
1

Code Generation for Data Processing
Lecture 1: Introduction and Interpretation

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology

Technical University of Munich

Winter 2025/26



2

Module “Code Generation for Data Processing”

Learning Goals

▶ Getting from an intermediate code representation to machine code
▶ Designing and implementing IRs and machine code generators
▶ Apply for: JIT compilation, query compilation, ISA emulation

Prerequisites

▶ Computer Architecture, Assembly ERA, GRA/ASP

▶ Databases, Relational Algebra GDB

▶ Beneficial: Compiler Construction, Modern DBs



3

Topic Overview

Introduction
▶ Introduction and Interpretation
▶ Compiler Front-end

Intermediate Representations

▶ IR Concepts and Design
▶ LLVM-IR
▶ Analyses and Optimizations

Compiler Back-end

▶ Instruction Selection
▶ Register Allocation
▶ Linker, Loader, Debuginfo

Applications

▶ JIT-compilation + Sandboxing
▶ Query Compilation
▶ Binary Translation



4

Lecture Organization

▶ Lecturer: Dr. Alexis Engelke engelke@in.tum.de
▶ Time slot: Thu 10-14, 02.11.018
▶ Material: https://db.in.tum.de/teaching/ws2526/codegen/

Exam
▶ Written exam, 90 minutes, no retake, 2026-02-27 14:00
▶ (Might change to oral on very low registration count)

https://db.in.tum.de/teaching/ws2526/codegen/


5

Exercises
▶ Regular homework, often with programming exercise
▶ Submission via POST request (see assignments)

▶ Grading with {∗,+,∼,−}, feedback on best effort

▶ Exercises integrated into lecture
▶ Hands-on programming or analysis of systems (needs laptop)
▶ Occasionally: present and discuss homework solutions

Grade Bonus
▶ Requirement: N − 2 “sufficiently working” homework submissions

and one presentations of homework in class (depends on submission count)

▶ Bonus: grades in [1.3; 4.0] improved by 0.3/0.4



6

Why study compilers?

▶ Critical component of every system, functionality and performance
▶ Compiler mostly alone responsible for using hardware well

▶ Brings together many aspects of CS:
▶ Theory, algorithms, systems, architecture, software engineering, (ML)

▶ New developments/requirements pose new challenges
▶ New architectures, environments, language concepts, . . .

▶ High complexity!



7

Compiler Lectures @ TUM

Compiler Construction
IN2227, SS, THEO

Front-end, parsing, seman-
tic analyses, types

Program Optimization
IN2053, WS, THEO

Analyses, transformations,
abstract interpretation

Virtual Machines
IN2040, SS, THEO

Mapping programming
paradigms to IR/bytecode

Programming Languages
CIT3230000, WS

Implementation of ad-
vanced language features

Code Generation
CIT3230001, WS

Back-end, machine code
generation, JIT comp.



8

Why study code generation?

▶ Frameworks (LLVM, . . . ) exist and are comparably good,
but often not good enough (performance, features)
▶ Many systems with code gen. have their own back-end
▶ E.g.: V8, WebKit FTL, .NET RyuJIT, GHC, Zig, QEMU, Umbra, . . .

▶ Machine code is not the only target: bytecode
▶ Often used for code execution
▶ E.g.: V8, Java, .NET MSIL, BEAM (Erlang), Python, MonetDB, eBPF, . . .
▶ Allows for flexible design
▶ But: efficient execution needs machine code generation



9

Proebsting’s Law

“Compiler advances double computing power every 18 years.”

– Todd Proebsting, 19981

▶ Still optimistic; depends on number of abstractions

1http://proebsting.cs.arizona.edu/law.html

http://proebsting.cs.arizona.edu/law.html


10

Motivational Example: Brainfuck

▶ Turing-complete esoteric programming language, 8 operations
▶ Input/output: . ,
▶ Moving pointer over infinite array: < >
▶ Increment/decrement: + -
▶ Jump to matching bracket if (not) zero: [ ]

++++++[->++++++<]>.

▶ Execution with pen/paper? :(



11

Program Execution

Program Hardware Result

Programs
▶ High flexibility (possibly)

▶ Many abstractions (typically)

▶ Several paradigms

Hardware/ISA

▶ Low-level interface
▶ Few operations, imperative
▶ “Not easy” to write



12

Motivational Example: Brainfuck – Interpretation

▶ Write an interpreter!

unsigned char state[10000];
unsigned ptr = 0, pc = 0;
while (prog[pc])
switch (prog[pc++]) {
case ’.’: putchar(state[ptr]); break;
case ’,’: state[ptr] = getchar(); break;
case ’>’: ptr++; break;
case ’<’: ptr--; break;
case ’+’: state[ptr]++; break;
case ’-’: state[ptr]--; break;
case ’[’: state[ptr] || (pc = matchParen(pc, prog)); break;
case ’]’: state[ptr] && (pc = matchParen(pc, prog)); break;
}



13

Program Execution

Compiler

Program Compiler Program

▶ Translate program to other lang.
▶ Might optimize/improve program

▶ C, C++, Rust → machine code
▶ Python, Java → bytecode

Interpreter

Program Interpreter Result

▶ Directly execute program
▶ Computes program result

▶ Shell scripts, Python bytecode,
machine code (conceptually)

Multiple compilation steps can precede the “final interpretation”



14

Compilers

▶ Targets: machine code, bytecode, or other source language
▶ Typical goals: better language usability and performance

▶ Make lang. usable at all, faster, use less resources, etc.

▶ Constraints: specs, resources (comp.-time, etc.), requirements (perf., etc.)

▶ Examples:
▶ “Classic” compilers source → machine code
▶ JIT compilation of JavaScript, WebAssembly, Java bytecode, . . .
▶ Database query compilation
▶ ISA emulation/binary translation



15

Compiler Structure: Monolithic

Source
Program Compiler Machine

Code

Errors

▶ Inflexible architecture, hard to retarget



16

Compiler Structure: Two-phase architecture

Source
Program Front-end Back-end Machine

Code
IR

Errors

Front-end
▶ Parses source code
▶ Detect syntax/semantical errors
▶ Emit intermediate representation

encode semantics/knowledge
▶ Typically: O(n) or O(n log n)

Back-end
▶ Translate IR to target architecture
▶ Can assume valid IR (⇝ no errors)
▶ Possibly one back-end per arch.
▶ Contains NP-complete problems



17

Compiler Structure: Three-phase architecture

Source
Program Front-end Optimizer Back-end Machine

Code
IR IR

Errors

▶ Optimizer: analyze/transform/rewrite program inside IR

▶ Conceptual architecture: real compilers typically much more complex
▶ Several IRs in front-end and back-end, optimizations on different IRs
▶ Multiple front-ends for different languages
▶ Multiple back-ends for different architectures



18

Compiler Front-end

1. Tokenizer: recognize words, numbers, operators, etc. Re
▶ Example: a+b*c → ID(a) PLUS ID(b) TIMES ID(c)

2. Parser: build (abstract) syntax tree, check for syntax errors CFG
▶ Syntax Tree: describe grammatical structure of complete program

Example: expr("a", op("+"), expr("b", op("*"), expr("c"))
▶ Abstract Syntax Tree: only relevant information, more concise

Example: plus("a", times("b", "c"))

3. Semantic Analysis: check types, variable existence, etc.

4. IR Generator: produce IR for next stage
▶ This might be the AST itself



19

Compiler Back-end

1. Instruction Selection: map IR operations to target instructions
▶ Use target features: special insts., addressing modes, . . .
▶ Still using virtual/unlimited registers

2. Instruction Scheduling: optimize order for target arch.
▶ Start memory/high-latency earlier, etc.
▶ Requires knowledge about micro-architecture

3. Register Allocation: map values to fixed register set/stack
▶ Use available registers effectively, minimize stack usage



20

Motivational Example: Brainfuck – Front-end

▶ Need to skip comments
▶ Bracket searching is expensive/redundant

▶ Idea: “parse” program!
▶ Tokenizer: yield next operation, skipping comments
▶ Parser: find matching brackets, construct AST

+[[-]>]

root

+ []

[]

-

>



21

Motivational Example: Brainfuck – AST Interpretation

▶ AST can be interpreted recursively

struct node { char kind; unsigned cldCnt; struct node* cld; };
struct state { unsigned char* arr; size_t ptr; };
void donode(struct node* n, struct state* s) {
switch (n->kind) {
case ’+’: s->arr[s->ptr]++; break;
// ...
case ’[’: while (s->arr[s->ptr]) children(n, s); break;
case 0: children(n, s); break; // root
}

}
void children(struct node* n, struct state* s) {
for (unsigned i = 0; i < n->cldCnt; i++) donode(n->cld + i, s);

}



22

Motivational Example: Brainfuck – Optimization

▶ Inefficient sequences of +/-/</> can be combined
▶ Trivially done when generating IR

▶ Fold patterns into more high-level operations

Look at some Brainfuck programs. Which patterns are beneficial to fold?



23

Motivational Example: Brainfuck – Optimization

▶ Fold offset into operation
▶ right(2) add(1) = addoff(2, 1) right(2)
▶ Also possible with loops

▶ Analysis: does loop move pointer?
▶ Loops that keep position intact allow more optimizations
▶ Maybe distinguish “regular loops” from arbitrary loops?

▶ Get rid of all “effect-less” pointer movements

▶ Combine arithmetic operations, disambiguate addresses, etc.



24

Motivational Example: Brainfuck – Bytecode

▶ Tree is nice, but rather inefficient ⇝ flat and compact bytecode
▶ Avoid pointer dereferences/indirections; keep code size small

▶ Maybe dispatch two instructions at once?
▶ switch (ops[pc] | ops[pc+1] << 8)

▶ Superinstructions: combine common sequences to one instruction



25

Threaded Interpretation2

▶ Simple switch–case dispatch has lots of branch misses
▶ Threaded interpretation: at end of a handler, jump to next op

struct op { char op; char data; };
struct state { unsigned char* arr; size_t ptr; };
void threadedInterp(struct op* ops, struct state* s) {
static const void* table[] = { &&CASE_ADD, &&CASE_RIGHT, };

#define DISPATCH do { goto *table[(++pc)->op]; } while (0)

struct op* pc = ops;
DISPATCH;

CASE_ADD: s->arr[s->ptr] += pc->data; DISPATCH;
CASE_RIGHT: s->arr += pc->data; DISPATCH;
}

2MA Ertl and D Gregg. “The structure and performance of efficient interpreters”. In: JILP 5 (2003), pp. 1–25. .

http://www.jilp.org/vol5/v5paper12.pdf


26

Threaded Interpretation with Tail Calls

▶ Threaded interpretation can also be implemented with tails calls

struct op { char op; char data; };
struct state { unsigned char* arr; size_t ptr; };
void tcInterp(struct op* pc, struct state* s);
static void fn_add(struct op* pc, struct state* s) {
s->arr[s->ptr] += pc->data; tcInterp(pc + 1, s); }

static void fn_right(struct op* pc, struct state* s) {
s->arr += pc->data; tcInterp(pc + 1, s); }

void tcInterp(struct op* pc, struct state* s) {
typedef void (* Fn)(struct op* pc, struct state* s);
static const Fn fns[] = { fn_add, fn_right };
fns[pc->op](pc, s);

}



27

Direct Threading5

▶ Use function pointer as operation to avoid indirection

struct op; struct state;
typedef void (* Fn)(struct op* pc, struct state* s);
struct op { Fn op; char data; };
struct state { unsigned char* arr; size_t ptr; };

void fn_add(struct op* pc, struct state* s) {
s->arr[s->ptr] += pc->data; pc[1].op(pc + 1, s); }

void fn_right(struct op* pc, struct state* s) {
s->arr += pc->data; pc[1].op(pc + 1, s); }

void dtInterp(struct op* ops, struct state* s) {
ops[0].op(ops, s);

}

5JR Bell. “Threaded Code”. In: CACM 16.6 (1973), pp. 370–372. .

https://dl.acm.org/doi/pdf/10.1145/362248.362270


28

Threaded Interpretation — Comparison

What are benefits/drawbacks of the three threading approaches6?
▶ Indirect threading with computed goto
▶ Indirect threading with tail calls
▶ Direct threading with tail calls

▶ Some differences on code size, readability, and maintainability
▶ Performance: depends on hardware, context – always measure!

6https://godbolt.org/z/4rcEv4sqj

https://godbolt.org/z/4rcEv4sqj


29

Fast Interpretation

▶ Key technique to “avoid” compilation to machine code

▶ Preprocess program into efficiently executable bytecode
▶ Easily identifiable opcode, homogeneous structure
▶ Can be linear (fast to execute), but trees also work
▶ Match bytecode ops with needed operations ⇝ fewer instructions
▶ Larger operations preferable, but not too many (prediction)

▶ Perhaps optimize – if it’s worth the benefit
▶ Fold constants, combine instructions, . . .
▶ Consider superinstructions for common sequences

▶ For very cold code: avoid transformations at all



30

Interpretation vs. Compilation

Fundamental benefits of compilation:
▶ Elimination of interpreter dispatch

▶ Can be significant for bytecodes with many small operations

▶ Use of CPU registers for values across bytecode instructions
▶ Interpreter: most values must be stored in memory
▶ Register allocation can bring large improvements

▶ No fundamental benefit: optimizations
▶ Many optimizations can also be applied on bytecode

Fundamental benefits of interpretation: simple, portable



31

Compiler: Surrounding – Compile-time

▶ Typical environment for a C/C++ compiler:

fileA.c fileA.i
Preprocessor

cpp
fileA.s

C-Compiler

cc1
fileA.o

Assembler

as
exec

Linker

ld

▶ Calling Convention: interface with other objects/libraries
▶ Build systems, dependencies, debuggers, etc.
▶ Compilation target machine (hardware, VM, etc.)



32

Compiler: Surrounding – Run-time

▶ OS interface (I/O, . . . )
▶ Memory management (allocation, GC, . . . )
▶ Parallelization, threads, . . .
▶ VM for execution of virtual assembly (JVM, . . . )
▶ Run-time type checking
▶ Error handling: exception unwinding, assertions, . . .
▶ Reflection, RTTI



33

Motivational Example: Brainfuck – Runtime Environment

▶ Needs I/O for . and ,

▶ Error handling: unmatched brackets

▶ Memory management: infinitely-sized array

How to efficiently emulate an infinitely sized array?



34

Compilation point: AoT vs. JIT

Ahead-of-Time (AoT)

▶ All code has to be compiled
▶ No dynamic optimizations
▶ Compilation-time secondary

concern

Just-in-Time (JIT)

▶ Compilation-time is critical
▶ Code can be compiled on-demand

▶ Incremental optimization, too
▶ Handle cold code fast
▶ Dynamic specializations possible
▶ Allows for eval()

Various hybrid combinations possible



35

Introduction and Interpretation – Summary

▶ Compilation vs. interpretation and combinations
▶ Compilers are key to usable/performant languages
▶ Target language typically machine code or bytecode
▶ Three-phase architecture widely used
▶ Interpretation techniques: bytecode, threaded interpretation, . . .
▶ JIT compilation imposes different constraints



36

Introduction and Interpretation – Questions

▶ What is typically compiled and what is interpreted? Why?
▶ PostScript, C, JavaScript, HTML, SQL

▶ What are typical types of output languages of compilers?
▶ How does a compiler IR differ from the source input?
▶ What is the impact of the language paradigm on optimizations?
▶ What are important factors for an efficient interpreter?
▶ What are inherent benefits of compilation over interpretation?
▶ What are key differences between AoT and JIT compilation?


	Introduction and Interpretation
	Organization
	Overview
	High-Level Structure of Compilers
	Interpretation
	Context of Compilation


