir tuples
are many tuples that are skipped. With “skip” we denote a contigu-
ous set of tuples that are skipped between two reservoir tuples (or
before the first reservoir tuple). A “skip” has a “skip length” which
denotes the number of skipped tuples it contains. The data set is
split into these skips each followed by a single reservoir tuple. Our
approach is to distribute these skips among different threads based
on our previous work [3]. After a thread received a skip and its cor-
responding skip length Si , it skips the upcoming Si items without
placing them into the sample. This can be done locally without any
synchronization. Afterwards, the thread will then place the next
incoming tuple into the sample, as the reservoir tuple correspond-
ing to the skip. Such a parallel execution and the generated sample
correspond to the execution of the single-threaded algorithm and
its sample, where the global ordering of the tuples is determined
by how the skips were distributed among the threads.

3.1 List of Skips
Skips to be distributed across multiple threads are stored in a List
of Skips (LoS). For the sake of argument, assume that we have an
infinite list of skips as shown in Figure 2 row (A). The skip that will
be processed next by an upcoming thread, the first one that has not
yet been acquired, is marked as upcoming. Threads use this list to
acquire skips that have not been used yet. In row (B), thread T1 has
acquired Skip #1 which it is currently processing. Thread T2 has
acquired and finished Skip #2 and already acquired Skip #3 which
it is currently processing. The upcoming skip is Skip #4. Looking
at the list of skips, it is clear that not every skip is actively utilized.
The lists filtered down to the skips that are actually needed can
be seen in Figure 3. Here, we only keep the skips currently in use
by a thread and one upcoming skip. In row (A), we see that the
list only contains a single node, the upcoming node. If a thread
were to acquire the upcoming skip, it must first generate the next
upcoming skip so that another incoming thread will not find the
list empty. In row (B), each of the two threads holds one node and
there is still an upcoming node available. Since the total number

of nodes excluding the upcoming node is limited by the maximum
number of threads, we additionally opt to keep a preallocated free
list of nodes which threads can acquire. This allows us to not use
any external memory allocation during the execution resulting in
more predictable performance characteristics.

3.2 Data Structure
In our implementation both the LoS and the free list are repre-
sented by a head pointer, pointing to the node at the head of the
respective lists. The nodes within a list are singly linked, where
each node contains a successor pointer. Since we reuse nodes, re-
peatedly removing them from the list and putting them back in, we
can encounter the ABA problem [9], where we do not notice that
the head pointer has been modified and then changed back. This
would mean that the head node could have been modified by an-
other thread, invalidating the information that has been previously
read from the head node, such as its successor. To mitigate this, the
head pointers also contain a version counter, which is incremented
whenever the pointer is modified. So if the head pointer is changed
to a different node but afterwards changed back, this can be rec-
ognized by other threads noticing that the version has changed.
To modify these head pointers, the compare and swap operation
is used, where the pointer’s value is atomically changed only if
it has not been modified since its value has been originally read.
We preallocate the nodes, one for each thread and one additional
node as the upcoming node, in a contiguous array which can be
accessed by a 32-bit offset. Head pointers are stored as 64-bit values
where the first 32-bits are the version and the rest is the pointer
stored as an offset into preallocated contiguous array of nodes. The
structure of LoS is based on the LockFreeStack as described in [7],
extended with the close integration of a free-list of preallocated
nodes and adapted for the operations required to distribute skips
while keeping tight memory bounds, as described in Section 3.4.

A skip node contains information about the skip such as the
skip index i , the length of the skip Si , and theWi value used by
Algorithm L [13] in generating the skip where:

random() := “A uniformly random number in [0, 1]”

W1 := e log(random())/m

Si := floor(log(random())/log(1 −Wi))

Wi+1 :=Wi · e
log(random())/m

Every skip corresponds to a range of tuple indices in the sin-
gle threaded reservoir sampling. The first skip corresponds to the
indices [0, S1], where the first S1 tuples are skipped and the last
tuple is the reservoir tuple. The second range similarly corresponds
to the indices [S1 + 1, S1 + 1 + S2], and the i-th range corresponds
to

[∑i−1
k=1 (Sk + 1),

(∑i
k=1 (Sk + 1)

)
− 1

]
. The last index within the

range of a skip is the index of a reservoir tuple, and the previous
indices are indices of tuples to be skipped. Skip nodes only need
17 bytes of space in our implementation. The skip length is an 8
byte unsigned integer, theW value is a 4 byte float, the skip index
is a 4 byte unsigned integer, and the pointer to the successor node
is stored as a 1 byte index into the preallocated array of nodes.
Samples of sizes < 213 require less than 20 bits for skip indices
with data sets of size 264 with high probability, so 4 bytes is more

DAMON’20, June 15, 2020, Portland, OR, USA Altan Birler, Bernhard Radke, and Thomas Neumann

than enough for the skip index. In our implementation, we also
do not need more than 120 threads, so 1 byte is enough to store
the successor node’s index. However, more bytes could be used for
successor pointers if needed. Nodes easily fit into cache lines which
typically contain at least 32 bytes. We align nodes to the cache line
size to reduce unnecessary contention between CPU cores.

3.3 Sample Construction
When a thread needs to processes a tuple for sampling, it needs to
determine this tuple’s position in the global order within the data
set. The global order will determine whether or not this tuple is a
reservoir tuple. To determine the global order of tuples, a thread
acquires a skip i . The skip i will determine the global order of a
number of upcoming tuples. The thread’s upcoming Si tuples will be
skipped. The next tuple after the skipped tuples is a reservoir tuple
and must be placed into the reservoir. When the thread receives no
more than k tuples where k < Si + 1, the range [k + 1, Si + 1] will
remain unused and the remaining range must be returned so that
another thread can use it to determine global orders.

Before we discuss how skips are acquired and returned, we will
address how a sample can be constructed from reservoir tuples. We
can handle reservoir tuples in two different ways resulting in two
different samples with different properties. The first is to put all
reservoir tuples into a shared reservoir, where the i-th reservoir
tuple is placed at position i within the reservoir. To generate a
sample, we iterate through the reservoir tuples, placing them one
by one at uniformly distributed random positions in the sample.
Once we encounter the first reservoir index j where no tuple been
assigned yet, we will have constructed a correct sample of the tuples
globally ordered before the reservoir tuple at j − 1. Such a sample
is a correct sample of that subset of the data, since the probabilistic
properties of the single-threaded reservoir sampling do not depend
on the initial order of tuples. This assumes that the probability of a
tuple being assigned a particular index is independent of that index
being a reservoir index. This is a safe assumption, since unless a
thread scheduler adversely tries to schedule threads knowing what
skip lengths have been generated, simple differences in the threads
processing speeds will have no impact. It is possible for there to be
reservoir positions with indices larger than j that have been filled
while position j remains empty, since threads could be processing
tuples at different rates. However, as more data is processed, such
holes will get filled, and it will be possible to find larger and larger
indices j where all previous reservoir positions are assigned. So
while we do not have a sample that represents the entire data set
that has been seen up until the point the sample is queried, the
sample will cover more and more of the data set as time goes on.

Another option is to simply ignore unassigned reservoir indices
and continue to insert all the reservoir tuples that have been de-
termined. Now the sample potentially represents more of the data,
but it is not perfect in a theoretical sense, since it potentially would
have different entries if there were no unassigned reservoir posi-
tions. There are at most as many such entries as there are threads,
since at any time, there is at most one incomplete skip per thread.
Since the missing entries are also quite random, the sample is still
useful in determining the approximate properties of the data set it
represents. If we are fine with generating a sample of this form, we

Table 1: Actions on the free list when acquiring a skip

List of Skips
Thread owns node doesn’t own node

contains one skip node - allocate
contains more skip nodes deallocate -

do not need to store the entire reservoir, we can simply store the
sample. When a reservoir tuple is encountered, the tuple shall be
directly placed at a random position within the sample. To ensure
that older tuples do not override newer tuples within the sample,
the skip index corresponding to the reservoir tuple must be stored
with the tuples themselves. A thread then only replaces a tuple
within the sample if the thread’s tuple has a higher skip index,
which prohibits really slow threads from overwriting the work of
threads that have progressed further. To synchronize writing tuples
within the sample, a fine grained lock is used per tuple.

3.4 Skip Acquisition
We will now discuss how threads acquire and return skips from the
LoS. After a thread acquires a skip node, it can use the information
on the node to determine reservoir tuples locally. The LoS initially
contains only one node, the initial, first skip. Our algorithm has
four properties (P.1-P.4) that ensure that no data races take place
and that tight memory bounds are held:
P.1 During execution, the LoS always contains at least one skip

node, so that the upcoming thread can always receive a skip.
A thread is responsible for generating the following skip
before it acquires the final skip from the list. To replace
the node in the LoS, the thread needs to hold a node itself.
This means that a node from the free list might need to be
acquired (allocate).

P.2 A node can either be in the LoS, the free list, or be held by a
thread.

P.3 A node can only be modified while it is owned by a thread.
P.4 A thread can hold at most one node at a time to ensure tight

memory bounds. This means that the thread might need to
free the node that it holds in order to acquire a skip from the
free list (deallocate).

There are thus four ways in which a thread might go about
acquiring a skip from the list of skips. One variable is whether the
thread holds a node or not. The other variable is whether the list of
skips only contains one node or more. How a thread interacts with
the free list in these four situations is summarized in Table 1.

3.5 Example
To illustrate the exact operation of threads when acquiring and
returning skips, we will explore a specific execution illustrated in
Figure 4. In this example there are two threads T1 and T2 processing
tuples that are to be sampled. In the figure, there are 3 nodes which
are modified over time and each row corresponds to a point in time.
Initially, at time (1), the LoS contains the left node, and the free list
contains the two other nodes. The lists are designated by the lists’
head pointers visualized by vertical arrows on the top pointing to
their head. The nodes’ successors are designated by the horizontal

Concurrent Online Sampling for All, for Free DAMON’20, June 15, 2020, Portland, OR, USA

Skip #2
Length 4 X

Skip #1
Length 3 X

Skip X
Length X

Skip X
Length X X

Skips Free

Skip #1
Length 3 X

Skip X
Length X X

T1

Skip #2
Length 4 X

Skip #1
Length 3 X

Skip #2
Length 4 X

FreeT1

X

T2

Skip #2
Length 4 X

Skip #1
Length 0

Skip #2
Length 4 X

Free

X

T2

Skips

Skips

Free

Skips

Skip #2
Length 4 X

Skip X
Length X X

Skips Free

Skip #1
Length 0 X

T2

Skip #2
Length 4 X

Skip X
Length X X

Skips Free

Skip #3
Length 6 X

T2

Skip #2
Length 4 X

Skip X
Length X X

Skips Free

Skip #3
Length 6 X

T2

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Figure 4: The LoS data structure

arrows pointing to the right. Nodes that point towards an X (null)
have no successors, which means that they are the final nodes of
their list. We will first go through the process from the perspective
of T1. T1 starts at time (1). It reads the LoS’ head pointer, and the
head node on the left, checking whether it has a successor. As this is
not the case, T1 first needs to generate the next skip in order to take
the existing one as required by property P.1. T1 currently holds no
node, so it must allocate one by taking a node from the free list as in
Table 1 by moving the free lists head pointer to the successor of the
free list head in a compare and swap loop. T1 succeeds and at time
(2) it owns the middle node which it then fills with the information
of the skip that has to follow skip #1 that T1 has seen at the head
of the LoS. The information is generated by the Algorithm L as
described earlier [13]. T1 also sets the successor pointer of its node
to null as it will become the final node on the LoS. T1 then proceeds
to set the head pointer of the LoS to the node it owns (middle node)
with a compare and swap operation, ensuring that the head of the
LoS has not been modified by another thread. After it succeeded
at time (3), it now owns the left node with the first skip and the
LoS now starts and ends with the middle node, which now contains
the second skip. T1 then starts processing tuples. For every tuple
it receives that is being inserted into the data set, T1 decrements
the length of the skip by one if the length is greater than zero. T1
receives 3 tuples which it skips, decrementing its skip length to 0.
Afterwards, it receives no further tuples and needs to shutdown, but
it has not completed its range since it has not yet found a reservoir
tuple. T1 must put its remaining skip back onto the LoS so that the
corresponding range can be completed. So T1 sets the successor
of the node it owns to the head of the LoS, and then sets the head

pointer of the LoS to the node it owns with a compare and swap
operation, ensuring that the head pointer has not been modified by
another thread. T1 is now done.

The process is similar from the perspective of thread T2. It starts
at time (2). Reading the LoS head pointer and the head node, it
observes that the list only contains a single node. This leads T2 to
allocate a node from the free list, and compute the skip following
the LoS head node, storing the result in the node that it allocated. At
time (4), T2 tries to replace the head node with the node that it holds
containing the following skip, but fails since the head pointer has
been modified by thread T1. Since the LoS contains two nodes, T2
first deallocates the node that it holds (right node) due to property
P.4, and then proceeds to take the head node (left node). At time
(5), the skip that T2 has acquired has skip length 0, meaning that
the next incoming tuple is a reservoir tuple. After processing the
next incoming tuple, T2 needs a new skip. At time (6), it checks
the LoS, notices that the list only contains one node (middle node),
then proceeds to compute the skip following the node in the LoS,
storing the result in the node that it already holds (left node). At
time (7), T2 replaces the head of the LoS with the node that it holds.

The final remaining case is where a thread holds no nodes and
the LoS contains more than one node. In this case, no allocation
or deallocation is necessary. The thread simply proceeds to move
the head of the LoS forward to the successor of the head node and
takes ownership of the prior head node.

3.6 Final Interface
Our sampling algorithm can be integrated into an existing system
with a simple interface. The initialization of the sampling system
requires allocation and initialization of the sample and the list of
skips (LoS) data structure as described above. The sampling threads
acquire skips at their initialization, run the skip processing logic
for every tuple, and return their remaining skip on termination.
Processing a skip in most cases only requires decrementing the
thread local skip length, which results in almost zero overhead.

3.7 Preload
So far we assumed, that a sample already contains m elements.
Initially, this is of course not the case. As long as the sample is not
completely filled withm elements, special handling is required. The
firstm items passing through the input streams are guaranteed to
end up in the sample. We take care of this in a special preload phase.
In this phase, we keep track of the number of processed elements
using a global atomic preload counter that is incremented for each
item. The preload phase is finished, once this counter reachesm.

When a thread starts sampling, it first reads the value v of the
preload counter. If v ≥ m, the preload phase has already finished
and the normal sampling procedure as described above can be
applied. If the counter value is less thanm, the preload phase is
still in progress. In this case the thread performs an atomic fetch
and increment instruction on the counter, atomically reading and
incrementing its value. The newly read value v ′ can now again be
larger thanm if other threads have successfully processed further
items in the meantime, thereby finishing the preload phase. In this
case, the thread continues with the normal sampling procedure.
Otherwise, preloading is still in progress and the thread tries to

DAMON’20, June 15, 2020, Portland, OR, USA Altan Birler, Bernhard Radke, and Thomas Neumann

place the item into the sample at position v ′. As the position might
have already been written to by a thread performing the normal
sampling procedure, the current thread will only write the element
if the position is empty. For the next incoming item, the preload
counter must be checked again until preloading is finished. Once
the preload phase is finished, threads are not required to check the
preload counter again.

3.8 Updates and Deletes
We have discussed how a single sample can be generated from
streams of incoming data. In the context of databases, this cor-
responds to continuously inserting tuples into a relation. A full-
fledged database additionally must support updates and deletes.
Both of these result in changes to the original data set which may
cause the sample to become outdated. Ideally, the sample should
also reflect the resulting modifications. In the following, we there-
fore discuss, how our sampling strategy can be extended to support
updates and deletes.

Olken and Rotem [18] describe an approach to support updates
and deletes within samples. For updates, one needs to scan through
the sample to find the affected tuple, and simply update the tuple
in place if it is contained in the sample. Handling deletes is on the
other hand slightly more involved: A deleted tuple, that is part of
the sample, must be replaced by a different one. While Olken and
Rotem pick a random tuple from the existing data set to replace the
deleted tuple, our online approach needs to pick an upcoming tuple
to replace the deleted tuple. After this replacement, the state of the
sample will be as if no deletes actually happened, and the tuple
from the future was actually inserted into the sample instead of the
deleted tuple. To accomplish this, the operations on an upcoming
tuple, must exactly replay the operations performed on the tuple
being deleted. So we must first determine what actually happened
to the original tuple. Was it placed into the reservoir, or was it
skipped? If the deleted tuple was skipped, we increment a skip
length of a skip node by 1. This will result in an extra tuple being
skipped in the future which will take on the role of the deleted
tuple. If the deleted tuple was placed into the reservoir, a new skip
node with a skip length of 0 is inserted to the front of the LoS. Due
to this new skip of length 0, an additional upcoming tuple will be
placed in the sample thereby replacing the deleted one. It must,
however, be ensured, that the newly inserted tuple will end up at
the exact same position in the sample as the deleted one. This is
achieved by using a deterministic counter based random number
generator [19] with the skip index as the counter, which roughly
corresponds to hashing the skip index, to generate the random
positions in the sample. Thus, by giving the newly inserted skip
node the skip index of the deleted tuple, the newly inserted tuple is
guaranteed to overwrite the deleted one.

The most expensive part of this approach is to scan the reservoir
to check whether it contains a certain tuple.This can be greatly
optimized by storing whether a tuple has been inserted into the
reservoir within the data set itself while inserting the tuple. Thereby,
whether a tuple is part of the reservoir can be checked during
updates and deletes by reading the original data set, which has
to be touched anyway. Only if the tuple is part of the reservoir,
the sample has to be scanned for the tuple. While this causes a

minimum storage overhead with one bit per tuple, it still requires
scanning the sample, although exponentially less often. Scanning
the sample for a tuple can also be completely avoided at the cost
of slightly higher storage overhead. Since the position of a tuple
in the sample can be recomputed based on the skip index, storing
the skip index of reservoir tuples in the dataset allows to directly
access sample tuples without having to scan the entire sample.

4 ANALYSIS
We shall now analyze our algorithm’s results and efficiency. Our
approach implicitly orders the tuples concurrently processed by
different threads. When a thread acquires a skip, it skips a number
of tuples and determines a tuple to be a reservoir tuple. The order
of the tuples that are processed as part of the same skip is their
processing order. The order of tuples processed as part of different
skips is the order of the corresponding skip indices. This ordering
essentially serializes every concurrent stream into a single stream
of data, thus implicitly assigning an index to every tuple within a
global ordering of the entire set of tuples. If we were to compute
a sample with the single-threaded algorithm due to Li [13] with
the serialized data set, we would construct the same sample as our
multi-threaded algorithm, simply because the same decisions would
be made for the same tuples.

This explanation makes the simplifying assumption that there is
no index that has not been assigned. Consider the case when two
threads are processing two skips, but neither of them has completed
theirs, i.e. has found a reservoir tuple. There are two non-contiguous
ranges of indices that have been assigned to tuples, and in between,
there is a hole where indices have not been assigned tuples. We
cannot find an ordering of the tuples for the single-threaded al-
gorithm that would have the same results as the processing by
these two threads. If this hole were to be filled, we would have one
additional reservoir tuple, and the sample would potentially differ
by a single element. Such missing reservoir tuples are bounded
by the number of threads, since for every thread, there is at most
one skip that is not completed. And missing reservoir tuples with
relatively small orders have a high probability of being replaced
by later reservoir tuples, so the importance of determining them
decreases with increased amount of tuples processed.

Accepting a limited amount of missing reservoir tuples allows
our approach to have low communication costs. The number of
skip acquisitions is expected to be O(m · (1 + loд(n/m))), where
m is the size of the sample and n is the size of the data set being
sampled. This complexity is the expected number of skips needed
for sampling the data [22]. It includes the O(m) operations required
to initially fill the sample. Additionally, there are a minimum of
O(t) skip acquisitions, one for each of the t threads. This results in a
total of O(m ·(1+loд(n/m))+t) required shared memory operations,
which is less than the lower bound of Ω

(
t

loд(1+t/m)
· loд

(n
m
))

for
sampling algorithms that require the sample to represent the entire
data set at all times [21].

The use of compare and swap (CAS) instructions allows for
efficient synchronization. As described in the Section 3, in most
cases, a single compare and swap is required to acquire a skip. A
second compare and swap is only required when interacting with
the free list, which is not required in cases where already initialized

Concurrent Online Sampling for All, for Free DAMON’20, June 15, 2020, Portland, OR, USA

●●
●

●

●

●

●

●●
●

●

●

●

●

●●
●

●
●

●
●

●●
●

●

●

●

●

●●
●

●

●

●

●

●●
●

●

● ●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

n=2^26 n=2^28 n=2^29

m
=

128
m

=
1024

m
=

8192

1 8 15 30 60 1 8 15 30 60 1 8 15 30 60

0

1

2

3

0

1

2

3

0

1

2

3

Threads

T
hr

ou
gh

pu
t (

bi
lli

on
 tp

s)

Strategy

●

NO

OUR

T&W

Figure 5: Throughput in microbenchmark

threads are inserting many tuples. Those threads will simply reuse
the nodes they already own, without touching the free list.

CAS operations can fail whenmultiple threads are running. How-
ever, if a thread fails to acquire a skip, another thread must have suc-
ceeded, which guarantees forward progress. Additionally, a thread
that fails is more likely to acquire the next skip, since the successful
thread needs to process the skip it has acquired. In practice, this
avoids thread starvation even in highly concurrent setups.

Since the sample is updated at random positions, there is almost
no contention between threads. In the approach due to Tirthapura
andWoodruff [21] random variates for tuples in the sample are kept
in an ordered list. Maintaining an ordered list potentially requires
O(loд(m)) operations per update. Our approach’s operations on
shared memory in contrast are designed to be concise and efficient.

5 EVALUATION
We have evaluated our approach on a 4 socket Intel(R) Xeon(R)
E7-4870 v2 @2.30GHz machine with 15 cores per node and 60
cores in total. The system is a NUMAcc (non-uniform memory
access with cache coherency) system. This means that from the
application’s point of view, it acts like a single socket machine in
terms of cache behavior. However, depending on the node to which
accessed memory is attached to, memory access latencies vary.

5.1 Microbenchmark
We first evaluate our sampling strategies performance in processing
large data sets using an isolated microbenchmark. The benchmark
measures throughput in tuples per second (tps) with various settings
for thread count, sample size and size of the data set. Tuples are
generated by each worker as strings ranging from 3 to 11 bytes
based on the index of the tuple. Threads receive similar amounts
of tuples, but many threads receive tuples of larger sizes, while a
few threads receive many small tuples to simulate a heterogeneous
workload. However, the general size of the tuples is kept small
to focus on the overhead of sampling. Tuples are copied into the
sample, if they were decided to be put into the sample.

We build samples of size 128, 1024 and 8192 tuples from data
sets of size 226, 228, and 229 tuples. Tuples are evenly distributed

●

●

●

● ●
● ●

●

●

●

● ●
● ●

●

●

●

● ●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

● ●

●●

●

●

●

● ●

●

●

●

●

● ● ●

●

●

●

●

● ● ●

●●

●

● ●

●
●

●●

●

● ●

●

●

part partsupp supplier

customer lineitem orders

1 8 15 30 60 1 8 15 30 60 1 8 15 30 60

2

4

6

8

2

4

6

8

Number of Threads

T
hr

ou
gh

pu
t (

m
ill

io
n

tp
s)

Sampling

●

●

off

on

Figure 6: TPC-H bulk-loading throughput in Umbra with
and without sampling

among worker threads. We measure the total time taken to sample
these data sets and compute the throughput by dividing the total
size of the data set by the time it takes to process it. We report the
average of 10 repeats of each experiment in Figure 5. We compare
two strategies and a baseline strategy designated as NO for no
sampling. NO performs no sampling, it simply iterates through the
tuples in parallel with no communication between threads. The
OUR strategy is our strategy that uses the list of skips (LoS) data
structure to maintain low memory bounds. The T&W strategy is
the strategy due to Tirthapura and Woodruff [21]. Since no explicit
shared-memory strategy is described in their work, we use a shared
atomic integer to communicate the largest variate in the sample. If
the sample needs to be modified, a spin-lock is used to synchronize
access to the ordered list of variates, which we implemented as
a fast binary heap. We measure throughput in tuples per second
by dividing the total number of tuples in the data set by the total
elapsed time in seconds. An optimal algorithm is expected to scale
linearly.

Our approach scales virtually perfectly for sample sizes 128 and
1024, even across 60 threads on four NUMA nodes. Both the low
amount of communication, and the simplicity of the synchronized
list of skips operations result in impressive scalability. With large
sample sizes, the necessary communication is much higher since
many more tuples are put into the sample. Even in those cases,
our algorithm can still benefit from higher numbers of threads,
especially as the data set grows and the frequency of sampled tuples
decreases. Note that, if contention is high, more threads could even
result in drastically lower performance. Even in the worst case with
a smaller data set, the largest sample, and 60 threads, our algorithm
still maintains comparatively high throughput.

5.2 Integration in Umbra
We also integrated our sampling strategy into our high performance,
fully SQL query capable, database system Umbra [17], which pre-
viously used to recompute samples of base relations periodically,
incurring massive random I/O costs. In Figure 1, it can be seen that
sampling 1000 random tuples may take longer than a minute in
large data sets with cold cache. This is unacceptable when answer-
ing queries that may themselves execute in less than a second. We

DAMON’20, June 15, 2020, Portland, OR, USA Altan Birler, Bernhard Radke, and Thomas Neumann

evaluate the overhead of our sampling strategy to the insert opera-
tion in Umbra in bulk-loading TPC-H relations into the database
where those relations are sampled into a sample of size 1000. Results
are shown in Figure 6. We vary the number of threads from 1 up
to 60 and can see virtually no difference in insert throughput with
sampling on or off. As in any other database, the insert operation
itself requires a lot of synchronization and computation, such that
the overhead of sampling is in comparison, essentially unnoticeable.
This supports our claim that our sampling strategy has almost zero
overhead for many workloads that require sampling.

5.3 Empirical Evaluation of Sample Quality
While we have a theoretical approach to evaluate sample quality,
we are not aware of an empirical measure to test the quality of a
given set of generated samples. Statistical tests might potentially be
useful to check whether generated samples are unlikely to be gener-
ated by a correct sampling strategy. However, we are not aware of a
widely accepted test for sampling without replacement. If we are to
assume that all the elements within the sample are independently
and identically distributed with the uniform distribution, which can
generally be assumed for data sets that are much larger than the
samples, one could apply the Anderson-Darling test [2] to a given
sample. To apply the Anderson-Darling test, we first determine the
critical value. For a significance level of 5%, based on 100,000 sam-
ples of 1024 uniformly distributed random numbers, we calculate
this critical value as 2.48884. Using this critical value, we run the
Anderson-Darling test on the samples of size 1024 generated by
our algorithm in the microbenchmark with the data set of size 1029.
Around 96% of the samples generated by our algorithm pass the
test, which is in accordance with the significance level of 5%. Note
that this is more of a sanity check rather than a proof of sample
quality. These results just show that it is not trivial to distinguish a
sample generated by our algorithm and a sample generated by a
traditional sampling algorithm.

6 CONCLUSIONS & FUTUREWORK
We have presented an efficient, highly scalable, and concurrent
approach to online sampling. While the complexity of algorithms
in prior work always depends on the number of threads, thus im-
peding scalability, the algorithm we propose scales perfectly, as its
complexity is independent of the degree of parallelism. We achieve
this scalability by temporarily relaxing the requirements on a sam-
ple’s freshness. A theoretical analysis as well as an experimental
evaluation shows both the minor impact of those relaxations on
sample quality and the superiority of our algorithm’s runtime per-
formance.

ACKNOWLEDGEMENT
This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 725286).

REFERENCES
[1] Mohammed Al-Kateb, Byung Suk Lee, and X. Sean Wang. 2007. Adaptive-

size reservoir sampling over data streams. In Proceedings of the International
Conference on Scientific and Statistical Database Management, SSDBM. https:
//doi.org/10.1109/SSDBM.2007.29

[2] T. W. Anderson and D. A. Darling. 1954. A Test of Goodness of Fit. J. Amer. Statist.
Assoc. 49, 268 (1954), 765–769. https://doi.org/10.1080/01621459.1954.10501232

[3] Altan Birler. 2019. Scalable Reservoir Sampling on Many-Core CPUs. In Pro-
ceedings of the 2019 International Conference on Management of Data - SIGMOD
’19. ACM Press, New York, New York, USA, 1817–1819. https://doi.org/10.1145/
3299869.3300096

[4] Yung Yu Chung, Srikanta Tirthapura, and David P. Woodruff. 2016. A Simple
Message-Optimal Algorithm for Random Sampling from a Distributed Stream.
IEEE Transactions on Knowledge and Data Engineering (2016). https://doi.org/10.
1109/TKDE.2016.2518679

[5] Graham Cormode, S. Muthukrishnan, Ke Yi, and Qin Zhang. 2010. Optimal
sampling from distributed streams. In Proceedings of the ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems. https://doi.org/10.1145/
1807085.1807099

[6] Graham Cormode, S. Muthukrishnan, Ke Yi, and Qin Zhang. 2012. Continuous
sampling from distributed streams. J. ACM (2012). https://doi.org/10.1145/
2160158.2160163

[7] Maurice. Herlihy and Nir Shavit. 2012. The art of multiprocessor programming
(revised fi ed.). Morgan Kaufmann. 508 pages.

[8] Lorenz Hübschle-Schneider and Peter Sanders. 2019. Communication-Efficient
(Weighted) Reservoir Sampling from Fully Distributed Data Streams. (oct 2019).
arXiv:1910.11069 https://arxiv.org/abs/1910.11069

[9] IBM. 1983. IBM System/370 Extended Architecture, Principles of Operation,
publication no. SA22-7085-0. (1983), A–44.

[10] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAPmain
memory database system based on virtual memory snapshots. In Proceedings -
International Conference on Data Engineering. https://doi.org/10.1109/ICDE.2011.
5767867

[11] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and Thomas
Neumann. 2017. Cardinality Estimation Done Right : Index-Based Join Sampling.
In Cidr. http://cidrdb.org/cidr2017/papers/p9-leis-cidr17.pdf

[12] Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Peter Boncz,
Alfons Kemper, and Thomas Neumann. 2018. Query optimization through the
looking glass, and what we found running the Join Order Benchmark. In VLDB
Journal, Vol. 27. 643–668. https://doi.org/10.1007/s00778-017-0480-7

[13] Kim Hung Li. 1994. Reservoir-Sampling Algorithms of Time Complexity O(n(1 +
log(N/n))). ACM Transactions on Mathematical Software (TOMS) 20, 4 (dec 1994),
481–493. https://doi.org/10.1145/198429.198435

[14] Guido Moerkotte and Axel Hertzschuch. 2020. alpha to omega: the G(r)eek
Alphabet of Sampling. In {CIDR} 2020, 10th Conference on Innovative Data Systems
Research, Amsterdam, The Netherlands, January 12-15, 2020, Online Proceedings.
www.cidrdb.org. http://cidrdb.org/cidr2020/papers/p25-moerkotte-cidr20.pdf

[15] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing bad
plans by bounding the impact of cardinality estimation errors. Proceedings of the
VLDB Endowment 2, 1 (2009), 982–993. https://doi.org/10.14778/1687627.1687738

[16] Magnus Müller, Guido Moerkotte, and Oliver Kolb. 2018. Improved selectivity
estimation by combining knowledge from sampling and synopses. In Proceedings
of the VLDB Endowment, Vol. 11. 1016–1028. https://doi.org/10.14778/3213880.
3213882

[17] Thomas Neumann and Michael Freitag. 2020. Umbra: A Disk-Based System with
In-Memory Performance. Cidr (2020).

[18] Frank Olken and Doron Rotem. 1995. Random sampling from databases: a survey.
Statistics and Computing 5, 1 (1995), 25–42. https://doi.org/10.1007/BF00140664

[19] John K. Salmon, Mark A. Moraes, Ron O. Dror, and David E. Shaw. 2011. Parallel
random numbers: As easy as 1, 2, 3. In Proceedings of 2011 SC - International
Conference for High Performance Computing, Networking, Storage and Analysis.
https://doi.org/10.1145/2063384.2063405

[20] Peter Sanders, Sebastian Lamm, Lorenz Hübschle-Schneider, Emanuel Schrade,
and Carsten Dachsbacher. 2016. Efficient Random Sampling - Parallel, Vectorized,
Cache-Efficient, and Online. http://arxiv.org/abs/1610.05141

[21] Srikanta Tirthapura and David P. Woodruff. 2019. Optimal Random Sampling
from Distributed Streams Revisited. (mar 2019). arXiv:1903.12065 http://arxiv.
org/abs/1903.12065

[22] Jeffrey S. Vitter. 1985. Random Sampling with a Reservoir. ACM Transactions on
Mathematical Software (TOMS) 11, 1 (1985), 37–57. https://doi.org/10.1145/3147.
3165

[23] Wentao Wu, Yun Chi, Shenghuo Zhu, Junichi Tatemura, Hakan Hacigümüş,
and Jeffrey F. Naughton. 2013. Predicting query execution time: Are optimizer
cost models really unusable?. In Proceedings - International Conference on Data
Engineering. https://doi.org/10.1109/ICDE.2013.6544899

https://doi.org/10.1109/SSDBM.2007.29
https://doi.org/10.1109/SSDBM.2007.29
https://doi.org/10.1080/01621459.1954.10501232
https://doi.org/10.1145/3299869.3300096
https://doi.org/10.1145/3299869.3300096
https://doi.org/10.1109/TKDE.2016.2518679
https://doi.org/10.1109/TKDE.2016.2518679
https://doi.org/10.1145/1807085.1807099
https://doi.org/10.1145/1807085.1807099
https://doi.org/10.1145/2160158.2160163
https://doi.org/10.1145/2160158.2160163
https://arxiv.org/abs/1910.11069
https://arxiv.org/abs/1910.11069
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1109/ICDE.2011.5767867
http://cidrdb.org/cidr2017/papers/p9-leis-cidr17.pdf
https://doi.org/10.1007/s00778-017-0480-7
https://doi.org/10.1145/198429.198435
http://cidrdb.org/cidr2020/papers/p25-moerkotte-cidr20.pdf
https://doi.org/10.14778/1687627.1687738
https://doi.org/10.14778/3213880.3213882
https://doi.org/10.14778/3213880.3213882
https://doi.org/10.1007/BF00140664
https://doi.org/10.1145/2063384.2063405
http://arxiv.org/abs/1610.05141
https://arxiv.org/abs/1903.12065
http://arxiv.org/abs/1903.12065
http://arxiv.org/abs/1903.12065
https://doi.org/10.1145/3147.3165
https://doi.org/10.1145/3147.3165
https://doi.org/10.1109/ICDE.2013.6544899

	Abstract
	1 Introduction
	2 Foundations & Related Work
	3 Our Approach
	3.1 List of Skips
	3.2 Data Structure
	3.3 Sample Construction
	3.4 Skip Acquisition
	3.5 Example
	3.6 Final Interface
	3.7 Preload
	3.8 Updates and Deletes

	4 Analysis
	5 Evaluation
	5.1 Microbenchmark
	5.2 Integration in Umbra
	5.3 Empirical Evaluation of Sample Quality

	6 Conclusions & Future Work
	References

