Code Generation for Data Processing

Lecture 7: Vectorization

Alexis Engelke

Chair of Data Science and Engineering (125)
School of Computation, Information, and Technology
Technical University of Munich

Winter 2025/26

206

Parallel Data Processing

» Sequential execution has inherently limited performance

| 2

Clock rate, energy consumption/cooling, data path lengths, speed of light,

» Parallelism is the key to substantial and scalable perf. improvements

» Modern systems have many levels of parallelism:

| 2

>
>
| 4
>
>
4

Multiple nodes/systems, connected via network

Different compute units (CPU, GPU, etc.), connected via PCle

Multiple CPU sockets, connected via QPI (Intel) or HyperTransport (AMD)
Multiple CPU cores

Multiple threads per core

Instruction-level parallelism (superscalar out-of-order execution)

Data parallelism (SIMD)

207

Single Instruction, Multiple Data (SIMD)

» Idea: perform same operations on multiple data in parallel

» First computer with SIMD operations: MIT Lincoln Labs TX-2, 19573
» Wider use in HPC in 1970s with vector processors (Cray et al.)
» Ultimately replaced by much more scalable distributed machines

» SIMD-extensions for multimedia processing from 1990s onwards
» Often include very special instructions for image/video/audio processing

» Shift towards HPC and data processing around 2010
» Extensions for machine learning/Al in late 2010s

35\W Clark et al. The Lincoln TX-2 Computer. Apr. 1957. @.

208

http://www.bitsavers.org/pdf/mit/tx-2/TX-2_Papers_WJCC_57.pdf

SIMD: Ildea

» Multiple data elements are stored in vectors

> Size of data may differ, vector size is typically constant
» Single elements in vector referred to as lane

» (Vertical) Operations apply the same operation to all lanes

lane 3 lane 2 lane 1 lane 0
src 1 ’ 1 | 2 3 4 ‘
+ + ¥ +
sc2] 1 | 2 | 3 [4 |
I} I} I} |
result’ 2 | 4 | 6 | 8 ‘

» Horizontal operations work on neighbored elements

SIMD ISAs: Design

» Vectors are often implemented as fixed-size wide registers

» Examples: ARM NEON 32x128-bit, Power QPX 32x256-bit
» Data types and element count is defined by instruction

» Some ISAs have dynamic vector sizes: ARM VFP, ARM SVE, RISC-V V

» Problematic for compilers: variable spill size, less constant folding

> Data types vary, e.g. i8/i16/i32/i64/f16/bf16/f32/f64 /128

» Sometimes only conversion, sometime with saturating arithmetic

» Masking allows to suppress operations for certain lanes

» Dedicated mask registers (AVX-512, SVE, RVV) allow for hardware masking
» Can also apply for memory operations, optionally suppressing faults
» Otherwise: software masking with another vector register

210

Historical Development of SIMD Extensions

MIPS MSA
MDMX
Rel. V FPU
Power QPX
VSX
AltiVec
ARM SVE pe======
ARMv8 NEON
ARMV6 (R?'gliged oésR)Mw NEON --
x86 KNC/ICM| - - ———————
AVX-512 --------
AVX - AVX2
CVT16/F16C
ASS o=

SSE-SSE4.2 -

MMX - -
-7
1990 1995 2000 2005 2010 2015 FP128

Configurable VL FP16 Impl.-def. VL
IDQaEfc_ablsttrr:aglﬁters Mask registers Fault-suppression
30-bit FP AES Crypt. Gather/Scatter

211

SIMD: Use Cases

» Dense linear algebra: vector/matrix operations

» Implementations: Intel MKL, OpenBLAS, ATLAS, ...

» Sparse linear algebra
» Needs gather/scatter instructions

» Image and video processing, manipulation, encoding

» String operations
» Implemented, e.g., in glibc, simdjson

» Cryptography

212

SIMD ISAs: Usage Considerations

» Very easy to implement in hardware

» Simple replication of functional units and larger vector registers
» Too large vectors, however, also cause problems (AVX-512)

» Offer significant speedups for certain applications

» With 4x parallelism, speed-ups of ~3x are achievable
» Amdahl's Law applies, unfortunately

» Caveat: non-trivial to program

» Optimized routines provided by libraries
» Compilers try to auto-vectorize, but often need guidance

213

SIMD Programming: (Inline) Assembly

v

Idea: SIMD is too complicated, let programmer handle this
» Programmer specifies exact code (instrs, control flow, and registers)

» Inline assembly allows for integration into existing code
» Specification of register constraints and clobbers needed

» “Popular” for optimized libraries

+ Allows for best performance
— Very tedious to write, manual register allocation, non-portable

— No optimization across boundaries

214

SIMD Programming: Intrinsics

» Idea: deriving a SIMD schema is complicated, delegate to programmer
» Intrinsic functions correspond to hardware instructions
> __ml28i _mm_add_epi32 (__m128i a, __m128i b)

» Programmer explicitly specifies vector data processing instructions
compiler supplements registers, control flow, and scalar processing

+ Allows for very good performance, still exposes all operations

~ Compiler can to some degree optimize intrinsics
» GCC does not; Clang/LLVM does — intrinsics often lowered to
LLVM-IR vectors (which also has some problems)

— Tedious to write, non-portable

215

SIMD Programming: Intrinsics — Example

float sdot(size_t n, const float x[n], const float y[n]) {

size_t i = 0;
__m128 sum = _mm_set_ps1(0);

for (i = 0; i < (n & ~(size_t)3ul); i += 4) {
__m128 x1 = _mm_loadu_ps(&x[i]);

__m128 y1 = _mm_loadu_ps(&y[i]);

sum = _mm_add_ps(sum, _mm_mul_ps(xl, yl));
}
// ... take care of tail (i..<mn) ...

}

216

Intrinsics for Unknown Vector Size

» Size not known at compile-time, but can be queried at runtime
» SVE: instruction incd adds number of vector lanes to register

» In C: behave like an incomplete type, except for parameters/returns

» Flexible code often slower than with assumed constant vector size

» Consequences:

» Cannot put such types in structures, arrays, sizeof
» Stack spilling implies variably-sized stack

» Instructions to set mask depending on bounds: whilelt, ...
» No loop peeling for tail required

217

SIMD Programming: Target-independent Vector Extensions

» |dea: vectorization still complicated, but compiler can choose instrs.

» Programmer still specifies exact operations, but in target-independent way
» Often mixable with target-specific intrinsics

» Compiler maps operations to actual target instructions

» If no matching target instruction exists, use replacement code
» Inherent danger: might be less efficient than scalar code

» Often relies on explicit vector size

218

GCC Vector Extensions
1

Compile3® the following operations and observe how the output changes:
» Add 16-byte vectors of element type uint32_t
» Multiply 8-byte vectors of element type uint32_t/uint8_t
» Divide 64-byte vectors of element type uint32_t/long double

// compile with: clang -03 -S --target=x86_64 file.c -o -
// also try --target=aarch64
#include <stdint.h>
typedef uint32_t vecty __attribute__((vector_size(16)));
vecty op(vecty a, vecty b) {

return a + b;

}

36https://godbolt .org/z/43v98rdno

219

https://godbolt.org/z/43v98rdno

LLVM-IR: Vectors

> <N x ty> — fixed-size vector type, e.g. <4 x 132>

> Valid element type: integer, floating-point, pointers
» Memory layout: densely packed (i.e., <8 x i2> &~ 116)

» <vscale x N x ty> — scalable vector, e.g. <vscale x 4 x 132>

» Vector with a multiple of N elements
» Intrinsic @11vm.vscale.i32() — get runtime value of vscale

» Most arithmetic operations can also operate on vectors
> insertelement/extractelement: modify single element

» Example: %4 = insertelement <4 x float> %0, float %1, i32 %2
» |ndex can be non-constant value

220

LLVM-IR: shufflevector

» Instruction to reorder values and resize vectors
» shufflevector <n x ty> %x, <n x ty> %y, <m x i32> Ymask

» %x, %y — values to shuffle, must have same size
> Jmask — element indices for result (0. .<n refer to %x, n..<2n to %y)
» Result is of type <m x ty>

shufflevector <4 x i32> %x, <4 x i32> %y, <3 x 132> <i32 1, i32 7, i32 7>

0 1 2 3 4 5 6 7
(23] 4 | 8]25| | 24|67] 10]53]
4 [53]53

1 7 7

221

shufflevector: Examples

|
What do these instructions do and what is the result type?
1. %a = insertelement <4 x i32> poison, i32 %x, i64 0

%r = shufflevector <4 x i32> %a, <4 x 132> poison,
<4 x i32> zeroinitializer

2. %r = shufflevector <4 x i32> %a, <4 x i32> %b,
<4 x i32> <i32 0, i32 5, i32 2, i32 7>

3. %r = shufflevector <4 x i16> %a, <4 x 116> %b,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>

222

]
» Transform this LLVM-IR function into scalar, idiomatic C code

define void @foo(ptr %0, ptr %1) {
br label %3
3: %4 = phi i64 [0, %2 1, [%12, %31
%5 = phi <4 x i64> [<i64 0, i64 1, i64 2, i64 3>, %2 1, [%13, %3]
%6 = getelementptr inbounds i64, ptr %1, i64 %4
%7 = load <4 x i64>, ptr %6, align 8
%8 = icmp slt <4 x i64> 7, %5
%9 = add nsw <4 x i64> %7, %5
%10 = select <4 x i1> %8, <4 x 164> %9, <4 x 164> zeroinitializer
%11 = getelementptr inbounds i64, ptr %0, i64 %4
store <4 x i64> %10, ptr %11, align 8
%12 = add nuw i64 %4, 4
%13 = add <4 x i64> %5, <i64 4, i64 4, i64 4, i64 4>
%14 = icmp eq 164 %12, 2048
br i1 %14, label %15, label %3
15: ret void
}

LLVM-IR: Lowering Intrinsics

» Intrinsics translated to native LLVM-IR if possible

+ Allows optimizations
— Intent of programmer might get lost

#include <immintrin.h>

__m128 func(__m128 a, __ml128 b) {
__m128 rev = _mm_shuffle_epi32(a + b, Ox1b);
return _mm_round_ps(rev, _MM_FROUND_TO_NEG_INF);

}

define <4 x float> @func(<4 x float> %0, <4 x float> %1) {

%3 = fadd <4 x float> %0, %1
%4 = shufflevector <4 x float> %3, <4 x float> poison, <4 x i32> <i32 3, i32 2, i32 1, i32 0>

%5 = tail call <4 x float> @llvm.x86.ssed4l.round.ps(<4 x float> %4, i32 1)
ret <4 x float> %5
}

declare <4 x float> @llvm.x86.sse4l.round.ps(<4 x float>, i32 immarg)

224

SIMD Programming: Single Program, Multiple Data (SPMD)

» So far: manual vectorization
» Observation: same code is executed on multiple elements

» Idea: tell compiler to vectorize handling of single element

» Splice code for element into separate function
» Tell compiler to generate vectorized version of this function
» Function called in vector-parallel loop

» Needs annotation of variables
» Varying: variables that differ between lanes
» Uniform: variables that are guaranteed to be the same
(basically: scalar values that are broadcasted if necessary)

225

SPMD: Example (OpenMP)

#pragma omp declare simd
int foo(int x, int y) {
return x + y;

3

» Compiler generates version
that operates on vector

foo:
add edi, esi
mov eax, edi
ret

_ZGVxN4vv_foo:
paddd xmmO, xmml
ret

226

SPMD: Example (OpenMP)

#pragma omp declare simd uniform(y)
int foo(int x, int y) {
return x + y;

3

» Uniform: always same value

foo:
add edi, esi
mov eax, edi
ret

_ZGVxN4vu_foo:
movd xmml, eax
pshufd xmm2, xmml, O
paddd xmmO, xmm2
ret

227

SPMD: Example (OpenMP) — if /else

#pragma omp declare simd
int foo(int x, int y) {
int res;
if (x > y) res = x;
else res =y - x;
return res;

» Diverging control flow:

all paths are executed

foo:
mov eax, esi
sub eax, edi
cmp edi, esi
cmovg eax, edi
ret

2GVxN4vv£foo:
movdga xmm2, xmmO
pcmpgtd xmmO, xmml
psubd xmml, xmm2
pblendvb xmml, xmm2, xmmO
movdga xmmO, xmml
ret

228

SPMD to SIMD: Handling if/else

» Control flow solely depending on uniforms: nothing different
» Otherwise: control flow may diverge

» Different lanes may choose different execution paths
» But: CPU has only one control flow, so all paths must execute

» Condition becomes mask, mask determines result
» After insertion of masks, linearize control flow

» Relevant control flow now encoded in data through masks

» Problem: side-effects prevent vectorization

229

SPMD to SIMD: Handling Loops

» Uniform loops: nothing different
» Otherwise: need to retain loop structure

» “active” mask added to all loop iterations
> Loop only terminates once all lanes terminate (active is zero)
» Lanes that terminated early need their values retained

» Approach also works for nested loops/conditions

» Irreducible loops need special handling®”

37R Karrenberg and S Hack. “Whole-function vectorization”. In: CGO. 2011, pp. 141-150.

230

SPMD Implementations on CPUs

» OpenMP SIMD functions

» Need to be combined with #pragma omp simd loops

» Intel ispc® (Implicit SPMD Program Compiler)

» Extension of C with keywords uniform, varying
» Still active and interesting history3°

» OpenCL on CPU

» Very similar programming model
» But: higher complexity for communicating with rest of application

38M Pharr and WR Mark. “ispc: A SPMD compiler for high-performance CPU programming”. In: InPar. 2012, pp. 1-13.
3%https://pharr.org/matt/blog/2018/04/30/ispc-all

231

https://pharr.org/matt/blog/2018/04/30/ispc-all

SIMD Programming: SPMD on CPUs

+

Semi-explicit vectorization
Programmer chooses level of vectorization

» E.g., inner vs. outer loop

Compiler does actual work

Allows simple formulation of complex control flow
Compilers often fail at handling complex control flow well
» Loops are particularly problematic

232

SIMD Programming: Auto-vectorization

» |dea: programmer is too incompetent/busy, let compiler do vectorization

» Inherently difficult and problematic, after decades of research
» Recognizing and matching lots of patterns
» Instruction selection becomes more difficult
» Compiler lacks domain knowledge about permissible transformations

» Executive summary of the state of the art:
» Auto-vectorization works well for very simple cases
» For “medium complexity”, code is often suboptimal
» In many cases, auto-vectorization fails on unmodified code

233

Auto-vectorization Strategies

» Loop Vectorization

» Try to transform loop body into vectors with n lanes
» Often needs tail loop for remainder that doesn’t fill a vector
» Extremely common

» Superword-level Parallelism (SLP)

» Vectorize constructs outside of loops
» Detect neighbored stores, try to fold operations into vectors

234

Loop Vectorization: Strategy

» Only consider innermost loop (at first)

1. Check legality: is vectorization possible at all?

» Only vectorizable data types and operations used
» No loop-carried dependencies, overlapping memory regions, etc.

2. Check profitability: is vectorization benefitial?

» Consider: runtime checks, gather/scatter, masked operations, etc.

» Needs information about target architecture

3. Perform transformation

235

Outer Loop Vectorization

» Vectorizing the innermost loop not always beneficial

» Example 1: inner loop has only few iterations
» Example 2: inner loop has loop-carried dependencies

» Thus: need to consider outer loops as well
» Also: vectorization on multiple levels might be beneficial

» Very limited support in compilers, if any

236

Auto-vectorization is Hard

>

>

vvyyVvyyvYyy

vy

Biggest problem: data dependencies

» Resolving loop-carried dependencies is difficult
Memory aliasing

» Overlapping arrays, or — worse — loop counter
Which loop level to vectorize? Multiple?
Loop body might impact loop count
Function calls, e.g. for math functions
Strided memory access (e.g., only every n-th element)

Choosing vectorization level (outer loop might be better)

Is vectorization profitable at all?

Often black box to programmer, preventing fine-grained tuning

237

Auto-Vectorization: Examples

|
Compile*® the functions from ex07.txt with vectorization remarks.

clang -S -emit-1lvm -03 -Rpass=loop-vectorize
-Rpass-analysis=loop-vectorize -Rpass-missed=loop-vectorize

» Does vectorization occur?

» What additional output is provided in the optimization remarks?
» If so: what is vectorized? How?

» Does the result match your expection?

4%https://godbolt . org/z/aqbb937ch

238

https://godbolt.org/z/aqbb937cb

Vectorization — Summary

VVvyVvyVyYVY VYVY

SIMD is an easy way to improve performance numbers of CPUs
Most general-purpose ISAs have one or more SIMD extensions

Recent trend: variably-length vectors

Inline Assembly: easiest for compiler, but extremely tedious
Intrinsics: best trade-off towards performance and usability
Target-independent operations: slightly increase portability
SPMD: strategy dominant for GPU programming

Auto-vectorization: very hard, unsuited for complex code

239

Vectorization — Questions

vVvyVvyvVvyvyyvYyy

Why do modern CPUs provide SIMD extensions?

Why do variable-length SIMD extensions have higher runtime costs?
How are SIMD intrinsics lowered to LLVM-IR?

What is the downside of target-independent vector operations?

How can if/else/for constructs be vectorized?

What is the difference between a uniform and a varying variable?
Why is auto-vectorization often sub-par to manual optimization?

240

	Vectorization
	SIMD Overview
	Low-Level SIMD Programming
	Target-Independent Vector Extensions
	Vectors in LLVM-IR
	Single Program, Multiple Data
	Auto-Vectorization

