Check for
Updates

Student Abstract

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Scalable Reservoir Sampling on Many-Core CPUs

Altan Birler
Technical University of Munich
altan.birler@tum.de

ACM Reference Format: 5 7 8 108 13 15 20 28 35 50 70 8
Altan Birler. 2019. Scalable Reservoir Sampling on Many-Core CPUs.

In 2019 International Conference on Management of Data (SIGMOD -
’19), June 30-July 5, 2019, Amsterdam, Netherlands. ACM, New York, Get Tqread;l = 3 s . 3 Izeturn Threzad—l 3
NY, USA, 3 pages. https://doi.org/10.1145/3299869.3300096 7 8 10 8 10 2 8 10

A - A A

1 PROBLEM AND MOTIVATION

Database systems need to be able to convert queries to ef-
ficient execution plans. As recent research has shown, cor-
rectly estimating cardinalities of subqueries is an important
factor in the efficiency of the resulting plans [7, 8]. Many
algorithms have been proposed in literature that utilize a ran-
dom sample to estimate cardinalities [6, 9, 13]. Thus, some
modern database systems choose to store a materialized uni-
formly random sample for their relations [3, 6]. Such samples
are built and refreshed when statistics are gathered, by load-
ing uniformly random tuples from the relation in disk using
random IO. Drawing a random sample from disk storage can
take multiple seconds which is highly prohibitive. To reduce
these costs, the frequency at which the samples are refreshed
is lowered, leading to stale samples and worse cardinality
estimations, until the samples are refreshed again. Main-
taining the samples online, during the insert/update/delete
operations, simply avoids these costs while keeping the sam-
ple fresh. Furthermore, the improvements in multi-core per-
formance far surpass the improvements in single-core per-
formance and utilizing this trend is essential to achieving
new leaps in performance and efficiency [2, 11]. Therefore,
we propose a highly-scalable shared-memory approach to
online sampling that utilizes a single global sample and a
global work-sharing structure to distribute the sampling
work among the threads (Figure 1).

2 BACKGROUND AND RELATED WORK

Reservoir sampling is used for online uniform sampling from
an infinite source [12]. The algorithm first fills the sample

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SIGMOD 19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5643-5/19/06.
https://doi.org/10.1145/3299869.3300096

1817

Figure 1: Skip Source

with the initial tuples. After the sample has been filled, for
every new tuple, a probabilistic decision is made whether or
not to insert the tuple into the sample. This requires a new
random number to be generated for every tuple. Vitter [12]
describes an important optimization: Instead of making a de-
cision for every new tuple, one can probabilistically generate
the number of tuples that will be consecutively skipped until
a tuple has to be inserted into the sample. Instead of produc-
ing the decisions skip, skip, skip, insert, skip, skip, insert, insert,
the algorithm produces the values 3, 2 and 0, corresponding
to the distances between inserts. The expected number of
tuples that will be inserted into the reservoir is given by the
formula O (n- (1 + log%)) where n is the size of the sample
and N is the total number of tuples [12]. This means that
the number of tuples inserted into the sample and thus the
number of skip lengths required is much less than the total
number of tuples.

Parallelizing Vitter’s reservoir sampling algorithm is es-
sential for utilizing modern hardware developments and
supporting modern database architectures. Methods have
been proposed for parallelizing reservoir sampling [1, 10].
However, these proposals mainly focus on maintaining inde-
pendent samples (different reservoirs) for each processing
unit and then merging these samples later. Sanders et. al. [10]
propose a way to merge these samples using the hypergeo-
metric distribution. If every unit receives the same amount of
work, the resulting sample can be as large as the sum of the
sizes of the local samples. If units receive greatly different
amounts of work, which does happen in OLTP settings, the
resulting sample becomes much smaller, even if one does
not require the sample to be perfectly uniform. For example,
if there are two local samples of size 500, and one receives 0
elements while the other receives all the rest, it is impossible
to construct a final sample of size 1000, the sum of the sizes
of the local samples. Al-Kateb et. al. [1] describe a way to
increase the sample size while keeping the probability of
non-uniformity below a certain threshold. Even without the


https://doi.org/10.1145/3299869.3300096
https://doi.org/10.1145/3299869.3300096
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3299869.3300096&domain=pdf&date_stamp=2019-06-25

Student Abstract

issue of decreasing the size of the sample, requiring local
samples to be generated and then merged complicates things
for an OLTP system, where new threads with arbitrary work-
loads may start and end at arbitrary times and the degree of
parallelism may elastically change [5].

3 APPROACH

In our approach we sought to develop a multi-threaded sys-
tem where a single global sample is used per relation. By
maintaining a single global sample we avoid the problems
with using multiple reservoirs, most importantly the require-
ment to merge reservoirs.

We take Algorithm Z, the most efficient variant of reser-
voir sampling, as described by Vitter [12], and interpret it
as the generation of an infinite list of skip lengths, and the
sequential execution of these skip lengths. If a skip length
contains the value m, its execution corresponds to skipping
the upcoming m tuples of the input stream and inserting
tuple m + 1 into the sample at a random position.

In multi-threaded systems, every thread comes with its
own input stream, which has an unknown length. The idea
is to assign the skip lengths among the threads in an efficient
manner. This corresponds to weaving the substreams of data
we have into a single global stream, which is then sampled
from using Algorithm Z. Looking at Figure 1, assigning the
0Oth skip length to Thread 1 corresponds to ordering the tuples
0-4 of substream 1 at the places 0-4 of the global stream.
Similarly, if we then assign the 1st skip length to Thread 2,
we order the tuples 0-6 of substream 2 at the places 5-11 of
the global stream. After receiving a skip length, the threads
perform the skip and insertion operations in parallel.

When inserting a tuple into the sample, a thread picks
a random location and tries to overwrite the existing tuple
at that location with the new one. Note that the existing
tuple may only be replaced if its conceptual order in the
global stream is before the order of the new tuple. If the
global order of the existing tuple is higher, the new tuple
must be discarded. To ensure this, threads have to store the
global order when inserting a tuple into the sample and check
this value while overwriting existing tuples. This allows the
execution of our algorithm to be interpreted as a single-
threaded execution of Algorithm Z.

There is a global structure called the Skip Source (Figure 1)
that is used to distribute skips. When a thread requires a
skip length it asks for it from the Skip Source, and when
a thread is done, it returns the remaining number of skips
back to the Skip Source. The main source of contention is the
access to the Skip Source data structure, which stays minimal
due to the fact that the number of skips needed increases
logarithmically as the dataset grows larger [12]. Details of
the algorithm are in explained in Appendix A.

1818

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Optimum = With Sampling

x/

30
Number of Threads

Without Sampling

,x/x

)3
14 8

15 60

Figure 2: Throughput of the algorithm

Our implementation currently only supports inserts. How-
ever, updates and deletes can also be implemented. Updating
a tuple requires searching for it in the sample and updating
the entry if it exists. For deleting tuples, tuples inserted in
the future can be reordered in their place. If the deleted tuple
was in the sample, a new insert replaces the old tuple, if
not, we make an additional skip. After all deleted tuples are
replaced, the sample stays uniform under the assumption
that the probability of a tuple being deleted is independent
from that tuple being in the sample.

4 EVALUATION

We evaluated our algorithm on a machine with 4 NUMA
nodes of Intel Xeon E7-4870 v2 CPUs with 15 cores (30 hy-
perthreads) each. Our dataset is a text file containing 23
strings of length between 3 and 13 bytes. The dataset is first
loaded into memory. The threads then receive evenly sized
chunks of the data and are tasked with iterating through the
given chunk loaded on their local NUMA node and running
the sampling logic. These chunks contain the same amount
of bytes but differ in the amount of tuples. The iteration
is done by finding tuple separator characters one after the
other using SIMD instructions. We measure the throughput
(tuples per second) of iterating through (and sampling) the
entire dataset with varying number of threads.

The results are shown in Figure 2. We compare without
sampling, which only iterates through the data and extracts
tuples without any processing or sampling, with with sam-
pling, which runs the sampling logic on all the extracted
tuples. The optimum is a theoretical line, where the slope
is equal to the throughput of an efficient single-threaded
implementation of Algorithm Z.

The overhead of sampling over simply iterating through
the data without sampling is less than 3.6% across all threads
which supports our claim that the synchronization overhead
is minimal. Note that in an actual database, the tuples would
undergo further processing such as being appended to the
relation in storage and inserted into index structures. All
additional processing would decrease the relative overhead
of sampling. Thus, our algorithm is an efficient and effective
replacement to re-scanning relations to reconstruct samples.



Student Abstract

ACKNOWLEDGEMENTS

We are indebted to Bernhard Radke and Thomas Neumann
for their encouragement and invaluable guidance throughout
this project.

A ALGORITHM DETAILS

Skip lengths are distributed among the threads using the
Skip Source structure, which is a linked-list of skip lengths.
Every skip length in the Skip Source contains a pointer to the
next skip length that will be executed after this skip length.
There is also a single current_index pointer that points to
the skip length that will be assigned to the upcoming thread
that runs the GetSkip operation (Figure 3). A thread acquires
a new skip by popping a skip length from the front of the
Skip Source using the GetSkip operation. When a thread is
done it pushes its remaining number of skips as a single skip
length to the front of the Skip Source by using the ReturnSkip
operation (Figure 3). Both operations must be atomic and
thread-safe as they can be used concurrently.

The GetSkip operation (Figure 3) acquires a skip length
from the Skip Source for the current thread. This opera-
tion moves the current_index pointer to the position of the
upcoming skip length (Figure 1). To ensure thread-safety, cur-
rent_index or next_skip (pointers[current_index]) must not
be modified by other threads while updating current_index.
Here, one can either use a DCAS operation [4], or a load-
linked/store-conditional (LL/SC) loop on current_index due
to the fact that current_index has to have been modified for
next_skip to have been modified. We prefer the LL/SC con-
struction, implemented on x86 hardware by using CAS and
the higher-order bits of current_index as a version counter.
When a thread starts, it acquires a skip length by running
a GetSkip operation which it then stores locally. At every
insert, this value is decreased. When the local_value reaches
0, the next inserted tuple is also put into the sample at a
random position if its version is higher than the version of
the tuple already there. When a thread is done, it needs to
store the remaining local_value back in the Skip Source so
that the remaining skips can be done by another thread. For
this, the ReturnSkip operation (Figure 3) is used. We push
the local_index into the front of the linked-list of skips by
setting pointers[local_index] to the current head of the list (ci)
and setting the head (current_index) to local_index.

GetSkip and ReturnSkip are the main sources of con-
tention in our algorithm. However, the number of times these
operations are performed is O (n (1 + log¥) + 2 - #threads).
For 2% tuples, a sample size of 1024, and 128 threads, less
than 40,256 operations are expected which is much less than
the total number of tuples processed. The synchronization
overhead is thus minimal.

1819

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

GetSkip Operation

1: ci « LL(current_index)

2: SC(current_index, pointers[ci]) {goto line 1 if fails}
3: local_value « skips[ci]

4: local_index « ci

ReturnSkip Operation

1: skips[local_index| « local_value

2: ¢i «— LL(current_index)

3: pointers[local_index] « ci

4: SC(current_index, local_index) {goto line 2 if fails}

Figure 3: GetSkip & ReturnSkip Operations

REFERENCES

[1] Mohammed Al-Kateb, Byung Suk Lee, and Xiaoyang Sean Wang. 2007.
Adaptive-Size Reservoir Sampling over Data Streams. In SSDBM. IEEE
Computer Society, 22.

[2] Gustavo Alonso. 2013. Hardware killed the software star. In ICDE.
IEEE Computer Society, 1-4.

[3] Surajit Chaudhuri, Eric Christensen, Goetz Graefe, Vivek R. Narasayya,
and Michael J. Zwilling. 1999. Self-Tuning Technology in Microsoft
SQL Server. IEEE Data Eng. Bull. 22, 2 (1999), 20-26.

[4] Michael Greenwald. 1999. Non-blocking Synchronization and System
Design. Technical Report. Stanford, CA, USA.

[5] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann.

2014. Morsel-driven parallelism: a NUMA-aware query evaluation

framework for the many-core age. In SIGMOD Conference. ACM, 743~

754.

Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and

Thomas Neumann. 2017. Cardinality Estimation Done Right: Index-

Based Join Sampling. In CIDR 2017, 8th Biennial Conference on Innova-

tive Data Systems Research, Chaminade, CA, USA, January 8-11, 2017,

Online Proceedings.

Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mirchev, Pe-

ter A. Boncz, Alfons Kemper, and Thomas Neumann. 2018. Query

optimization through the looking glass, and what we found running

the Join Order Benchmark. VLDB 7. 27, 5 (2018), 643-668.

Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Pre-

venting Bad Plans by Bounding the Impact of Cardinality Estimation

Errors. PVLDB 2, 1 (2009), 982-993.

[9] Magnus Miller, Guido Moerkotte, and Oliver Kolb. 2018. Improved

Selectivity Estimation by Combining Knowledge from Sampling and

Synopses. PVLDB 11, 9 (2018), 1016-1028.

Peter Sanders, Sebastian Lamm, Lorenz Hiibschle-Schneider, Emanuel

Schrade, and Carsten Dachsbacher. 2018. Efficient Parallel Random

Sampling - Vectorized, Cache-Efficient, and Online. ACM Trans. Math.

Softw. 44, 3 (2018), 29:1-29:14.

Herb Sutter. 2005. The Free Lunch Is Over: A Fundamental Turn

Toward Concurrency in Software. Dr. Dobb’s Journal 30, 3 (2005),

202-210. http://www.gotw.ca/publications/concurrency-ddj.htm

[12] Jeffrey Scott Vitter. 1985. Random Sampling with a Reservoir. ACM

Trans. Math. Softw. 11, 1 (1985), 37-57.

Wentao Wu, Yun Chi, Shenghuo Zhu, Jun’ichi Tatemura, Hakan

Hacigtimiis, and Jeffrey F. Naughton. 2013. Predicting query execution

time: Are optimizer cost models really unusable?. In 29th IEEE Interna-

tional Conference on Data Engineering, ICDE 2013, Brisbane, Australia,

April 8-12, 2013.1081-1092. https://doi.org/10.1109/ICDE.2013.6544899

G

—

[7

—

[8

[}

[10]

(1]

[13]


http://www.gotw.ca/publications/concurrency-ddj.htm
https://doi.org/10.1109/ICDE.2013.6544899

	1 Problem and Motivation
	2 Background and Related Work
	3 Approach
	4 Evaluation
	A Algorithm Details
	References



