Code Generation for Data Processing

Lecture 1: Introduction and Interpretation

Alexis Engelke

Chair of Data Science and Engineering (125)
School of Computation, Information, and Technology
Technical University of Munich

Winter 2025/26

Module “Code Generation for Data Processing”

Learning Goals

» Getting from an intermediate code representation to machine code
» Designing and implementing IRs and machine code generators

» Apply for: JIT compilation, query compilation, ISA emulation

» Computer Architecture, Assembly ERA, GRA/ASP
» Databases, Relational Algebra GDB
» Beneficial: Compiler Construction, Modern DBs

Topic Overview

: Compiler Back-end

: : » Instruction Selection
» Introduction and Interpretation _ _
> Register Allocation

» Linker, Loader, Debuginfo

Intermediate Representations —
Applications

» IR Concepts and Design
> LLVM-IR
» Analyses and Optimizations

» Compiler Front-end

» JIT-compilation 4+ Sandboxing
» Query Compilation

» Binary Translation

Lecture Organization

» Lecturer: Dr. Alexis Engelke engelke@in.tum.de
» Time slot: Thu 10-14, 02.11.018
» Material: https://db.in.tum.de/teaching/ws2526/codegen/

Exam

» Written exam, 90 minutes, no retake, 2026-02-27 14:00
» (Might change to oral on very low registration count)

https://db.in.tum.de/teaching/ws2526/codegen/

Exercises

» Regular homework, often with programming exercise
» Submission via POST request (see assignments)
» Grading with {x,+,~, —}, feedback on best effort

» Exercises integrated into lecture
» Hands-on programming or analysis of systems (needs laptop)

» Occasionally: present and discuss homework solutions

» Requirement: N — 2 “sufficiently working” homework submissions
and one presentations of homework in class (depends on submission count)

» Bonus: grades in [1.3;4.0] improved by 0.3/0.4

Why study compilers?

» Critical component of every system, functionality and performance
» Compiler mostly alone responsible for using hardware well

» Brings together many aspects of CS:
» Theory, algorithms, systems, architecture, software engineering, (ML)

» New developments/requirements pose new challenges
> New architectures, environments, language concepts, ...

» High complexity!

Compiler Lectures © TUM

Compiler Construction
IN2227, SS, THEO

Program Optimization
IN2053, WS, THEO

Virtual Machines
IN2040, SS, THEO

Front-end, parsing, seman-
tic analyses, types

Analyses, transformations,

abstract interpretation

Mapping programming
paradigms to IR/bytecode

Programming Languages
CIT3230000, WS

Implementation of ad-
vanced language features

Code Generation
CIT3230001, WS

Back-end, machine code
generation, JIT comp.

Why study code generation?

» Frameworks (LLVM, ...) exist and are comparably good,
but often not good enough (performance, features)

» Many systems with code gen. have their own back-end
> E.g.: V8, WebKit FTL, .NET RyuJIT, GHC, Zig, QEMU, Umbra, ...

» Machine code is not the only target: bytecode
» Often used for code execution

> E.g.: V8, Java, .NET MSIL, BEAM (Erlang), Python, MonetDB, eBPF, ...

» Allows for flexible design
» But: efficient execution needs machine code generation

Proebsting's Law

“Compiler advances double computing power every 18 years.”

— Todd Proebsting, 19981

» Still optimistic; depends on number of abstractions

1http ://proebsting.cs.arizona.edu/law.html

http://proebsting.cs.arizona.edu/law.html

Motivational Example: Brainfuck

» Turing-complete esoteric programming language, 8 operations
» Input/output: . ,
» Moving pointer over infinite array: < >
> Increment/decrement: + -
» Jump to matching bracket if (not) zero: []

4 [>H <] >

» Execution with pen/paper? =

10

Program Execution

Program ——EEYS(WEISS Result

A~

N
N
N

> High flexibility (possibly) » Low-level interface
» Many abstractions (typically) » Few operations, imperative
» Several paradigms > “Not easy’ to write

11

Motivational Example: Brainfuck — Interpretation

» Write an interpreter!

unsigned char state[10000];
unsigned ptr = 0, pc = O;
while (proglpcl)

switch (prog[pc++]) {

case
case
case
case
case
case
case
case

3

))

>)
B

7[&
1]

: putchar(state[ptr]); break;

: state[ptr] = getchar(); break;
’>7:
<
,+):
’-7: state[ptr]--; break;
state[ptr] || (pc = matchParen(pc, prog));

state[ptr] && (pc = matchParen(pc, prog));

ptr++; break;
ptr--; break;
state[ptr]++; break;

break;
break;

12

Program Execution

Program — Compiler — Program Program — Interpreter — Result
» Translate program to other lang. » Directly execute program

» Might optimize/improve program » Computes program result

» C, C++, Rust — machine code » Shell scripts, Python bytecode,
> Python, Java — bytecode machine code (conceptually)

Multiple compilation steps can precede the “final interpretation”

13

Compilers

» Targets: machine code, bytecode, or other source language
» Typical goals: better language usability and performance
» Make lang. usable at all, faster, use less resources, etc.

» Constraints: specs, resources (comp.-time, etc.), requirements (perf., etc.)

» Examples:
» “Classic” compilers source — machine code
» JIT compilation of JavaScript, WebAssembly, Java bytecode, ...
» Database query compilation
» ISA emulation/binary translation

14

Compiler Structure: Monolithic

Source

Program Compiler

—
L Errors

» Inflexible architecture, hard to retarget

Machine
Code

15

Compiler Structure: Two-phase architecture

Source
Program

IR

Back-end

Front-end

Front-end
» Parses source code

\—> Errors

» Detect syntax/semantical errors

» Emit intermediate representation
encode semantics/knowledge

» Typically: O(n) or O(nlog n)

Back-end

Machine
Code

» Translate IR to target architecture

» Can assume valid IR (~ no errors)

» Possibly one back-end per arch.

» Contains N'P-complete problems

16

Compiler Structure: Three-phase architecture

Source
Program

Front-end

IR

—

Optimizer

Back-end

\—> Errors

» Optimizer: analyze/transform/rewrite program inside IR

Machine

Code

» Conceptual architecture: real compilers typically much more complex

» Several IRs in front-end and back-end, optimizations on different IRs

» Multiple front-ends for different languages
» Multiple back-ends for different architectures

17

Compiler Front-end

1. Tokenizer: recognize words, numbers, operators, etc. Re
| Example: at+b*c — ID(a) PLUS ID(b) TIMES ID(c)

2. Parser: build (abstract) syntax tree, check for syntax errors CFG

» Syntax Tree: describe grammatical structure of complete program
Example: expr("a", op("+"), expr("b", op("*"), expr("c"))

» Abstract Syntax Tree: only relevant information, more concise
Example: plus("a", times("b", "c"))

3. Semantic Analysis: check types, variable existence, etc.

4. IR Generator: produce IR for next stage
» This might be the AST itself

18

Compiler Back-end

1. Instruction Selection: map IR operations to target instructions

> Use target features: special insts., addressing modes, . ..
» Still using virtual/unlimited registers

2. Instruction Scheduling: optimize order for target arch.

» Start memory/high-latency earlier, etc.
» Requires knowledge about micro-architecture

3. Register Allocation: map values to fixed register set/stack
» Use available registers effectively, minimize stack usage

19

Motivational Example: Brainfuck — Front-end

» Need to skip comments

» Bracket searching is expensive/redundant

» |dea: “parse” program!
» Tokenizer: yield next operation, skipping comments

» Parser: find matching brackets, construct AST

20

Motivational Example: Brainfuck — AST Interpretation

» AST can be interpreted recursively

struct node { char kind; unsigned cldCnt; struct node* cld; };
struct state { unsigned char* arr; size_t ptr; I};
void donode(struct node* n, struct statex s) {
switch (n->kind) {
case ’+’: s->arr[s->ptr]++; break;
/] ...
case ’[’: while (s->arr[s->ptr]) children(n, s); break;
case 0: children(n, s); break; // root
}
}
void children(struct node* n, struct statex s) {
for (unsigned i = 0; i < n->cldCnt; i++) donode(n->cld + i, s);

}

21

Motivational Example: Brainfuck — Optimization

» Inefficient sequences of +/-/</> can be combined
» Trivially done when generating IR

» Fold patterns into more high-level operations

|
Look at some Brainfuck programs. Which patterns are beneficial to fold?

22

Motivational Example: Brainfuck — Optimization

» Fold offset into operation
> right(2) add(1) = addoff(2, 1) right(2)
» Also possible with loops

» Analysis: does loop move pointer?

» Loops that keep position intact allow more optimizations
» Maybe distinguish “regular loops” from arbitrary loops?

» Get rid of all “effect-less” pointer movements

» Combine arithmetic operations, disambiguate addresses, etc.

23

Motivational Example: Brainfuck — Bytecode

» Tree is nice, but rather inefficient ~~ flat and compact bytecode

» Avoid pointer dereferences/indirections; keep code size small

» Maybe dispatch two instructions at once?
» switch (ops[pcl | ops[pc+1] << 8)

» Superinstructions: combine common sequences to one instruction

24

Threaded Interpretation?

» Simple switch—case dispatch has lots of branch misses

» Threaded interpretation: at end of a handler, jump to next op

struct op { char op; char data; };

struct state { unsigned char* arr; size_t ptr; };

void threadedInterp(struct op* ops, struct statex s) {
static const void* table[] = { &&CASE_ADD, &&CASE_RIGHT, };

#define DISPATCH do { goto *table[(++pc)->opl; } while (0)

struct op* pc = ops;
DISPATCH;

CASE_ADD: s->arr[s->ptr] += pc->data; DISPATCH;
CASE_RIGHT: s->arr += pc->data; DISPATCH;
}

2MA Ertl and D Gregg. “The structure and performance of efficient interpreters”. In: JILP 5 (2003), pp. 1-25. @.

25

http://www.jilp.org/vol5/v5paper12.pdf

Threaded Interpretation with Tail Calls
» Threaded interpretation can also be implemented with tails calls

struct op { char op; char data; 1};

struct state { unsigned char* arr; size_t ptr; I};

void tcInterp(struct op* pc, struct state* s);

static void fn_add(struct op* pc, struct statex s) {
s->arr[s->ptr] += pc->data; tcInterp(pc + 1, s); }

static void fn_right(struct op* pc, struct statex s) {
s->arr += pc->data; tcInterp(pc + 1, s); }

void tcInterp(struct op* pc, struct statex s) {
typedef void (* Fn) (struct op* pc, struct statex s);
static const Fn fns[] = { fn_add, fn_right };
fns[pc->op]l (pc, s);

}

26

Direct Threading®

» Use function pointer as operation to avoid indirection

struct op; struct state;

typedef void (* Fn) (struct op* pc, struct statex s);
struct op { Fn op; char data; 7};

struct state { unsigned char* arr; size_t ptr; };

void fn_add(struct op* pc, struct statex s) {
s->arr[s->ptr] += pc->data; pcl[il].op(pc + 1, s); %}

void fn_right(struct op* pc, struct statex s) {
s->arr += pc->data; pcl[1].op(pc + 1, s); 2}

void dtInterp(struct op* ops, struct state*x s) {
ops [0] .op(ops, s);

}

5JR Bell. “Threaded Code”. In: CACM 16.6 (1973), pp. 370-372. @.

27

https://dl.acm.org/doi/pdf/10.1145/362248.362270

Threaded Interpretation — Comparison

|
What are benefits/drawbacks of the three threading approaches®?

» Indirect threading with computed goto
» Indirect threading with tail calls
» Direct threading with tail calls

» Some differences on code size, readability, and maintainability

» Performance: depends on hardware, context — always measure!

6ht:tps ://godbolt.org/z/4rcEvdsq]j

28

https://godbolt.org/z/4rcEv4sqj

Fast Interpretation

» Key technique to “avoid” compilation to machine code

» Preprocess program into efficiently executable bytecode
» Easily identifiable opcode, homogeneous structure
» Can be linear (fast to execute), but trees also work
» Match bytecode ops with needed operations ~~ fewer instructions
> Larger operations preferable, but not too many (prediction)
» Perhaps optimize — if it's worth the benefit

» Fold constants, combine instructions, ...
» Consider superinstructions for common sequences

» For very cold code: avoid transformations at all

29

Interpretation vs. Compilation

Fundamental benefits of compilation:
» Elimination of interpreter dispatch
» Can be significant for bytecodes with many small operations

» Use of CPU registers for values across bytecode instructions
» Interpreter: most values must be stored in memory

» Register allocation can bring large improvements

» No fundamental benefit: optimizations
» Many optimizations can also be applied on bytecode

Fundamental benefits of interpretation: simple, portable

30

Compiler: Surrounding — Compile-time

» Typical environment for a C/C++ compiler:

fileA.c

cpp

reprocessol

fileA.i

ccl

C-Compiler

fileA.s

as

Assembler

fileA.o

1d

» Calling Convention: interface with other objects/libraries

» Build systems, dependencies, debuggers, etc.

» Compilation target machine (hardware, VM, etc.)

Linker

exec

31

Compiler: Surrounding — Run-time

OS interface (1/0, ...)

Memory management (allocation, GC, ...)
Parallelization, threads, ...

VM for execution of virtual assembly (JVM, ...)
Run-time type checking

vVvyVvyvVvyVvyYyvyy

Reflection, RTTI

Error handling: exception unwinding, assertions, . ..

32

Motivational Example: Brainfuck — Runtime Environment

» Needs /O for . and ,
» Error handling: unmatched brackets

» Memory management: infinitely-sized array

|
How to efficiently emulate an infinitely sized array?

33

Compilation point: AoT vs. JIT

Ahead-of-Time (AoT) Just-in-Time (JIT)
» All code has to be compiled » Compilation-time is critical
» No dynamic optimizations » Code can be compiled on-demand
» Compilation-time secondary » Incremental optimization, too
concern » Handle cold code fast

» Dynamic specializations possible
» Allows for eval ()

Various hybrid combinations possible

34

Introduction and Interpretation — Summary

Compilation vs. interpretation and combinations
Compilers are key to usable/performant languages
Target language typically machine code or bytecode
Three-phase architecture widely used

vvyVvyVvyyvYyy

JIT compilation imposes different constraints

Interpretation techniques: bytecode, threaded interpretation, . ..

35

Introduction and Interpretation — Questions

v

vVvVvyvyYyvyy

What is typically compiled and what is interpreted? Why?
» PostScript, C, JavaScript, HTML, SQL

What are typical types of output languages of compilers?

How does a compiler IR differ from the source input?

What is the impact of the language paradigm on optimizations?
What are important factors for an efficient interpreter?

What are inherent benefits of compilation over interpretation?
What are key differences between AoT and JIT compilation?

36

	Introduction and Interpretation
	Organization
	Overview
	High-Level Structure of Compilers
	Interpretation
	Context of Compilation

