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Parallel Data Processing

▶ Sequential execution has inherently limited performance
▶ Clock rate, energy consumption/cooling, data path lengths, speed of light,

. . .
▶ Parallelism is the key to substantial and scalable perf. improvements
▶ Modern systems have many levels of parallelism:

▶ Multiple nodes/systems, connected via network
▶ Different compute units (CPU, GPU, etc.), connected via PCIe
▶ Multiple CPU sockets, connected via QPI (Intel) or HyperTransport (AMD)
▶ Multiple CPU cores
▶ Multiple threads per core
▶ Instruction-level parallelism (superscalar out-of-order execution)
▶ Data parallelism (SIMD)
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Single Instruction, Multiple Data (SIMD)

▶ Idea: perform same operations on multiple data in parallel

▶ First computer with SIMD operations: MIT Lincoln Labs TX-2, 195735

▶ Wider use in HPC in 1970s with vector processors (Cray et al.)
▶ Ultimately replaced by much more scalable distributed machines

▶ SIMD-extensions for multimedia processing from 1990s onwards
▶ Often include very special instructions for image/video/audio processing

▶ Shift towards HPC and data processing around 2010
▶ Extensions for machine learning/AI in late 2010s

35W Clark et al. The Lincoln TX-2 Computer. Apr. 1957. .

http://www.bitsavers.org/pdf/mit/tx-2/TX-2_Papers_WJCC_57.pdf
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SIMD: Idea

▶ Multiple data elements are stored in vectors
▶ Size of data may differ, vector size is typically constant
▶ Single elements in vector referred to as lane

▶ (Vertical) Operations apply the same operation to all lanes
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SIMD ISAs: Design

▶ Vectors are often implemented as fixed-size wide registers
▶ Examples: ARM NEON 32×128-bit, Power QPX 32×256-bit
▶ Data types and element count is defined by instruction

▶ Some ISAs have dynamic vector sizes: ARM VFP, ARM SVE, RISC-V V
▶ Problematic for compilers: variable spill size, less constant folding

▶ Data types vary, e.g. i8/i16/i32/i64/f16/bf16/f32/f64/f128
▶ Sometimes only conversion, sometime with saturating arithmetic

▶ Masking allows to suppress operations for certain lanes
▶ Dedicated mask registers (AVX-512, SVE, RVV) allow for hardware masking
▶ Can also apply for memory operations, optionally suppressing faults
▶ Otherwise: software masking with another vector register
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Historical Development of SIMD Extensions
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SIMD: Use Cases

▶ Dense linear algebra: vector/matrix operations
▶ Implementations: Intel MKL, OpenBLAS, ATLAS, . . .

▶ Sparse linear algebra
▶ Needs gather/scatter instructions

▶ Image and video processing, manipulation, encoding

▶ String operations
▶ Implemented, e.g., in glibc, simdjson

▶ Cryptography
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SIMD ISAs: Usage Considerations

▶ Very easy to implement in hardware
▶ Simple replication of functional units and larger vector registers
▶ Too large vectors, however, also cause problems (AVX-512)

▶ Offer significant speedups for certain applications
▶ With 4x parallelism, speed-ups of ∼3x are achievable
▶ Amdahl’s Law applies, unfortunately

▶ Caveat: non-trivial to program
▶ Optimized routines provided by libraries
▶ Compilers try to auto-vectorize, but often need guidance
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SIMD Programming: (Inline) Assembly

▶ Idea: SIMD is too complicated, let programmer handle this
▶ Programmer specifies exact code (instrs, control flow, and registers)
▶ Inline assembly allows for integration into existing code

▶ Specification of register constraints and clobbers needed

▶ “Popular” for optimized libraries

+ Allows for best performance
− Very tedious to write, manual register allocation, non-portable
− No optimization across boundaries
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SIMD Programming: Intrinsics

▶ Idea: deriving a SIMD schema is complicated, delegate to programmer
▶ Intrinsic functions correspond to hardware instructions

▶ __m128i _mm_add_epi32 (__m128i a, __m128i b)
▶ Programmer explicitly specifies vector data processing instructions

compiler supplements registers, control flow, and scalar processing

+ Allows for very good performance, still exposes all operations
∼ Compiler can to some degree optimize intrinsics

▶ GCC does not; Clang/LLVM does – intrinsics often lowered to
LLVM-IR vectors (which also has some problems)

− Tedious to write, non-portable
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SIMD Programming: Intrinsics – Example

float sdot(size_t n, const float x[n], const float y[n]) {
size_t i = 0;
__m128 sum = _mm_set_ps1(0);
for (i = 0; i < (n & ~(size_t)3ul); i += 4) {
__m128 xl = _mm_loadu_ps(&x[i]);
__m128 yl = _mm_loadu_ps(&y[i]);
sum = _mm_add_ps(sum, _mm_mul_ps(xl, yl));

}
// ... take care of tail (i..<n) ...

}
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Intrinsics for Unknown Vector Size

▶ Size not known at compile-time, but can be queried at runtime
▶ SVE: instruction incd adds number of vector lanes to register

▶ In C: behave like an incomplete type, except for parameters/returns
▶ Flexible code often slower than with assumed constant vector size

▶ Consequences:
▶ Cannot put such types in structures, arrays, sizeof
▶ Stack spilling implies variably-sized stack

▶ Instructions to set mask depending on bounds: whilelt, . . .
▶ No loop peeling for tail required
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SIMD Programming: Target-independent Vector Extensions

▶ Idea: vectorization still complicated, but compiler can choose instrs.
▶ Programmer still specifies exact operations, but in target-independent way
▶ Often mixable with target-specific intrinsics

▶ Compiler maps operations to actual target instructions
▶ If no matching target instruction exists, use replacement code

▶ Inherent danger: might be less efficient than scalar code

▶ Often relies on explicit vector size
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GCC Vector Extensions

Compile36 the following operations and observe how the output changes:
▶ Add 16-byte vectors of element type uint32_t
▶ Multiply 8-byte vectors of element type uint32_t/uint8_t
▶ Divide 64-byte vectors of element type uint32_t/long double

// compile with: clang -O3 -S --target=x86_64 file.c -o -
// also try --target=aarch64
#include <stdint.h>
typedef uint32_t vecty __attribute__((vector_size(16)));
vecty op(vecty a, vecty b) {

return a + b;
}

36https://godbolt.org/z/43v98rdno

https://godbolt.org/z/43v98rdno
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LLVM-IR: Vectors

▶ <N x ty> – fixed-size vector type, e.g. <4 x i32>
▶ Valid element type: integer, floating-point, pointers
▶ Memory layout: densely packed (i.e., <8 x i2> ≈ i16)

▶ <vscale x N x ty> – scalable vector, e.g. <vscale x 4 x i32>
▶ Vector with a multiple of N elements
▶ Intrinsic @llvm.vscale.i32() – get runtime value of vscale

▶ Most arithmetic operations can also operate on vectors
▶ insertelement/extractelement: modify single element

▶ Example: %4 = insertelement <4 x float> %0, float %1, i32 %2
▶ Index can be non-constant value
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LLVM-IR: shufflevector
▶ Instruction to reorder values and resize vectors
▶ shufflevector <n x ty> %x, <n x ty> %y, <m x i32> %mask

▶ %x, %y – values to shuffle, must have same size
▶ %mask – element indices for result (0..<n refer to %x, n..<2n to %y)
▶ Result is of type <m x ty>

shufflevector <4 x i32> %x, <4 x i32> %y, <3 x i32> <i32 1, i32 7, i32 7>
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shufflevector: Examples

What do these instructions do and what is the result type?

1. %a = insertelement <4 x i32> poison, i32 %x, i64 0
%r = shufflevector <4 x i32> %a, <4 x i32> poison,

<4 x i32> zeroinitializer

2. %r = shufflevector <4 x i32> %a, <4 x i32> %b,
<4 x i32> <i32 0, i32 5, i32 2, i32 7>

3. %r = shufflevector <4 x i16> %a, <4 x i16> %b,
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
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▶ Transform this LLVM-IR function into scalar, idiomatic C code

define void @foo(ptr %0, ptr %1) {
br label %3

3: %4 = phi i64 [ 0, %2 ], [ %12, %3 ]
%5 = phi <4 x i64> [ <i64 0, i64 1, i64 2, i64 3>, %2 ], [ %13, %3 ]
%6 = getelementptr inbounds i64, ptr %1, i64 %4
%7 = load <4 x i64>, ptr %6, align 8
%8 = icmp slt <4 x i64> %7, %5
%9 = add nsw <4 x i64> %7, %5
%10 = select <4 x i1> %8, <4 x i64> %9, <4 x i64> zeroinitializer
%11 = getelementptr inbounds i64, ptr %0, i64 %4
store <4 x i64> %10, ptr %11, align 8
%12 = add nuw i64 %4, 4
%13 = add <4 x i64> %5, <i64 4, i64 4, i64 4, i64 4>
%14 = icmp eq i64 %12, 2048
br i1 %14, label %15, label %3

15: ret void
}
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LLVM-IR: Lowering Intrinsics

▶ Intrinsics translated to native LLVM-IR if possible
+ Allows optimizations
− Intent of programmer might get lost

#include <immintrin.h>
__m128 func(__m128 a, __m128 b) {
__m128 rev = _mm_shuffle_epi32(a + b, 0x1b);
return _mm_round_ps(rev, _MM_FROUND_TO_NEG_INF);

}

define <4 x float> @func(<4 x float> %0, <4 x float> %1) {
%3 = fadd <4 x float> %0, %1
%4 = shufflevector <4 x float> %3, <4 x float> poison, <4 x i32> <i32 3, i32 2, i32 1, i32 0>
%5 = tail call <4 x float> @llvm.x86.sse41.round.ps(<4 x float> %4, i32 1)
ret <4 x float> %5

}
declare <4 x float> @llvm.x86.sse41.round.ps(<4 x float>, i32 immarg)
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SIMD Programming: Single Program, Multiple Data (SPMD)

▶ So far: manual vectorization
▶ Observation: same code is executed on multiple elements
▶ Idea: tell compiler to vectorize handling of single element

▶ Splice code for element into separate function
▶ Tell compiler to generate vectorized version of this function
▶ Function called in vector-parallel loop

▶ Needs annotation of variables
▶ Varying: variables that differ between lanes
▶ Uniform: variables that are guaranteed to be the same

(basically: scalar values that are broadcasted if necessary)
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SPMD: Example (OpenMP)

#pragma omp declare simd
int foo(int x, int y) {
return x + y;

}

▶ Compiler generates version
that operates on vector

foo:
add edi, esi
mov eax, edi
ret

_ZGVxN4vv_foo:
paddd xmm0, xmm1
ret
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SPMD: Example (OpenMP)

#pragma omp declare simd uniform(y)
int foo(int x, int y) {
return x + y;

}

▶ Uniform: always same value

foo:
add edi, esi
mov eax, edi
ret

_ZGVxN4vu_foo:
movd xmm1, eax
pshufd xmm2, xmm1, 0
paddd xmm0, xmm2
ret
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SPMD: Example (OpenMP) – if/else

#pragma omp declare simd
int foo(int x, int y) {

int res;
if (x > y) res = x;
else res = y - x;
return res;

}

▶ Diverging control flow:
all paths are executed

foo:
mov eax, esi
sub eax, edi
cmp edi, esi
cmovg eax, edi
ret

_ZGVxN4vv_foo:
movdqa xmm2, xmm0
pcmpgtd xmm0, xmm1
psubd xmm1, xmm2
pblendvb xmm1, xmm2, xmm0
movdqa xmm0, xmm1
ret
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SPMD to SIMD: Handling if/else

▶ Control flow solely depending on uniforms: nothing different
▶ Otherwise: control flow may diverge

▶ Different lanes may choose different execution paths
▶ But: CPU has only one control flow, so all paths must execute

▶ Condition becomes mask, mask determines result
▶ After insertion of masks, linearize control flow

▶ Relevant control flow now encoded in data through masks

▶ Problem: side-effects prevent vectorization
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SPMD to SIMD: Handling Loops

▶ Uniform loops: nothing different
▶ Otherwise: need to retain loop structure

▶ “active” mask added to all loop iterations
▶ Loop only terminates once all lanes terminate (active is zero)
▶ Lanes that terminated early need their values retained

▶ Approach also works for nested loops/conditions

▶ Irreducible loops need special handling37

37R Karrenberg and S Hack. “Whole-function vectorization”. In: CGO. 2011, pp. 141–150.
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SPMD Implementations on CPUs

▶ OpenMP SIMD functions
▶ Need to be combined with #pragma omp simd loops

▶ Intel ispc38 (Implicit SPMD Program Compiler)
▶ Extension of C with keywords uniform, varying
▶ Still active and interesting history39

▶ OpenCL on CPU
▶ Very similar programming model
▶ But: higher complexity for communicating with rest of application

38M Pharr and WR Mark. “ispc: A SPMD compiler for high-performance CPU programming”. In: InPar. 2012, pp. 1–13.
39https://pharr.org/matt/blog/2018/04/30/ispc-all

https://pharr.org/matt/blog/2018/04/30/ispc-all


232

SIMD Programming: SPMD on CPUs

▶ Semi-explicit vectorization
▶ Programmer chooses level of vectorization

▶ E.g., inner vs. outer loop
▶ Compiler does actual work

+ Allows simple formulation of complex control flow
− Compilers often fail at handling complex control flow well

▶ Loops are particularly problematic
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SIMD Programming: Auto-vectorization

▶ Idea: programmer is too incompetent/busy, let compiler do vectorization

▶ Inherently difficult and problematic, after decades of research
▶ Recognizing and matching lots of patterns
▶ Instruction selection becomes more difficult
▶ Compiler lacks domain knowledge about permissible transformations

▶ Executive summary of the state of the art:
▶ Auto-vectorization works well for very simple cases
▶ For “medium complexity”, code is often suboptimal
▶ In many cases, auto-vectorization fails on unmodified code
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Auto-vectorization Strategies

▶ Loop Vectorization
▶ Try to transform loop body into vectors with n lanes
▶ Often needs tail loop for remainder that doesn’t fill a vector
▶ Extremely common

▶ Superword-level Parallelism (SLP)
▶ Vectorize constructs outside of loops
▶ Detect neighbored stores, try to fold operations into vectors
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Loop Vectorization: Strategy

▶ Only consider innermost loop (at first)

1. Check legality: is vectorization possible at all?
▶ Only vectorizable data types and operations used
▶ No loop-carried dependencies, overlapping memory regions, etc.

2. Check profitability: is vectorization benefitial?
▶ Consider: runtime checks, gather/scatter, masked operations, etc.
▶ Needs information about target architecture

3. Perform transformation
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Outer Loop Vectorization

▶ Vectorizing the innermost loop not always beneficial
▶ Example 1: inner loop has only few iterations
▶ Example 2: inner loop has loop-carried dependencies

▶ Thus: need to consider outer loops as well
▶ Also: vectorization on multiple levels might be beneficial

▶ Very limited support in compilers, if any
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Auto-vectorization is Hard

▶ Biggest problem: data dependencies
▶ Resolving loop-carried dependencies is difficult

▶ Memory aliasing
▶ Overlapping arrays, or – worse – loop counter

▶ Which loop level to vectorize? Multiple?
▶ Loop body might impact loop count
▶ Function calls, e.g. for math functions
▶ Strided memory access (e.g., only every n-th element)
▶ Choosing vectorization level (outer loop might be better)

▶ Is vectorization profitable at all?
▶ Often black box to programmer, preventing fine-grained tuning
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Auto-Vectorization: Examples

Compile40 the functions from ex07.txt with vectorization remarks.

clang -S -emit-llvm -O3 -Rpass=loop-vectorize
-Rpass-analysis=loop-vectorize -Rpass-missed=loop-vectorize

▶ Does vectorization occur?
▶ What additional output is provided in the optimization remarks?
▶ If so: what is vectorized? How?
▶ Does the result match your expection?

40https://godbolt.org/z/aqbb937cb

https://godbolt.org/z/aqbb937cb
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Vectorization – Summary

▶ SIMD is an easy way to improve performance numbers of CPUs
▶ Most general-purpose ISAs have one or more SIMD extensions
▶ Recent trend: variably-length vectors

▶ Inline Assembly: easiest for compiler, but extremely tedious
▶ Intrinsics: best trade-off towards performance and usability
▶ Target-independent operations: slightly increase portability
▶ SPMD: strategy dominant for GPU programming
▶ Auto-vectorization: very hard, unsuited for complex code
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Vectorization – Questions

▶ Why do modern CPUs provide SIMD extensions?
▶ Why do variable-length SIMD extensions have higher runtime costs?
▶ How are SIMD intrinsics lowered to LLVM-IR?
▶ What is the downside of target-independent vector operations?
▶ How can if/else/for constructs be vectorized?
▶ What is the difference between a uniform and a varying variable?
▶ Why is auto-vectorization often sub-par to manual optimization?
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