
Code Generation for Data Processing

Alexis Engelke

Winter 2025/26

Contents

1. Introduction and Interpretation 1
1.1. Organization . 1
1.2. Overview . 4
1.3. High-Level Structure of Compilers . 5
1.4. Interpretation . 7
1.5. Context of Compilation . 12

2. Compiler Front-end 15
2.1. Lexing . 15
2.2. Parsing . 17
2.3. Semantic Analysis . 23
2.4. Miscellaneous . 24

3. Intermediate Representations 27
3.1. Motivation . 27
3.2. Control Flow Graph . 29
3.3. Other Graph IRs . 33
3.4. Linear IRs . 33
3.5. Single Static Assignment . 36
3.6. IR Design . 40

4. LLVM-IR 45
4.1. Overview . 45
4.2. LLVM-IR . 46
4.3. API . 51

5. Analyses and Transformations 55
5.1. Motivation . 55
5.2. Dead Code Elimination . 55
5.3. Sparse Conditional Constant Propagation 57
5.4. Simple Common Subexpression Elimination 59
5.5. Dominator Tree . 61
5.6. Common Subexpression Elimination . 63
5.7. Inlining . 64
5.8. Loop Analysis . 65
5.9. Loop Optimizations . 67

6. Optimizations in LLVM 71
6.1. Overview . 71

iii

Contents

6.2. Canonicalization . 72
6.3. Flags . 77
6.4. Inter-Procedural Optimizations . 80
6.5. Running and Writing LLVM Passes . 81

A. Exercise Solutions 83

iv

1. Introduction and Interpretation

1.1. Organization

[Slide 2] Module “Code Generation for Data Processing”

Learning Goals
• Getting from an intermediate code representation to machine code
• Designing and implementing IRs and machine code generators
• Apply for: JIT compilation, query compilation, ISA emulation

Prerequisites
• Computer Architecture, Assembly ERA, GRA/ASP
• Databases, Relational Algebra GDB
• Beneficial: Compiler Construction, Modern DBs

[Slide 3] Topic Overview

Introduction
• Introduction and Interpretation
• Compiler Front-end

Intermediate Representations
• IR Concepts and Design
• LLVM-IR
• Analyses and Optimizations

Compiler Back-end
• Instruction Selection
• Register Allocation
• Linker, Loader, Debuginfo

Applications
• JIT-compilation + Sandboxing
• Query Compilation
• Binary Translation

[Slide 4] Lecture Organization

• Lecturer: Dr. Alexis Engelke engelke@in.tum.de
• Time slot: Thu 10-14, 02.11.018
• Material: https://db.in.tum.de/teaching/ws2526/codegen/

1

https://db.in.tum.de/teaching/ws2526/codegen/

1. Introduction and Interpretation

Exam

• Written exam, 90 minutes, no retake, 2026-02-27 14:00
• (Might change to oral on very low registration count)

[Slide 5] Exercises

• Regular homework, often with programming exercise
• Submission via POST request (see assignments)

– Grading with {∗,+,∼,−}, feedback on best effort

∗ Grade ∗: excellent submission, goes beyond expectations
∗ Grade +: good submission, meets expectations
∗ Grade ∼: acceptable submission, but is below expectations
∗ Grade −: unacceptable submission, too far below expectations

• Exercises integrated into lecture
• Hands-on programming or analysis of systems (needs laptop)
• Occasionally: present and discuss homework solutions

Grade Bonus

• Requirement: N − 2 “sufficiently working” homework submissions and one presenta-
tions of homework in class (depends on submission count)

• Bonus: grades in [1.3; 4.0] improved by 0.3/0.4

[Slide 6] Why study compilers?

• Critical component of every system, functionality and performance
– Compiler mostly alone responsible for using hardware well

• Brings together many aspects of CS:
– Theory, algorithms, systems, architecture, software engineering, (ML)

• New developments/requirements pose new challenges
– New architectures, environments, language concepts, . . .

• High complexity!

2

1.1. Organization

[Slide 7] Compiler Lectures @ TUM

Compiler Construction
IN2227, SS, THEO

Front-end, parsing, seman-
tic analyses, types

Program Optimization
IN2053, WS, THEO

Analyses, transformations,
abstract interpretation

Virtual Machines
IN2040, SS, THEO

Mapping programming
paradigms to IR/bytecode

Programming Languages
CIT3230000, WS

Implementation of ad-
vanced language features

Code Generation
CIT3230001, WS

Back-end, machine code
generation, JIT comp.

[Slide 8] Why study code generation?

• Frameworks (LLVM, . . .) exist and are comparably good, but often not good enough
(performance, features)

– Many systems with code gen. have their own back-end
– E.g.: V8, WebKit FTL, .NET RyuJIT, GHC, Zig, QEMU, Umbra, . . .

• Machine code is not the only target: bytecode
– Often used for code execution
– E.g.: V8, Java, .NET MSIL, BEAM (Erlang), Python, MonetDB, eBPF, . . .
– Allows for flexible design
– But: efficient execution needs machine code generation

[Slide 9] Proebsting’s Law

“Compiler advances double computing power every 18 years.”

– Todd Proebsting, 1998a

ahttp://proebsting.cs.arizona.edu/law.html

• Still optimistic; depends on number of abstractions

The performance increases compilers can make on existing code are typically low.
However, optimizing compilers gain more abilities in simplifying needlessly complex
code, enabling the use of more abstractions and therefore higher level code. These
abstractions are removed/optimized during compilation, enabling languages to promote
these as zero-cost abstractions. They do, however, have a cost: compile times.

Also note that some of these “zero-cost” abstractions actually do have some run-time
cost. For example, the mere possibility of C++ exceptions can cause less efficient

3

http://proebsting.cs.arizona.edu/law.html

1. Introduction and Interpretation

machine code and might prevents optimizations due to the more complex control flow
possibilities.

1.2. Overview

[Slide 10] Motivational Example: Brainfuck

• Turing-complete esoteric programming language, 8 operations
– Input/output: . ,
– Moving pointer over infinite array: < >
– Increment/decrement: + -
– Jump to matching bracket if (not) zero: []

++++++[->++++++<]>.

• Execution with pen/paper? :(
[Slide 11] Program Execution

Program Hardware Result

Programs
• High flexibility (possibly)
• Many abstractions (typically)
• Several paradigms

Hardware/ISA
• Low-level interface
• Few operations, imperative
• “Not easy” to write

[Slide 12] Motivational Example: Brainfuck – Interpretation

• Write an interpreter!
unsigned char state[10000];
unsigned ptr = 0, pc = 0;
while (prog[pc])
switch (prog[pc++]) {
case ’.’: putchar(state[ptr]); break;
case ’,’: state[ptr] = getchar(); break;
case ’>’: ptr++; break;
case ’<’: ptr--; break;
case ’+’: state[ptr]++; break;
case ’-’: state[ptr]--; break;
case ’[’: state[ptr] || (pc = matchParen(pc, prog)); break;
case ’]’: state[ptr] && (pc = matchParen(pc, prog)); break;
}

4

1.3. High-Level Structure of Compilers

[Slide 13] Program Execution

Compiler

Program Compiler Program

• Translate program to other lang.
• Might optimize/improve program

• C, C++, Rust → machine code
• Python, Java → bytecode

Interpreter

Program Interpreter Result

• Directly execute program
• Computes program result

• Shell scripts, Python bytecode, ma-
chine code (conceptually)

Multiple compilation steps can precede the “final interpretation”

1.3. High-Level Structure of Compilers

[Slide 14] Compilers

• Targets: machine code, bytecode, or other source language
• Typical goals: better language usability and performance

– Make lang. usable at all, faster, use less resources, etc.
• Constraints: specs, resources (comp.-time, etc.), requirements (perf., etc.)
• Examples:

– “Classic” compilers source → machine code
– JIT compilation of JavaScript, WebAssembly, Java bytecode, . . .
– Database query compilation
– ISA emulation/binary translation

[Slide 15] Compiler Structure: Monolithic

Source
Program Compiler Machine

Code

Errors

• Inflexible architecture, hard to retarget

Some languages like C are designed to be compilable in a single pass without building
any intermediate representation of the code between source and assembly. Single-pass
compilers exist, but often have very limited possibilities to transform the code. They
might not even know basic code properties, e.g., the size of the stack frame, during
compilation of a function.

5

1. Introduction and Interpretation

[Slide 16] Compiler Structure: Two-phase architecture

Source
Program Front-end Back-end Machine

Code
IR

Errors

Front-end
• Parses source code
• Detect syntax/semantical errors
• Emit intermediate representation encode semantics/knowledge
• Typically: O(n) or O(n log n)

Back-end
• Translate IR to target architecture
• Can assume valid IR (⇝ no errors)
• Possibly one back-end per arch.
• Contains NP-complete problems

After parsing, all information is encoded in the IR, including references to source code
constructs for debugging support. The input source code is (at least conceptually) no
longer needed.

In practice, there are very rare cases where the back-end can also raise errors. This
can happen, for example, when some very architecture-specific constraints might be
hard to verify during parsing (e.g., inline assembly constraints in combination with
available registers).

[Slide 17] Compiler Structure: Three-phase architecture

Source
Program Front-end Optimizer Back-end Machine

Code
IR IR

Errors

• Optimizer: analyze/transform/rewrite program inside IR

• Conceptual architecture: real compilers typically much more complex
– Several IRs in front-end and back-end, optimizations on different IRs
– Multiple front-ends for different languages
– Multiple back-ends for different architectures

Example Clang/LLVM (will be covered in more detail later): Clang parses the input
into an abstract syntax tree (IR 1), uses this for semantic analyses; then Clang
transforms the code into LLVM-IR (IR 2), which is primarily used for optimization;
then the LLVM back-end transforms the code further into LLVM’s Machine IR (IR
3), executes some low-level optimizations and register allocation there; the assembly

6

1.4. Interpretation

printer of the back-end then lowers the code further to LLVM’s machine code repre-
sentation (IR 4), before finally emitting machine code. Some optimizations inside this
pipeline, e.g. vectorization, might even build further representation of the code.

Why are compilers using so many different code representations? Different transfor-
mations work best at different abstraction levels. Diagnosing unused variables, for
example, requires information about the source code. Optimization of arithmetic com-
putations is easier in a data-flow-focused representation, where no explicit variables
exist. Low-level modifications, like folding operations into complex addressing modes
of the ISA, need a code representation where ISA instructions are already present.

[Slide 18] Compiler Front-end

1. Tokenizer: recognize words, numbers, operators, etc. Re
• Example: a+b*c → ID(a) PLUS ID(b) TIMES ID(c)

2. Parser: build (abstract) syntax tree, check for syntax errors CFG
• Syntax Tree: describe grammatical structure of complete program Example:
expr("a", op("+"), expr("b", op("*"), expr("c"))

• Abstract Syntax Tree: only relevant information, more concise Example:
plus("a", times("b", "c"))

3. Semantic Analysis: check types, variable existence, etc.
4. IR Generator: produce IR for next stage

• This might be the AST itself

[Slide 19] Compiler Back-end

1. Instruction Selection: map IR operations to target instructions
• Use target features: special insts., addressing modes, . . .
• Still using virtual/unlimited registers

2. Instruction Scheduling: optimize order for target arch.
• Start memory/high-latency earlier, etc.
• Requires knowledge about micro-architecture

3. Register Allocation: map values to fixed register set/stack
• Use available registers effectively, minimize stack usage

1.4. Interpretation

[Slide 20] Motivational Example: Brainfuck – Front-end

• Need to skip comments
• Bracket searching is expensive/redundant
• Idea: “parse” program!
• Tokenizer: yield next operation, skipping comments
• Parser: find matching brackets, construct AST

7

1. Introduction and Interpretation

+[[-]>]

root

+ []

[]

-

>

[Slide 21] Motivational Example: Brainfuck – AST Interpretation

• AST can be interpreted recursively
struct node { char kind; unsigned cldCnt; struct node* cld; };
struct state { unsigned char* arr; size_t ptr; };
void donode(struct node* n, struct state* s) {
switch (n->kind) {
case ’+’: s->arr[s->ptr]++; break;
// ...
case ’[’: while (s->arr[s->ptr]) children(n, s); break;
case 0: children(n, s); break; // root
}

}
void children(struct node* n, struct state* s) {
for (unsigned i = 0; i < n->cldCnt; i++) donode(n->cld + i, s);

}

[Slide 22] Motivational Example: Brainfuck – Optimization

• Inefficient sequences of +/-/</> can be combined
– Trivially done when generating IR

• Fold patterns into more high-level operations

In-Class Exercise:

Look at some Brainfuck programs. Which patterns are beneficial to fold?
Solution on page 83.

[Slide 23] Motivational Example: Brainfuck – Optimization

• Fold offset into operation
– right(2) add(1) = addoff(2, 1) right(2)
– Also possible with loops

• Analysis: does loop move pointer?
– Loops that keep position intact allow more optimizations
– Maybe distinguish “regular loops” from arbitrary loops?

• Get rid of all “effect-less” pointer movements
• Combine arithmetic operations, disambiguate addresses, etc.

8

1.4. Interpretation

[Slide 24] Motivational Example: Brainfuck – Bytecode

• Tree is nice, but rather inefficient ⇝ flat and compact bytecode
• Avoid pointer dereferences/indirections; keep code size small
• Maybe dispatch two instructions at once?

– switch (ops[pc] | ops[pc+1] << 8)

• Superinstructions: combine common sequences to one instruction

Dispatching multiple instructions at once can be problematic due to the explosion of
cases that need to be implemented (often results in large jump tables and lots of code
with resulting cache misses and branch mispredictions). Often, it is advisable to not
always switch over multiple neighbored instructions, but instead combine common
sequences into superinstructions.

[Slide 25] Threaded Interpretation1

• Simple switch–case dispatch has lots of branch misses
• Threaded interpretation: at end of a handler, jump to next op

struct op { char op; char data; };
struct state { unsigned char* arr; size_t ptr; };
void threadedInterp(struct op* ops, struct state* s) {
static const void* table[] = { &&CASE_ADD, &&CASE_RIGHT, };

#define DISPATCH do { goto *table[(++pc)->op]; } while (0)

struct op* pc = ops;
DISPATCH;

CASE_ADD: s->arr[s->ptr] += pc->data; DISPATCH;
CASE_RIGHT: s->arr += pc->data; DISPATCH;
}

With threaded interpretation there is not a single indirect jump instruction inside the
dispatcher, but one indirect jump instruction per operation. Each of these indirect
jumps then occupies a different branch prediction slot in the CPU. If an operation of
type X is typically followed by an operation of type Y, with threaded interpretation
the CPU has a much better chance of correctly predicting the dispatch branch to the
next operation, because the indirect jump at the end of operation X typically jumps
to operation Y. Without threaded interpretation, there would be only a single indirect
branch, which is much harder to predict.

Threaded interpretation is especially useful on older and less powerful CPUs.
Recent CPUs (e.g., Intel since Skylake, AMD since Zen 3, Apple Silicon) store the
history of branches and use this for better prediction. On such processors, threaded
interpretation might not improve performance (or gains might be lower).

1MA Ertl and D Gregg. “The structure and performance of efficient interpreters”. In: JILP 5 (2003),
pp. 1–25. url: http://www.jilp.org/vol5/v5paper12.pdf.

9

http://www.jilp.org/vol5/v5paper12.pdf

1. Introduction and Interpretation

[Slide 26] Threaded Interpretation with Tail Calls

• Threaded interpretation can also be implemented with tails calls
struct op { char op; char data; };
struct state { unsigned char* arr; size_t ptr; };
void tcInterp(struct op* pc, struct state* s);
static void fn_add(struct op* pc, struct state* s) {
s->arr[s->ptr] += pc->data; tcInterp(pc + 1, s); }

static void fn_right(struct op* pc, struct state* s) {
s->arr += pc->data; tcInterp(pc + 1, s); }

void tcInterp(struct op* pc, struct state* s) {
typedef void (* Fn)(struct op* pc, struct state* s);
static const Fn fns[] = { fn_add, fn_right };
fns[pc->op](pc, s);

}

Computed goto is a GNU extension and similar features are not available in many
other languages. However, it is possible to achieve a similar effect through indirect
tail callsa.

In this exampleb, the resulting assembly is almost identical for x86-64, but for
AArch64, some more engineering effort would be required.

The code as written has another problem: At -O0, no tail call optimization will be
performed. Some compilers like Clang provide a way to force tail calls in C/C++
code:
void tcInterp(struct op* pc, struct state* s) {
// ... (and adapt individual functions likewise)
[[clang::musttail]] return fns[pc->op](pc, s);

}

In the context of functional programming, this style is also referred to as continuation-
passing style.
aA tail call is a call at the end of a function without adding a new entry to the stack frame.
bhttps://godbolt.org/z/E5drG61aK

[Slide 27] Direct Threading2

• Use function pointer as operation to avoid indirection
struct op; struct state;
typedef void (* Fn)(struct op* pc, struct state* s);
struct op { Fn op; char data; };
struct state { unsigned char* arr; size_t ptr; };

void fn_add(struct op* pc, struct state* s) {
s->arr[s->ptr] += pc->data; pc[1].op(pc + 1, s); }

void fn_right(struct op* pc, struct state* s) {
s->arr += pc->data; pc[1].op(pc + 1, s); }

void dtInterp(struct op* ops, struct state* s) {
ops[0].op(ops, s);

}

2JR Bell. “Threaded Code”. In: CACM 16.6 (1973), pp. 370–372. url: https://dl.acm.org/doi/pdf/
10.1145/362248.362270.

10

https://godbolt.org/z/E5drG61aK
https://dl.acm.org/doi/pdf/10.1145/362248.362270
https://dl.acm.org/doi/pdf/10.1145/362248.362270

1.4. Interpretation

While there might be a benefit of reducing the instruction count, the effect is typically
insignificant on out-of-order CPUs, as the extra load instruction is typically a cache
hit and the latency is hidden by other operations.

[Slide 28] Threaded Interpretation — Comparison

In-Class Exercise:

What are benefits/drawbacks of the three threading approachesa?
• Indirect threading with computed goto
• Indirect threading with tail calls
• Direct threading with tail calls

Solution on page 83.
ahttps://godbolt.org/z/4rcEv4sqj

• Some differences on code size, readability, and maintainability
• Performance: depends on hardware, context – always measure!

[Slide 29] Fast Interpretation

• Key technique to “avoid” compilation to machine code
• Preprocess program into efficiently executable bytecode

– Easily identifiable opcode, homogeneous structure
– Can be linear (fast to execute), but trees also work
– Match bytecode ops with needed operations ⇝ fewer instructions
– Larger operations preferable, but not too many (prediction)

• Perhaps optimize – if it’s worth the benefit
– Fold constants, combine instructions, . . .
– Consider superinstructions for common sequences

• For very cold code: avoid transformations at all

[Slide 30] Interpretation vs. Compilation

Fundamental benefits of compilation:
• Elimination of interpreter dispatch

– Can be significant for bytecodes with many small operations
• Use of CPU registers for values across bytecode instructions

– Interpreter: most values must be stored in memory
– Register allocation can bring large improvements

This is a major driver for performance even on modern CPUs, which have two
related optimizations: Store-to-load forwarding, where the value from a store
will be forwarded to a later load from the same address; and memory renaming,

11

https://godbolt.org/z/4rcEv4sqj

1. Introduction and Interpretation

where the physical register of a stored value is kept and a subsequent load with
a similar address operand speculatively reuses that register. However, CPU
resources for these optimizations are limited and using registers directly is much
more efficient.

• No fundamental benefit: optimizations
– Many optimizations can also be applied on bytecode

Fundamental benefits of interpretation: simple, portable

1.5. Context of Compilation

[Slide 31] Compiler: Surrounding – Compile-time

• Typical environment for a C/C++ compiler:

fileA.c fileA.i
Preprocessor

cpp
fileA.s

C-Compiler

cc1
fileA.o

Assembler

as
exec

Linker

ld

• Calling Convention: interface with other objects/libraries
• Build systems, dependencies, debuggers, etc.
• Compilation target machine (hardware, VM, etc.)

[Slide 32] Compiler: Surrounding – Run-time

• OS interface (I/O, . . .)
• Memory management (allocation, GC, . . .)
• Parallelization, threads, . . .
• VM for execution of virtual assembly (JVM, . . .)
• Run-time type checking
• Error handling: exception unwinding, assertions, . . .
• Reflection, RTTI

[Slide 33] Motivational Example: Brainfuck – Runtime Environment

• Needs I/O for . and ,
• Error handling: unmatched brackets
• Memory management: infinitely-sized array

In-Class Exercise:

How to efficiently emulate an infinitely sized array?
Solution on page 83.

[Slide 34] Compilation point: AoT vs. JIT

Ahead-of-Time (AoT)
• All code has to be compiled

12

1.5. Context of Compilation

• No dynamic optimizations
• Compilation-time secondary concern

Just-in-Time (JIT)
• Compilation-time is critical
• Code can be compiled on-demand

– Incremental optimization, too
• Handle cold code fast
• Dynamic specializations possible
• Allows for eval()

Various hybrid combinations possible

[Slide 35] Introduction and Interpretation – Summary

• Compilation vs. interpretation and combinations
• Compilers are key to usable/performant languages
• Target language typically machine code or bytecode
• Three-phase architecture widely used
• Interpretation techniques: bytecode, threaded interpretation, . . .
• JIT compilation imposes different constraints

[Slide 36] Introduction and Interpretation – Questions

• What is typically compiled and what is interpreted? Why?
– PostScript, C, JavaScript, HTML, SQL

• What are typical types of output languages of compilers?
• How does a compiler IR differ from the source input?
• What is the impact of the language paradigm on optimizations?
• What are important factors for an efficient interpreter?
• What are inherent benefits of compilation over interpretation?
• What are key differences between AoT and JIT compilation?

13

2. Compiler Front-end

[Slide 38] Compiler Front-end

Source
Program Lexer Parser

Semantic
Analysis

Syntax
Tree

Tokens AST

Errors

• Typical architecture: separate lexer, parser, and context analysis
– Allows for more efficient lexical analysis
– Smaller components, easier to understand, etc.

• Some languages: preprocessor and macro expansion

2.1. Lexing

[Slide 39] Lexer

• Convert stream of chars to stream of words (tokens)
• Detect/classify identifiers, numbers, operators, . . .
• Strip whitespace, comments, etc.

a+b*c → ID(a) PLUS ID(b) TIMES ID(c)

• Typically representable as regular expressions

[Slide 40] Typical Token Kinds

• Punctuators () [] { } ; = + += | ||
• Identifiers abc123 main
• Keywords void int __asm__
• Numeric constants 123 0xab1 5.7e3 0x1.8p1 09.1f
• Char constants ’a’ u’œ’
• String literals "abc\x12\n"
• Internal EOF COMMENT UNKNOWN INDENT DEDENT

– Comments might be useful for annotations, e.g. // fallthrough

15

2. Compiler Front-end

Indentation-based languages like Python need separate tokens for indent/dedent, the
indentation level is tracked in the lexer. Parsing numbers may need special care to
correctly handle all possible cases of integer and floating-point numbers.

[Slide 41] Lexer Implementation

struct Token { enum Kind { IDENT, EOF, PLUS, PLUSEQ, /*...*/ };
std::string_view v; Kind kind; };

Token next(std::string_view v) {
if (v.empty()) return Token{v, Token::EOF};
if (v.starts_with("+=")) return Token{"+="sv, Token::PLUSEQ};
if (v.starts_with("+")) return Token{"+"sv, Token::PLUS};
switch (v[0]) {
case ’␣’, ’\n’, ’\t’: return next(v.substr(1)); // skip whitespace
case ’a’ ... ’z’, ’A’ ... ’Z’, ’_’: {
Token t = // ... parse identifer, e.g. using regex
if (auto kind = isKeyword(t.v)) return Token{*kind, t.v};
return t;

}
case ’0’ ... ’9’: // ... parse number
default: return Token{v.substr(0, 1), Token::ERROR};
}

}

This is just a minimal and non-optimized implementation to illustrate the concept.
Performance-focused implementations do not use explicit regular expressions but write
the state machine into code.

The struct Token has room for improvement. First, a string_view is unnecessarily
large with 16 bytes, most tokens are smaller than 216 bytes. Some tracking of the
source locations is advisable for attaching diagnostics to their origin inside the code,
for example by storing a file ID and the byte offset into the file. By tracking the byte
offsets of line breaks, the line number can be reconstructed in O(log n) from the byte
offset.

Another optimization strategy is string interning, where identifiers are converted
into unique integers (or pointers) during parsing. During later phases, comparing
interned strings is much more efficient, as it is just an integer/pointer comparison.
Another benefit is that the entire input file does not need to be kept in memory during
parsing.

[Slide 42] Lexing C??=

main() <%
// yay, this is C99??/
puts("hi␣world!");
puts("what’s␣up??!");

%>

Output: what’s up|

• Trigraphs for systems with more limited encodings/char sets
• Digraphs to provide a more readable alternative...

16

2.2. Parsing

Besides digraphs, trigraphs, and the preprocessor, C has another weird property:
identifier names can be split by \, which concatenates two lines. It is necessary to
construct the “real” identifier first. To simplify memory management in such cases, a
bump pointer allocator (allocate large chunks of memory from the OS, then simply
bump the end pointer for every allocation) can be useful to store such constructed
names.

[Slide 43] Lexer Implementation

• Essentially a DFA (for most languages)
– Set of regexes → NFA → DFA

• Respect whitespace/separators for operators, e.g. + and +=
• Automatic tools (e.g., flex) exist; most compilers do their own
• Keywords typically parsed as identifiers first

– Check identifier if it is a keyword; can use perfect hashing
• Other practical problems

– UTF-8 homoglyphs; trigraphs; pre-processing directives

A tool to generate perfect hash tables from a set of keywords is gperf. Example,
compile with gperf -L C++ -C -E -t <input>:
struct keyword {char* name; int val; }
%%
int, 1
char, 2
void, 3
if, 4
else, 5
while, 6
return, 7

2.2. Parsing

[Slide 44] Parsing

• Convert stream of tokens into (abstract) syntax tree
• Most programming languages are context-sensitive

– Variable declarations, argument count, type match, etc. ⇝ separated into
semantic analysis

Syntactically valid: void foo = doesntExist / "abc";
• Grammar usually specified as CFG

[Slide 45] Context-Free Grammar (CFG)

• Terminals: basic symbols/tokens
• Non-terminals: syntactic variables

17

2. Compiler Front-end

• Start symbol: non-terminal defining language
• Productions: non-terminal → series of (non-)terminals

stmt → whileStmt | breakStmt | exprStmt
whileStmt → while (expr) stmt
breakStmt → break ;
exprStmt → expr ;

expr → expr + expr | expr * expr | expr = expr | (expr) | number

[Slide 46] Hand-written Parsing – First Try

• One function per non-terminal
• Check expected structure
• Return AST node
• Need look-ahead!

NodePtr parseBreakStmt() {
consume(Token::BREAK);
consume(Token::SEMICOLON);
return newNode(Node::BreakStmt);

}
NodePtr parseWhileStmt() {
consume(Token::WHILE);
consume(Token::LPAREN);
NodePtr expr = parseExpr();
consume(Token::RPAREN);
NodePtr body = parseStmt();
return newNode(Node::WhileStmt,
{expr, body});

}
NodePtr parseStmt() {
// whoops!

}

[Slide 47] Hand-written Parsing – Second Try

• Need look-ahead to distinguish production rules
• Consequences for grammar:

– No left-recursion
– First n terminals must allow distinguishing rules
– LL(n) grammar; n typically 1

⇒ Not all CFGs (easily) parseable (but most programming langs. are)
• Now... expressions

NodePtr parseBreakStmt() { /*...*/ }
NodePtr parseWhileStmt() { /*...*/ }

NodePtr parseStmt() {
Token t = peekToken();
if (t.kind == Token::BREAK)
return parseBreakStmt();

18

2.2. Parsing

if (t.kind == Token::WHILE)
return parseWhileStmt();

// ...
NodePtr expr = parseExpr();
consume(Token::SEMICOLON);
return newNode(Node::ExprStmt,
{expr});

}

[Slide 48] Ambiguity

expr → expr + expr | expr * expr | expr = expr | (expr) | number

Input: 4 + 3 ∗ 2

E

E

4 + 3

* 2

E

4 + E

3 * 2

The grammar, as specified, is ambiguous, there are two possible ways to parse the
input.

[Slide 49] Ambiguity – Rewrite Grammar?

primary → (expr) | number
expr → primary + expr | primary * expr | primary = expr | primary

Input: 4 + 3 ∗ 2

E

4 + E

3 * 2

Input: 4 ∗ 3 + 2

E

4 * E

3 + 2

The grammar is no longer ambiguous, but the result might not be expected, conven-
tionally, multiplication has a stronger binding than addition.

[Slide 50] Ambiguity – Precedence

Input: 4 ⋆ 5 ⃝ 6

19

2. Compiler Front-end

⋆

4 ⃝

5 6

If prec(⃝) > prec(⋆) or equal prec.
and ⋆ is right-assoc.

Examples:
• 4 + 5 · 6 (prec(·) > prec(+))
• a = b = c (= is right-assoc.)
b = c should be executed first

⃝

⋆

4 5

6

If prec(⃝) < prec(⋆) or equal prec.
and ⋆ is left-assoc.

Examples:
• 4+5 < 6 (prec(<) < prec(+))
• a+ b− c (+ is left-assoc.)
a+ b should be executed first

[Slide 51] Hand-written Parsing – Expression Parsing

• Start with basic expr.:
• Number, variable, etc.
• Parenthesized expr.

– Parse full expression
– Next token must be)

• Unary expr: followed by expr. with higher prec.
– - < unary - < []/->

NodePtr parseExpr(unsigned minPrec=0);
NodePtr parsePrimaryExpr() {
switch (Token t = next(); t.kind) {
case Token::IDENT:
return makeNode(Node::IDENT, t.v);

case Token::NUMBER: // ...
case Token::MINUS:
// Only exprs with high precedence
return makeNode(Node::UMINUS,
{parseExpr(UNARY_PREC)});

case Token::LPAREN: // ...
// ...
}

}

[Slide 52] Hand-written Parsing – Expression Parsing

• Only allow ops. with higher prec. on the right child
– Right-assoc.: allow same

• Lower prec.: return + insert higher up in the tree
OpDesc OPS[] = { // {prec, rassoc}
[Token::MUL] = {12, false},
[Token::ADD] = {11, false},

20

2.2. Parsing

[Token::EQ] = {2, true},
[Token::QUEST] = {3, true}, // ?:

}
NodePtr parseExpr(unsigned minPrec=1) {
auto lhs = parsePrimaryExpr();
while (auto op = OPS[next().kind];

op.prec >= minPrec) {
// ... handle (, [, ?: ...
auto newPrec = op.rassoc ?
op.prec : op.prec + 1;

auto rhs = parseExpr(newPrec);
lhs = makeNode(op.nodeKind,
{lhs, rhs});

}
return lhs;

}

In-Class Exercise:

a = 3 * 2 + 1; a = b + c + d = 1; a ? 1 : b ? 2 : 3;
Solution on page 84.

[Slide 53] Top-down vs. Bottom-up Parsing

Top-down Parsing
• Start with top rule
• Every step: choose expansion
• LL(1) parser

– Left-to-right, Leftmost Derivation
• “Easily” writable by hand
• Error handling rather simple
• Covers many prog. languages

Bottom-up Parsing
• Start with text
• Reduce to non-terminal
• LR(1) parser

– Left-to-right, Rightmost Derivation
– Strict super-set of LL(1)

• Often: uses parser generator
• Error handling more complex
• Covers nearly all prog. languages

[Slide 54] Parser Generators

• Writing parsers by hand can be large effort
• Parser generators can simplify parser writing a lot

– Yacc/Bison, PLY, ANTLR, . . .

21

2. Compiler Front-end

• Automatic generation of parser/parsing tables from CFG
– Finds ambiguities in the grammar
– Lexer often written by hand

• Used heavily in practice, unless error handling is important

[Slide 55] Bison Example – part 1

%define api.pure full
%define api.value.type {ASTNode *}
%param { Lexer* lexer }
%code{
static int yylex(ASTNode ** lvalp , Lexer* lexer);
}
%token NUMBER
%token WHILE "while"
%token BREAK "break"

// precedence and associativity
%right ’=’
%left ’+’
%left ’*’

[Slide 56] Bison Example – part 2

%%
stmt : WHILE ’(’ expr ’)’ stmt { $$ = mkNode(WHILE , $1 , $2); }

| BREAK ’;’ { $$ = mkNode(BREAK , NULL , NULL); }
| expr ’;’ { $$ = $1; }
;

expr : expr ’+’ expr { $$ = mkNode(’+’, $1, $2); }
| expr ’*’ expr { $$ = mkNode(’*’, $1, $2); }
| expr ’=’ expr { $$ = mkNode(’=’, $1, $2); }
| ’(’ expr ’)’ { $$ = $1; }
| NUMBER
;

%%
static int yylex(ASTNode ** lvalp , Lexer* lexer) {

/* return next token , or YYEOF /... */ }

Compile with bison -dg input.ypp, it will emit a C++ header, the implementation
file, and also a graph showing the state machine of he parser.

[Slide 57] Parsing in Practice

• Some use parser generators, e.g. Python some use hand-written parsers, e.g. GCC,
Clang, Swift, Go

• Optimization of grammar for performance
– Rewrite rules to reduce states, etc.

• Useful error-handling: complex!
– Try skipping to next separator, e.g. ; or ,

22

2.3. Semantic Analysis

• Programming languages are not always context-free
– C: foo* bar;
– May need to break separation between lexer and parser

In fact, many compilersa use hand-written parsers, because they allow for better error
messages a more graceful handling of syntax errors, leading to more reported errors
during a single (failing) ompilation.
ahttps://notes.eatonphil.com/parser-generators-vs-handwritten-parsers-survey-2021.
html

[Slide 58] Parsing C++

• C++ is not context-free (inherited from C): T * a;
• C++ is ambiguous: Type (a), b;

– Can be a declaration or a comma expression
• C++ templates are Turing-complete1

• C++ parsing is hence undecidable2

– Template instantiation combined with C T * a ambiguity

2.3. Semantic Analysis

[Slide 59] Semantic Analysis

• Syntactical correctness ̸⇒ correct program void foo = doesntExist / ++"abc";
• Needs context-sensitive analysis:

– Variable existence, storage, accessibility, . . .
– Function existence, arguments, . . .
– Operator type compatibility
– Attribute allowance

• Additional type complexity: inference, polymorphism, . . .

[Slide 60] Semantic Analysis: Scope Checking with AST Walking

• Idea: walk through AST (in DFS-order) and validate on the way
• Keep track of scope with declared variables

– Might need to keep track of defined types separately

In-Class Exercise:

How to implement the scope data structure?

1TL Veldhuizen. C++ templates are Turing complete. 2003. url: http://port70.net/~nsz/c/c%2B%
2B/turing.pdf.

2J Haberman. Parsing C++ is literally undecidable. 2013. url: https://blog.reverberate.org/2013/
08/parsing-c-is-literally-undecidable.html.

23

https://notes.eatonphil.com/parser-generators-vs-handwritten-parsers-survey-2021.html
https://notes.eatonphil.com/parser-generators-vs-handwritten-parsers-survey-2021.html
http://port70.net/~nsz/c/c%2B%2B/turing.pdf
http://port70.net/~nsz/c/c%2B%2B/turing.pdf
https://blog.reverberate.org/2013/08/parsing-c-is-literally-undecidable.html
https://blog.reverberate.org/2013/08/parsing-c-is-literally-undecidable.html

2. Compiler Front-end

Solution on page 84.

• For identifiers: check existence and get type
• For expressions: check types and derive result type
• For assignment: check lvalue-ness of left side
• Might be possible during AST creation
• Needs care with built-ins and other special constructs

[Slide 61] Semantic Analysis and Post-Parsing Transformations

• Check for error-prone code patterns
– Completeness of switch, out-of-range constants, unused variables, ...

• Check method calls, parameter types
• Duplicate code for templates
• Make implicit value conversions explicit
• Handle attributes: visibility, warnings, etc.
• Mangle names, split functions (OpenMP), ABI-specific setup, ...
• Last step: generate IR code

2.4. Miscellaneous

[Slide 62] Parsing Performance

Is parsing/front-end performance important?

• Not necessarily: normal compilers
– Some languages (e.g., Rust) need unbounded time for parsing

• Somewhat: JIT compilers
– Start-up time is generally noticable

• Somewhat more: Developer tools
– Imagine: waiting for seconds just for updated syntax highlighting
– Often uses tricks like incremental updates to parse tree

[Slide 63] Data Types

• Important part of programming languages
• Might have large variety and compatibility

– Numbers, Strings, Arrays, Compound Types (struct/union), Enum, Templates,
Functions, Pointers, . . .

– Class hierarchy, Interfaces, Abstract Classes, . . .
– Integer/float compatibility, promotion, . . .

• Might have implicit conversions

24

2.4. Miscellaneous

[Slide 64] Data Types: Implementing Classes

• Simple class/struct: trivial, just bunch of fields
– Methods take (pointer to) this as implicit parameter

• Single inheritance: also trivial – extend struct at end
• Virtual methods: store vtable in object representation

– vtable = table of function pointers for virtual methods
– Each sub-class has their own vtable

• Multiple inheritance is much more involved
• Dynamic casts: needs run-time type information (RTTI)

[Slide 65] Recommended Lectures

AD IN2227 “Compiler Constructions” covers parsing/analysis in depth

AD CIT3230000 “Programming Languages” covers dispatching/mixins/...

[Slide 66] Compiler Front-end – Summary

• Lexer splits input into tokens
– Essentially Regex-Matching + Keywords; rather simple

• Parser constructs (abstract) syntax tree from tokens
– Top-down vs. bottom-up parsing
– Typical: top-down for control flow; bottom-up for expressions
– Respect precedence and associativity for operators

• Semantic analysis ensures meaningful program
• Some data structures are complex to implement
• Some programming languages are more difficult to parse

[Slide 67] Compiler Front-end – Questions

• What are typical components of a compiler front-end?
• What output does the lexer produce?
• How does a parser disambiguate rules?
• What is the typical way to handle operator precedence?
• Why are not all programming languages describable using CFGs?
• How to implement classes with virtual functions?

25

3. Intermediate Representations

3.1. Motivation

[Slide 69] Intermediate Representations: Motivation

• So far: program parsed into AST
+ Great for language-related checks
+ Easy to correlate with original source code (e.g., errors)
− Hard for analyses/optimizations due to high complexity

– variable names, control flow constructs, etc.
– Data and control flow implicit

− Highly language-specific

[Slide 70] Intermediate Representations: Motivation

block

stmt_decl

int ident

x

+

num

5

num

3

stmt_decl

int ident

y

+

ident

x

num

1

stmt_expr

=

ident

x

num

12

stmt_decl

int ident

z

+

ident

x

num

1

stmt_ret

−

ident

z

ident

y

Question: how to optimize? Is x+1 redundant? ⇝ hard to tell :(

In this representation, it is very easy to see that the two +1 operations have different
operands on the left side and are therefore not trivially redundant.

[Slide 71] Intermediate Representations: Motivation

x1 ← 5 + 3
y1 ← x1 + 1
x2 ← 12
z1 ← x2 + 1
tmp1 ← z1 − y1
return tmp1

27

3. Intermediate Representations

Question: how to optimize? Is x+1 redundant? ⇝ No! :)

[Slide 72] Intermediate Representations

• Definitive program representation inside compiler
– During compilation, only the (current) IR is considered

In practice, there are, of course, exceptions to the general rule; sometimes
an IR contains references to a previous/higher-level IR. An example is
LLVM’s low-level Machine IR, which only represents single functions and
therefore references to global variables use the higher-level LLVM IR.

• Goal: simplify analyses/transformations
– Technically , single-step compilation is possible for, e.g., C ... but optimizations

are hard without proper IRs
• Compilers design IRs to support frequent operations

– IR design can vary strongly between compilers
• Typically based on graphs or linear instructions (or both)

[Slide 73] Compiler Design: Effect of Languages – Imperative

• Step-by-step execution of program modification of state
• Close to hardware execution model
• Direct influence of result

• Tracking of state is complex
• Dynamic typing: more complexity
• Limits optimization possibilities

void addvec(int* a, const int* b) {
for (unsigned i = 0; i < 4; i++)
a[i] += b[i]; // vectorizable?

}
func:
mov [rdi], rsi
mov [rdi+8], rdx
mov [rdi], 0 // redundant?
ret

Tracking state, especially when memory is involved, is one of the main challenges
during optimization. In the first example, the loop is not easily vectorizable, because
a and b could point to the same underlying array (e.g., with addvec(buf + 1, buf)).

28

3.2. Control Flow Graph

[Slide 74] Compiler Design: Effect of Languages – Declarative

• Describes execution target
• Compiler has to derive good mapping to imperative hardware

• Allows for more optimizations
• Mapping to hardware non-trivial

– Might need more stages
– Preserve semantic info for opt!

• Programmer has less “control”
select s.name
from studenten s
where exists (select 1

from hoeren h
where h.matrno=s.matrno)

let rec fac = function
| 0 | 1 -> 1
| n -> n * fac (n - 1)

[Slide 75] Graph IRs: Abstract Syntax Tree (AST)

• Code representation close to the source
• Representation of types, constants, etc. might differ
• Storage might be problematic for large inputs

block

stmt_decl

int ident

x

+

num

5

num

3

stmt_decl

int ident

y

+

ident

x

num

1

stmt_expr

=

ident

x

num

12

stmt_decl

int ident

z

+

ident

x

num

1

stmt_ret

−

ident

z

ident

y

3.2. Control Flow Graph

[Slide 76] Graph IRs: Control Flow Graph (CFG)

• Motivation: model control flow between different code sections
• Graph nodes represent basic blocks

– Basic block: sequence of branch-free code (modulo exceptions)
– Typically represented using a linear IR

stmt1
while (exp1)
stmt2

stmt3

block

stmt1 stmt_while

exp1 stmt2

stmt3

stmt1

exp1

stmt3

stmt2

29

3. Intermediate Representations

[Slide 77] Build CFG from AST – Function

• Idea: Keep track of current insert block while walking through AST

function

ret. type name arguments B

fn. prologue

B

fn. epilogue

[Slide 78] Build CFG from AST – While Loop

stmt_while

condition B

c=condition
if(!c) ↙ else ↘

B

Written in pseudo-code:
IRValue generateCFG(ASTNode* node, BasicBlock*& insPos) {
switch (node->kind()) {
case ASTNode::Function:
insPos = generatePrologue(node);
generateCFG(node->child(0), insPos);
generateEpilogue(insPos);
return nullptr;

case ASTNode::Block:
for (ASTNode* child : node->children())
generateCFG(child, insPos);

return nullptr;
case ASTNode::While: {
BasicBlock* cond = newBlock();
BasicBlock* body = newBlock();
BasicBlock* end = newBlock();
branchTo(insPos, cond);
insPos = cond;
IRValue brcond = generateCFG(node->child(0), insPos);
// NB: generateCFG can modify insPos
branchToCond(insPos, brcond, body, end);
insPos = body;

30

3.2. Control Flow Graph

generateCFG(node->child(1), insPos);
branchTo(insPos, cond);
insPos = end;
return nullptr;

}
// ...
}

}

[Slide 79] Build CFG from AST – If Condition

stmt_if

condition T E

c=condition
if(c) ↙ else ↘

T E

[Slide 80] Build CFG from AST: Switch

Linear search
t ← exp
if t == 3: goto B3

if t == 4: goto B4

if t == 7: goto B7

if t == 9: goto B9

goto BD

+ Trivial
− Slow, lot of code

Binary search
t ← exp
if t == 7: goto B7

elif t > 7:
if t == 9: goto B9

else:
if t == 3: goto B3

if t == 4: goto B4

goto BD

+ Good: sparse values
− Even more code

Jump table
t ← exp
if 0 ≤ t< 10:
goto table[t]

goto BD

table = {
BD, BD, BD, B3,
B4, BD, ... }

+ Fastest
− Table can be large,

needs ind. jump

Typically, it is beneficial to keep switches in a high-level form during optimizations, as
they are more expressive than, e.g., a corresponding search tree. The corresponding
node in the CFG has then one outgoing edge per case plus the edge for the default
target.

[Slide 81] Build CFG from AST: Break, Continue, Goto, Computed Goto

• break/continue: trivial

31

3. Intermediate Representations

– Keep track of target block, insert branch
• goto: also trivial

– Split block at target label, if needed
– But: may lead to irreducible control flow graph (see later)

• Computed goto: trivial is bad
– Split block at target label, if needed
– Every computed goto is a branch to every address-taken label
– CFG can grow extremely dense for dispatch code!

Very dense CFGs are problematic for the runtime of many graph algorithms
— many algorithms need at the very least to consider every edge, so the
runtime of such algorithms grows by at least Ω(|N |2), often more.
Typically, therefore, only a single computed goto is emitted into the IR as
a separate basic block; all computed gotos in the code are re-routed to go
through this new block. Only very late in the code generation pipeline, this
block is duplicated again into all its predecessors to produce the expected
behavior. (Note that, due to compiler bugs, this might not always happen.)

[Slide 82] CFG: Formal Definition

• Flow graph: G = (N,E, s) with a digraph (N,E) and entry s ∈ N

– Each node is a basic block, s is the entry block
– (n1, n2) ∈ E iff n2 might be executed immediately after n1

– All n ∈ N shall be reachable from s (unreachable nodes can be discarded)
– Nodes without successors are end points

[Slide 83] CFG from C – Example

In-Class Exercise:

Derive the CFG for the these functions. Assume a switch instruction exists.
int fn1() {
if (a()) {
while (b()) {
c();
if (d())
continue;

e();
}

} else {
f();

}
return g();

}

int fn2() {
a();
do switch (c()) {
case 1:
while (d()) {
e();

case 2:
f();

}
default:
g();

} while (h());
return b();

}
Solution on page 85.

32

3.3. Other Graph IRs

3.3. Other Graph IRs

[Slide 84] Graph IRs: Call Graph

• Graph showing (possible) call relations between functions
• Useful for interprocedural optimizations

– Function ordering
– Stack depth estimation
– . . .

main

parseArgs

strtol

printf

write

fibonacci

[Slide 85] Graph IRs: Relational Algebra

• Higher-level representation of query plans
– Explicit data flow

• Allow for optimization and selection actual implementations
– Elimination of common sub-trees
– Joins: ordering, implementation, etc.

SELECT s.name, h.vorlnr
FROM studenten s, hoeren h
WHERE s.matrnr = h.matrnr

σs.matrnr=h.matrnr

×

studenten hoeren

⋊⋉HJ
s.matrnr=h.matrnr

studenten hoeren

3.4. Linear IRs

[Slide 86] Linear IRs: Stack Machines

• Operands stored on a stack
• Operations pop arguments from top and push result
• Typically accompanied with variable storage
• Generating IR from AST: trivial
• Often used for bytecode, e.g. Java, Python

+ Compact code, easy to generate and implement
− Performance, hard to analyze

push 5
push 3
add
pop x

33

3. Intermediate Representations

push x
push 1
add
pop y
push 12
pop x
push x
push 1
add
pop z

[Slide 87] Linear IRs: Register Machines

• Operands stored in registers
• Operations read and write registers
• Typically: infinite number of registers
• Typically: three-address form

– dst = src1 op src2
• Generating IR from AST: trivial
• E.g., GIMPLE, eBPF, Assembly

x ← 5 + 3
y ← x + 1
x ← 12
z ← x + 1
tmp1 ← z − y
return tmp1

[Slide 88] Example: High GIMPLE

int foo(int n) {
int res = 1;
while (n) {
res *= n * n;
n -= 1;

}
return res;

}
int fac (int n)
gimple_bind < // <-- still has lexical scopes
int D.1950;
int res;

gimple_assign <integer_cst, res, 1, NULL, NULL>
gimple_goto <<D.1947>>
gimple_label <<D.1948>>
gimple_assign <mult_expr, _1, n, n, NULL>
gimple_assign <mult_expr, res, res, _1, NULL>
gimple_assign <plus_expr, n, n, -1, NULL>
gimple_label <<D.1947>>
gimple_cond <ne_expr, n, 0, <D.1948>, <D.1946>>

34

3.4. Linear IRs

gimple_label <<D.1946>>
gimple_assign <var_decl, D.1950, res, NULL, NULL>
gimple_return <D.1950>

>

$ gcc -fdump-tree-gimple-raw -c foo.c

[Slide 89] Example: Low GIMPLE

int foo(int n) {
int res = 1;
while (n) {
res *= n * n;
n -= 1;

}
return res;

}
int fac (int n)
{
int res;
int D.1950;

gimple_assign <integer_cst, res, 1, NULL, NULL>
gimple_goto <<D.1947>>
gimple_label <<D.1948>>
gimple_assign <mult_expr, _1, n, n, NULL>
gimple_assign <mult_expr, res, res, _1, NULL>
gimple_assign <plus_expr, n, n, -1, NULL>
gimple_label <<D.1947>>
gimple_cond <ne_expr, n, 0, <D.1948>, <D.1946>>
gimple_label <<D.1946>>
gimple_assign <var_decl, D.1950, res, NULL, NULL>
gimple_goto <<D.1951>>
gimple_label <<D.1951>>
gimple_return <D.1950>

}

$ gcc -fdump-tree-lower-raw -c foo.c

[Slide 90] Example: Low GIMPLE with CFG

int foo(int n) {
int res = 1;
while (n) {
res *= n * n;
n -= 1;

}
return res;

}
int fac (int n) {
int res;
int D.1950;
<bb 2> :
gimple_assign <integer_cst, res, 1, NULL, NULL>
goto <bb 4>; [INV]
<bb 3> :
gimple_assign <mult_expr, _1, n, n, NULL>
gimple_assign <mult_expr, res, res, _1, NULL>
gimple_assign <plus_expr, n, n, -1, NULL>
<bb 4> :

35

3. Intermediate Representations

gimple_cond <ne_expr, n, 0, NULL, NULL>
goto <bb 3>; [INV]

else
goto <bb 5>; [INV]

<bb 5> :
gimple_assign <var_decl, D.1950, res, NULL, NULL>
<bb 6> :

gimple_label <<L3>>
gimple_return <D.1950>

}

$ gcc -fdump-tree-cfg-raw -c foo.c

[Slide 91] Linear IRs: Register Machines

• Problem: no clear def–use information
– Is x+ 1 the same?
– Hard to track actual values!

• How to optimize?

⇒ Disallow mutations of variables

x ← 5 + 3
y ← x + 1
x ← 12
z ← x + 1
tmp1 ← z − y
return tmp1

3.5. Single Static Assignment

[Slide 92] Single Static Assignment: Introduction

• Idea: disallow mutations of variables, value set in declaration
• Instead: create new variable for updated value
• SSA form: every computed value has a unique definition

– Equivalent formulation: each name describes result of one operation

x ← 5 + 3
y ← x + 1
x ← 12
z ← x + 1
tmp1 ← z − y
return tmp1

v1 ← 5 + 3
v2 ← v1 + 1
v3 ← 12
v4 ← v3 + 1
v5 ← v4 − v2
return v5

[Slide 93] Single Static Assignment: Control Flow

• How to handle diverging values in control flow?

36

3.5. Single Static Assignment

• Solution: Φ-nodes to merge values depending on predecessor
– Value depends on edge used to enter the block
– All Φ-nodes of a block execute concurrently (ordering irrelevant)

entry : x ← . . .
if (x > 2) goto cont

then : x ← x ∗ 2
cont : return x

entry : v1 ← . . .
if (v1 > 2) goto cont

then : v2 ← v1 ∗ 2
cont : v3 ← Φ(entry : v1, then : v2)

return v3

[Slide 94] Example: GIMPLE in SSA form

int foo(int n) {
int res = 1;
while (n) {
res *= n * n;
n -= 1;

}
return res;

}
int fac (int n) { int res, D.1950, _1, _6;
<bb 2> :
gimple_assign <integer_cst, res_4, 1, NULL, NULL>
goto <bb 4>; [INV]
<bb 3> :
gimple_assign <mult_expr, _1, n_2, n_2, NULL>
gimple_assign <mult_expr, res_8, res_3, _1, NULL>
gimple_assign <plus_expr, n_9, n_2, -1, NULL>
<bb 4> :
gimple_phi <n_2, n_5(D)(2), n_9(3)>
gimple_phi <res_3, res_4(2), res_8(3)>
gimple_cond <ne_expr, n_2, 0, NULL, NULL>
goto <bb 3>; [INV]

else
goto <bb 5>; [INV]

<bb 5> :
gimple_assign <ssa_name, _6, res_3, NULL, NULL>
<bb 6> :

gimple_label <<L3>>
gimple_return <_6>

}

$ gcc -fdump-tree-ssa-raw -c foo.c

37

3. Intermediate Representations

[Slide 95] SSA Construction – Local Value Numbering

• Simple case: inside block – keep mapping of variable to value

Code

x ← 5 + 3
y ← x + 1
x ← 12
z ← x + 1
tmp1 ← z − y
return tmp1

SSA IR
v1 ← add 5, 3
v2 ← add v1, 1
v3 ← const 12
v4 ← add v3, 1
v5 ← sub v4, v2

ret v5

Variable Mapping
x → v3
y → v2
z → v4

tmp1 → v5

[Slide 96] SSA Construction – Across Blocks

• SSA construction with control flow is non-trivial
• Key problem: find value for variable in predecessor
• Naive approach: Φ-nodes for all variables everywhere

– Create empty Φ-nodes for variables, populate variable mapping
– Fill blocks (as on last slide)
– Fill Φ-nodes with last value of variable in predecessor

• Why is this a bad idea? ⇒ don’t do this!
– Extremely inefficient, code size explosion, many dead Φ

[Slide 97] SSA Construction – Across Blocks (“simple”1)

• Key problem: find value in predecessor
• Idea: seal block once all direct predecessors are known

– For acyclic constructs: trivial
– For loops: seal header once loop block is generated

• Current block not sealed: add Φ-node, fill on sealing
• Single predecessor: recursively query that
• Multiple preds.: add Φ-node, fill now

Confer the (very readable) paper for a more formal specification of the algorithm.
The removal of trivial and redundant Φ-nodes is not strictly required.

[Slide 98] SSA Construction – Example

int foo(int n) {
int res = 1;
while (n) {
res *= n * n;

1M Braun et al. “Simple and efficient construction of static single assignment form”. In: CC. 2013,
pp. 102–122. url: https://link.springer.com/content/pdf/10.1007/978-3-642-37051-9_6.pdf.

38

https://link.springer.com/content/pdf/10.1007/978-3-642-37051-9_6.pdf

3.5. Single Static Assignment

n -= 1;
}
return res;

}
func foo (v1)

entry: sealed; varmap: n→ v1, res→ v2

v2 ← 1

header: sealed; varmap: n→ ϕ1, res→ ϕ2

ϕ1 ← ϕ(entry: v1, body: v6)
ϕ2 ← ϕ(entry: v2, body: v5)
v3 ← equal ϕ1, 0
br v3, cont, body

body: sealed; varmap: n→v6, res→ v5

v4 ← mul ϕ1, ϕ1

v5 ← mul ϕ2, v4
v6 ← sub ϕ1, 1
br header

cont: sealed; varmap: res→ ϕ2

ret ϕ2

Note: the sealed state and the variable map are only used during SSA construction.
They can be discarded afterwards and are not part of the IR. The information is also
not sufficient for debug information, for that purpose as it doesn’t sufficiently cover
all program points; tracking variable states for debug information typically requires
extra instructions or annotations in the IR.

[Slide 99] SSA Construction – Example

In-Class Exercise:

Construct an IR in SSA form for the following C functions.
int phis(int a, int b){
a = a * b;
if (a > b * b) {
int c = 1;
while (a > 0)
a = a - c;

} else {
a = b * b;

}
return a;

}

int swap(int a, int b, int c) {
while (c > 0) {
int tmp = a;
a = b;
b = tmp;
c = c - 1;

}
return a;

}

Solution on page 85.

[Slide 100] SSA Construction – Pruned/Minimal Form

• Resulting SSA is pruned – all ϕ are used
• But not minimal – ϕ nodes might have single, unique value
• When filling ϕ, check that multiple real values exist

– Otherwise: replace ϕ with the single value

39

3. Intermediate Representations

– On replacement, update all ϕ using this value, they might be trivial now, too
• Sufficient? Not for irreducible CFG

– Needs more complex algorithms2 or different construction method3

AD IN2053 “Program Optimization” covers this more formally

[Slide 101] SSA: Implementation

• Value is often just a reference to the instruction
• ϕ nodes placed at beginning of block

– They execute “concurrently” and on the edges, after all
• Variable number of operands required for ϕ nodes
• Storage format for instructions and basic blocks

– Consecutive in memory: hard to modify/traverse
– Array of pointers: O(n) for a single insertion...
– Linked List: easy to insert, but pointer overhead

Is SSA a graph IR?

Only if instructions have no side effects,consider load, store, call, . . .
These can be solved using explicit dependencies as SSA values, e.g. for memory

3.6. IR Design

[Slide 103] IR Design: High-level Considerations

• Define purpose!
• Structure: SSA vs. something else; control flow

– Control flow: basic blocks/CFG vs. structured control flow
– Remember: SSA can be considered as a DAG, too
– SSA is easy to analyse, but non-trivial to construct/leave

• Broader integration: keep multiple stages in single IR?
– Example: create IR with high-level operations, then incrementally lower
– Model machine instructions in same IR?
– Can avoid costly transformations, but adds complexity

2M Braun et al. “Simple and efficient construction of static single assignment form”. In: CC. 2013,
pp. 102–122. url: https://link.springer.com/content/pdf/10.1007/978-3-642-37051-9_6.pdf.

3R Cytron et al. “Efficiently computing static single assignment form and the control dependence graph”.
In: TOPLAS 13.4 (1991), pp. 451–490. url: https://dl.acm.org/doi/pdf/10.1145/115372.115320.

40

https://link.springer.com/content/pdf/10.1007/978-3-642-37051-9_6.pdf
https://dl.acm.org/doi/pdf/10.1145/115372.115320

3.6. IR Design

[Slide 104] IR Design: Operations

• Data types
– Simple type structure vs. complex/aggregate types?
– Keep relation to high-level types vs. low-level only?
– Virtual data types, e.g. for flags/memory?

• Instruction format
– Single vs. multiple results?
– Strongly typed vs. more generic result/operand types?
– Operand number – fixed vs. dynamic?

[Slide 105] IR Design: Operations

• Allow instruction side effects?
– E.g.: memory, floating-point arithmetic, implicit control flow

• Operation complexity and abstraction
– E.g.: CheckBounds, GetStackPtr, HashInt128
– E.g.: load vs. MOVQconstidx4

• Extensibility for new operations (e.g., new targets, high-level ops)

[Slide 106] IR Design: Desired Operations on IR

• Replacing all uses of an instruction with a different value
• Inserting an instruction or phi node/block argument
• Removing an instruction or phi node/block argument
• Changing the operand of an instruction
• Finding predecessors and successors of a basic block
• Finding all users of an instruction result
• For optimization-focused IRs, all these operations should be fast

[Slide 107] IR Design: Implementation

• Maintain user lists?
– Simplifies optimizations, but adds considerable overhead
– Replacement can use copy and lazy canonicalization
– User count might be sufficient alternative

• Storage layout: operation size and locations
– For performance: reduce heap allocations, small data structures

• Special handling for arguments vs. all-instructions?
• Metadata for source location, register allocation, etc.
• SSA: ϕ nodes vs. block arguments?

41

3. Intermediate Representations

[Slide 108] IR Example: Go SSA

• Strongly typed
– Structured types decomposed

• Explicit memory side-effects
• Also High-level operations

– IsInBounds, VarDef
• Only one type of value/instruction

– Const64, Arg, Phi
• No user list, but user count
• Also used for arch-specific repr.

env GOSSAFUNC=fac go build test.go
b1:

v1 (?) = InitMem <mem>
v2 (?) = SP <uintptr>
v5 (?) = LocalAddr <*int> {~r1} v2 v1
v6 (7) = Arg <int> {n} (n[int])
v8 (?) = Const64 <int> [1] (res[int])
v9 (?) = Const64 <int> [2] (i[int])

Plain -> b2 (+9)
b2: <- b1 b4

v10 (9) = Phi <int> v9 v17 (i[int])
v23 (12) = Phi <int> v8 v15 (res[int])
v12 (+9) = Less64 <bool> v10 v6

If v12 -> b4 b5 (likely) (9)
b4: <- b2

v15 (+10) = Mul64 <int> v23 v10 (res[int])
v17 (+9) = Add64 <int> v10 v8 (i[int])

Plain -> b2 (9)
b5: <- b2

v20 (12) = VarDef <mem> {~r1} v1
v21 (+12) = Store <mem> {int} v5 v23 v20

Ret v21 (+12)

[Slide 109] Intermediate Representations – Summary

• An IR is an internal representation of a program
• Main goal: simplify analyses and transformations
• IRs typically based on graphs or linear instructions
• Graph IRs: AST, Control Flow Graph, Relational Algebra
• Linear IRs: stack machines, register machines, SSA
• Single Static Assignment makes data flow explicit
• SSA is extremely popular, although non-trivial to construct
• IR design depends on purpose and integration constraints

[Slide 110] Intermediate Representations – Questions

• Who designs an IR? What are design criteria?
• Why is an AST not suited for program optimization?
• How to convert an AST to another IR?

42

3.6. IR Design

• What are the benefits/drawbacks of stack/register machines?
• What benefits does SSA offer over a normal register machine?
• How do ϕ-instructions differ from normal instructions?

43

4. LLVM-IR

4.1. Overview

[Slide 112] LLVM1

LLVM “Core” Library

• Optimizer and compiler back-end
• “Set of compiler components”

– IRs: LLVM-IR, SelDag, MIR
– Analyses and Optimizations
– Code generation back-ends

• Started from Chris Lattner’s master’s thesis
• Used for C, C++, Swift, D, Julia, Rust, Haskell, . . .

LLVM Project
• Umbrella for several projects related to compilers/toolchain

– LLVM Core
– Clang: C/C++ front-end for LLVM
– libc++, compiler-rt: runtime support
– LLDB: debugger
– LLD: linker
– MLIR: experimental IR framework

[Slide 113] LLVM: Overview

a.c

b.cc

...

LLVM-IR

Front-end

Analyses
Optimization

aarch64.o

x86_64.o

...

CodeGen

• Independent front-end derives LLVM-IR, LLVM does opt. and code gen.
• LTO: dump LLVM-IR into object file, optimize at link-time

1C Lattner and V Adve. “LLVM: A compilation framework for lifelong program analysis & transformation”.
In: CGO. 2004, pp. 75–86. url: http://www.llvm.org/pubs/2004-01-30-CGO-LLVM.pdf.

45

http://www.llvm.org/pubs/2004-01-30-CGO-LLVM.pdf

4. LLVM-IR

The single IR allows multiple front-ends to reuse the same back-end infrastructure.
Thus, generating LLVM-IR provides an easy way to target a wide range of architectures.

For link-time optimization, the LLVM-IR is stored in the object files instead of the
machine code. At link-time, a linker plugin detects these files, merges the LLVM-IR
from all object files, and then runs the actual compilation as part of the linking step.
We will look at LTO again later when discussing object file generation and linking.

4.2. LLVM-IR

[Slide 114] LLVM-IR: Overview

• SSA-based IR, representations textual, bitcode, in-memory
• Hierarchical structure

– Module
– Functions, global variables
– Basic blocks
– Instructions

• Strongly/strictly typed

define dso_local i32 @foo(i32 %0) {
%2 = icmp eq i32 %0, 0
br i1 %2, label %10, label %3

3: ; preds = %1, %3
%4 = phi i32 [%7, %3], [1, %1]
%5 = phi i32 [%8, %3], [%0, %1]
%6 = mul nsw i32 %5, %5
%7 = mul nsw i32 %6, %4
%8 = add nsw i32 %5, -1
%9 = icmp eq i32 %8, 0
br i1 %9, label %10, label %3

10: ; preds = %3, %1
%11 = phi i32 [1, %1], [%7, %3]
ret i32 %11

}

[Slide 115] LLVM-IR: Data types

• First class types:
– i<N> – arbitrary bit width integer, e.g. i1, i25, i1942652
– ptr/ptr addrspace(1) – pointer with optional address space
– float/double/half/bfloat/fp128/. . .
– <N x ty> – vector type, e.g. <4 x i32>

• Aggregate types:
– [N x ty] – constant-size array type, e.g. [32 x float]
– { ty, ... } – struct (can be packed/opaque), e.g. {i32, float}

46

4.2. LLVM-IR

• Other types:
– ty (ty, ...) – function type, e.g. {i32, i32} (ptr, ...)
– void
– label/token/metadata

Although structure types can be used in various places in the IR, e.g., a single
instruction to load a large structure from memory, this is strongly discouraged: LLVM
is not optimized for this and both code quality and compile times get considerably
worse. Only use struct types for globals and to implement multiple return values.

[Slide 116] LLVM-IR: Modules

• Top-level entity, one compilation unit – akin to C/C++
• Contains global values, specified with linkage type
• Global variable declarations/definitions

@externInt = external global i32, align 4

@globVar = global i32 4, align 4

@staticPtr = internal global ptr null, align 8

• Function declarations/definitions
declare i32 @readPtr(ptr)
define i32 @return1() {
ret i32 1

}

• Global named metadata (discarded during compilation)

[Slide 117] LLVM-IR: Functions

• Functions definitions contain all code, not nestable
• Single return type (or void), multiple parameters, list of basic blocks

– No basic blocks ⇒ function declaration
• Specifiers for callconv, section name, other attributes

– E.g.: noinline/alwaysinline, noreturn, readonly
• Parameter and return can also have attributes

– E.g.: noalias, nonnull, sret(<ty>)

[Slide 118] LLVM-IR: Basic Block

• Sequence of instructions
– ϕ nodes come first
– Regular instructions come next
– Must end with a terminator

• First block in function is entry block Entry block cannot be branch target

47

4. LLVM-IR

[Slide 119] LLVM-IR: Instructions – Control Flow and Terminators

• Terminators end a block/modify control flow

• ret <ty> <val>/ret void
• br label <dest>/br i1 <cond>, label <then>, label <else>
• switch/indirectbr
• unreachable
• Few others for exception handling

• Not a terminator: call

Although call does modify control flow in some sense, the assumption is that every
function call returns ordinarily. When special control flow for exceptions is needed,
the invoke instruction is used, which specifies one basic block as successor for the
ordinary case and one basic block for the exceptional case.

[Slide 120] LLVM-IR: Instructions – Arithmetic-Logical

• add/sub/mul/udiv/sdiv/urem/srem
– Arithmetic uses two’s complement
– Division corner cases are undefined behavior

• fneg/fadd/fsub/fmul/fdiv/frem
• shl/lshr/ashr/and/or/xor

– Out-of-range shifts have an undefined result
• icmp <pred>/fcmp <pred>/select <cond>, <then>, <else>
• trunc/zext/sext/fptrunc/fpext/fptoui/fptosi/uitofp/sitofp
• bitcast

– Cast between equi-sized datatypes by reinterpreting bits

Technically, out-of-range shifts return poison, see below.

[Slide 121] LLVM-IR: Instructions – Memory and Pointer

• alloca <ty> – allocate addressable stack slot
• load <ty>, ptr <ptr>/store <ty> <val>, ptr <ptr>

– May be volatile (e.g., MMIO) and/or atomic
• cmpxchg/atomicrmw – similar to hardware operations
• ptrtoint/inttoptr
• getelementptr – address computation on ptr/structs/arrays

alloca allocates stack memory whenever it is executed. There is a difference between
statically-sized allocas that are in the entry block versus in dynamically-sized allocas
or allocas in other blocks:

48

4.2. LLVM-IR

• Static allocas become part of the fixed-size stack frame.
• Dynamic allocas require a dynamically-sized stack frame, which is less efficient

(use of a frame pointer is required) and can cause unbounded stack growth.

[Slide 122] LLVM-IR: getelementptr Examples

• %r = getelementptr i32, ptr %p, i64 3

i32 i32 i32 i32 i32 . . .

%p %r

Equivalent in C: &((int*) p)[3]

• %r = getelementptr {i16, i32}, ptr %p, i64 1, i32 1

i16 i16i32 i32

{i16, i32}

. . .

%p %r

Equivalent in C: &((struct {short _0; int _1;}*) p)[1]._1

• Also works with nested structs and arrays (and vectors)
• Pointer and array can be dynamic, struct indices must be constant

[Slide 123] LLVM-IR: undef and poison

• undef – unspecified value, compiler may choose any value
– %b = add i32 %a, i32 undef → i32 undef

– %c = and i32 %a, i32 undef → i32 %a

– %d = xor i32 %b, i32 %b → i32 undef

– br i1 undef, label %p, label %q → undefined behavior
• poison – result of erroneous operations

– Delay undefined behavior on illegal operation until actually relevant
– Allows to speculatively “execute” instructions in IR
– %d = shl i32 %b, i32 34 → i32 poison

[Slide 124] LLVM-IR: Intrinsics

• Not all operations provided as instructions
• Intrinsic functions: special functions with defined semantics

– Replaced during compilation, e.g., with instruction or lib call
• Benefit: no changes needed for parser/bitcode/... on addition
• Examples:

– declare iN @llvm.ctpop.iN(iN <src>)

– declare {iN, i1} @llvm.sadd.with.overflow.iN(iN %a, iN %b)

– memcpy, memset, sqrt, returnaddress, . . .

[Slide 125] LLVM-IR: Tools

• clang can emit LLVM-IR bitcode clang -O -emit-llvm -c test.c -o test.bc

49

4. LLVM-IR

• llvm-dis disassembles bitcode to textual LLVM-IR clang -O -emit-llvm -c
test.c -o - | llvm-dis

• llc compiles LLVM-IR (textual or bitcode) to assembly clang -O -emit-llvm -c
test.c -o - | llc clang -O -emit-llvm -c test.c -o - | llvm-dis | llc

Example Listings omitted – they would span several slides

Note: -emit-llvm emits the LLVM IR after optimizations. To get the IR before
optimizations, use -Xclang -disable-llvm-passes. The LLVM IR generated when
compiling with -O0 is different.

[Slide 126] LLVM-IR: Example

define <4 x float> @foo2(<4 x float> %0, <4 x float> %1) {
%3 = alloca <4 x float>, align 16
%4 = alloca <4 x float>, align 16
store <4 x float> %0, ptr %3, align 16
store <4 x float> %1, ptr %4, align 16
%5 = load <4 x float>, ptr %3, align 16
%6 = load <4 x float>, ptr %4, align 16
%7 = fadd <4 x float> %5, %6
ret <4 x float> %7

}

[Slide 127] LLVM-IR: Example

define i32 @foo3(i32 %0, i32 %1) {
%3 = tail call { i32, i1 } @llvm.smul.with.overflow.i32(i32 %0, i32 %1)
%4 = extractvalue { i32, i1 } %3, 1
%5 = extractvalue { i32, i1 } %3, 0
%6 = select i1 %4, i32 -2147483648, i32 %5
ret i32 %6

}

[Slide 128] LLVM-IR: Example

In-Class Exercise:

define i32 @sw(i32 %0) {
switch i32 %0, label %4 [
i32 4, label %5
i32 5, label %2
i32 8, label %3
i32 100, label %5

]
2: ; preds = %1
br label %5

3: ; preds = %1
br label %5

4: ; preds = %1
br label %5

5: ; preds = %1, %1, %4, %3, %2

50

4.3. API

%6 = phi i32 [%0, %4], [9, %3], [32, %2], [12, %1], [12, %1]
ret i32 %6

}

Solution on page 86.

[Slide 129] LLVM-IR: Example

In-Class Exercise:

@a = private unnamed_addr constant [7 x i32] [i32 12, i32 32, i32 12,
i32 12, i32 9, i32 12, i32 12], align 4

define dso_local i32 @f(i32 %0) {
%2 = add i32 %0, -4
%3 = icmp ult i32 %2, 7
br i1 %3, label %4, label %13

4: ; preds = %1
%5 = trunc i32 %2 to i8
%6 = lshr i8 83, %5
%7 = and i8 %6, 1
%8 = icmp eq i8 %7, 0
br i1 %8, label %13, label %9

9: ; preds = %4
%10 = sext i32 %2 to i64
%11 = getelementptr inbounds [7 x i32], ptr @a, i64 0, i64 %10
%12 = load i32, ptr %11, align 4
br label %13

13: ; preds = %1, %4, %9
%14 = phi i32 [%12, %9], [%0, %4], [%0, %1]
ret i32 %14

}

Solution on page 86.

4.3. API

[Slide 130] LLVM-IR API

• LLVM offers two APIs: C++ and C
– C++ is the full API, exposing nearly all internals
– C API is more limited, but more stable

• Nearly all major versions have breaking changes

• Some support for multi-threading:
– All modules/types/... associated with an LLVMContext
– Different contexts may be used in different threads

[Slide 131] LLVM-IR C++ API: Basic Example

#include <llvm/IR/IRBuilder.h>
int main(void) {
llvm::LLVMContext ctx;
auto modUP = std::make_unique<llvm::Module>("mod", ctx);

llvm::Type* i64 = llvm::Type::getInt64Ty(ctx);

51

4. LLVM-IR

llvm::FunctionType* fnTy = llvm::FunctionType::get(i64, {i64}, false);
llvm::Function* fn = llvm::Function::Create(fnTy,

llvm::GlobalValue::ExternalLinkage, "addOne", modUP.get());
llvm::BasicBlock* entryBB = llvm::BasicBlock::Create(ctx, "entry", fn);

llvm::IRBuilder<> irb(entryBB);
llvm::Value* add = irb.CreateAdd(fn->getArg(0), irb.getInt64(1));
irb.CreateRet(add);
modUP->print(llvm::outs(), nullptr);
return 0;

}

[Slide 132] LLVM-IR API: Almost Everything is a Value... (excerpt)

Value Argument
BasicBlock
User Constant ConstantData ConstantInt

ConstantPointerNull
UndefValue PoisonValue
. . .

ConstantExpr . . .
GlobalValue GlobalAlias

GlobalObject Function
GlobalVariable

Instruction PHINode
BranchInst
BinaryOperator
CallBase CallInst IntrinsicInst . . .
StoreInst
UnaryInstruction AllocaInst

CastInst
LoadInst
. . .

. . .

See LLVM Doxygena for a full graph.
ahttps://llvm.org/doxygen/classllvm_1_1Value.html

[Slide 133] LLVM-IR API: Programming Environment

• LLVM implements custom RTTI
– isa<>, cast<>, dyn_cast<>

• LLVM implements a multitude of specialized data structures
– E.g.: SmallVector<T, N> to keep N elements stack-allocated
– Custom vectors, sets, maps; see manual2

• Preferably uses ArrayRef, StringRef, Twine for references
• LLVM implements custom streams instead of std streams

– outs(), errs(), dbgs()

2https://www.llvm.org/docs/ProgrammersManual.html

52

https://llvm.org/doxygen/classllvm_1_1Value.html
https://www.llvm.org/docs/ProgrammersManual.html

4.3. API

Many of these data types are used for efficiency. Standard C++ RTTI is inefficient
while LLVM’s implementation is very flexible, fast, and has a low memory usage in
data structures. The sub-class type of the value is stored in an 8-bit integer.
SmallVector is preferred over std::vector not just because of the inline storage,

but also because (for non-char types) it only uses 32-bit integers for length/capacity
(lower memory usage, often sufficient) and grows more efficiently for trivially movable
data structures (realloc).
Twine is a lazily evaluated string. For example, when specifying Twine("foo")

+ 5, on-stack data structures are constructed to represent this sequence, but the
resulting string is constructed only when and if it is actually used. This also allows
constructing strings directly into target buffers.

Standard C++ streams are not just inefficient, implementations also tend to inject
global constructors in all files. Therefore, LLVM has its own stream implementation.
With raw_svector_ostream and raw_string_ostream, a raw_ostream can be used
to write into a SmallVector or std::string.

[Slide 134] LLVM and IR Design

• LLVM provides a decent general-purpose IR for compilers
• But: not ideal for all purposes

– High-level optimizations difficult, e.g. due to lost semantics
– Several low-level operations only exposed as intrinsics
– IR rather complex, high code complexity
– High compilation times, not very efficient data structures

• Thus: heavy trend towards custom IRs

[Slide 135] LLVM-IR – Summary

• LLVM is a modular compiler framework
• Extremely popular and high-quality compiler back-end
• Primarily provides optimizations and a code generator
• Main interface is the SSA-based LLVM-IR

– Easy to generate, friendly for writing front-ends/optimizations

[Slide 136] LLVM-IR – Questions

• What is the structure of an LLVM-IR module/function?
• Which LLVM-IR data types exist? How do they relate to the target architecture?
• How do semantically invalid operations in LLVM-IR behave?
• What is special about intrinsic functions?
• How to derive LLVM-IR from C code using Clang?

53

5. Analyses and Transformations

5.1. Motivation

[Slide 138] Program Transformation: Motivation

• “User code” is often not very efficient
• Also: no need to, compiler can (often?) optimize better

– More knowledge: e.g., data layout, constants after inlining, etc.
• Allows for more pragmatic/simple code
• Generating “better” IR code on first attempt is expensive

– What parts are actually used? How to find out?
• Transformation to “better” code must be done somewhere

• Optimization is a misnomer: we don’t know whether it improves code!
– Many transformations are driven by heuristics

• Many types of optimizations are well-known1

5.2. Dead Code Elimination

[Slide 139] Dead Block Elimination

• CFG not necessarily connected
• E.g., consequence of optimization

– Conditional branch → unconditional branch
• Removing dead blocks is trivial

1. DFS traversal of CFG from entry, mark visited blocks
2. Remove unmarked blocks

[Slide 140] Optimization Example 1

define i32 @fac(i32 %0) {
br label %for.header

for.header: ; preds = %for.body, %1
%a = phi i32 [1, %1], [%a.new, %for.body]
%b = phi i32 [0, %1], [%b.new, %for.body]
%i = phi i32 [0, %1], [%i.new, %for.body]
%cond = icmp sle i32 %i, %0

1FE Allen and J Cocke. A catalogue of optimizing transformations. 1971. url: https://www.clear.
rice.edu/comp512/Lectures/Papers/1971-allen-catalog.pdf.

55

https://www.clear.rice.edu/comp512/Lectures/Papers/1971-allen-catalog.pdf
https://www.clear.rice.edu/comp512/Lectures/Papers/1971-allen-catalog.pdf

5. Analyses and Transformations

br i1 %cond, label %for.body, label %exit
for.body: ; preds = %for.header
%a.new = mul i32 %a, %i
%b.new = add i32 %b, %i
%i.new = add i32 %i, 1
br label %for.header

exit: ; preds = %for.header
%absum = add i32 %a, %b
ret i32 %a

}

[Slide 141] Simple Dead Code Elimination (DCE)

• Look for trivially dead instructions
– No users or side-effects
– Calls might be removed

1. Add all instructions to work queue
2. While work queue not empty:

a) Check for deadness (zero users, no side-effects)
b) If dead, remove and add all operands to work queue

Warning: Don’t implement it this naively, this is inefficient

[Slide 142] Applying Simple DCE

define i32 @fac(i32 %0) {
eff.: cf br label %for.header

for.header: ; preds = %for.body, %1
users: 3 %a = phi i32 [1, %1], [%a.new, %for.body]
users: 2 %b = phi i32 [0, %1], [%b.new, %for.body]
users: 4 %i = phi i32 [0, %1], [%i.new, %for.body]
users: 1 %cond = icmp sle i32 %i, %0
eff.: cf br i1 %cond, label %for.body, label %exit

for.body: ; preds = %for.header
users: 1 %a.new = mul i32 %a, %i
users: 1 %b.new = add i32 %b, %i
users: 1 %i.new = add i32 %i, 1
eff.: cf br label %for.header

exit: ; preds = %for.header
users: 0 %absum = add i32 %a, %b
eff.: cf ret i32 %a

}

In this example, the instruction %abssum can be removed. This reduces the number
of users of %a and %b by 1. As no other instructions have a user count of 0 after this
change, the algorithm terminates.

[Slide 143] Dead Code Elimination

• Problem: unused value cycles

56

5.3. Sparse Conditional Constant Propagation

• Idea: find “value sinks” and mark all needed values as live unmarked values can be
removed

– Sink: instruction with side effects (e.g., store, control flow)
– Alternative formulation: assume instruction is dead unless proven otherwise

1. Only mark instrs. with side effects as live
2. Populate work list with newly added live instrs.
3. While work list not empty:

a) Mark dead operand instructions as live and add to work list
4. Remove instructions not marked as live

[Slide 144] Applying Liveness-based DCE

define i32 @fac(i32 %0) {
live br1 label %for.header
for.header: ; preds = %for.body, %1
live %a = phi i32 [1, %1], [%a.new, %for.body]

live %i = phi i32 [0, %1], [%i.new, %for.body]
live %cond = icmp sle i32 %i, %0
live br2 i1 %cond, label %for.body, label %exit
for.body: ; preds = %for.header
live %a.new = mul i32 %a, %i

live %i.new = add i32 %i, 1
live br3 label %for.header
exit: ; preds = %for.header

live ret i32 %a
}

Work list (stack)

This algorithm finds the dead value cycle pf %b from the previous example. (Refer to
the slide deck for the animated version.)

5.3. Sparse Conditional Constant Propagation

[Slide 145] Optimization Example 2

define i32 @trivial() {
entry:
br label %for.cond

for.cond:
%x = phi i32 [0, %entry], [%inc, %for.inc]
%cmp = icmp ugt i32 %x, 0
br i1 %cmp, label %for.inc, label %ret

for.inc:
%inc = add i32 %x, 1
br label %for.cond

ret:

57

5. Analyses and Transformations

ret i32 %x
}

[Slide 146] Sparse Conditional Constant Propagation2

• Constant folding and dead code elimination separately insufficient
• Idea: be optimistic about reachability and constantness

– Assume block is dead/value is constant unless proven othewise
– Ignore edges that are not proven as executable

• For every value: store lattice element
– Lattice: ⊤ (any value) > constant (single constant value) > ⊥ (dynamic)
– ⊤ ∧ x = x,⊥ ∧ x = ⊥, x ∧ y = (x if x = y else ⊥)

• For every edge: store executability
– ϕ-nodes: edges that are not (yet) marked executable get ⊤

[Slide 147] SCCP Algorithm

State:
• EdgeWorklist
• InstrWorklist
• EdgeExecutable

– Initialize false

• InstrLattice
– Initialize ⊤

• EdgeWorklist ← edge to entry block
• Get item from any work list; stop when empty
• Edge – if not yet visited, mark visited and:

– Visited block first time: visit all instrs (incl. ϕ)
– Otherwise: visit just ϕ-nodes

• Instr – if block is reachable: visit
• At end: replace instrs with const lattice values

[Slide 148] SCCP Algorithm II

visit
• ϕ-node: update lattice, meet of visited edge values
• Other instructions: try constant fold
• If lattice value changed:

– Add all users to instruction worklist
– Branch with constant/no condition: add selected edge to worklist
– Branch with ⊥: add all edges to worklist

2MN Wegman and FK Zadeck. “Constant propagation with conditional branches”. In: TOPLAS 13.2
(1991), pp. 181–210. url: https://dl.acm.org/doi/pdf/10.1145/103135.103136.

58

https://dl.acm.org/doi/pdf/10.1145/103135.103136

5.4. Simple Common Subexpression Elimination

[Slide 149]

In-Class Exercise:

define i32 @fn() {
entry:
br label %loop

loop:
%j2 = phi i32 [1, %entry], [%j4, %ifmerge]
%k2 = phi i32 [0, %entry], [%k4, %ifmerge]
%kcond = icmp slt i32 %k2, 100
br i1 %kcond, label %loopbody, label %ret

loopbody:
%jcond = icmp slt i32 %j2, 20
br i1 %jcond, label %then, label %else

then:
%k3 = add i32 %k2, 1
br label %ifmerge

else:
%k5 = add i32 %k2, 1
br label %ifmerge

ifmerge:
%j4 = phi i32 [1, %then], [%k2, %else]
%k4 = phi i32 [%k3, %then], [%k5, %else]
br label %loop

ret:
ret i32 %j2

}

Apply SCCP algorithm and fold constants. Then, remove dead instructions and
blocks.

In-Class Exercise:

Code attribution: Adapted from llvm/test/Transforms/SCCP/sccptest.ll from
the LLVM Project, licensed under Apache-2.0 WITH LLVM-Exception.

Solution on page 86.

[Slide 150] SCCP: Misc

• Strictly more powerful than seperate constant folding + DCE
• Runtime: O(#CFG-edges +#instr.-operands)

– Every CFG edge is processed at most once
– Every def–use relation is processed at most twice lattice can lower at most

twice (⊤ → const, const→ ⊥)
• Can also be used as inter-procedural optimization reaching into module-internal

functions

5.4. Simple Common Subexpression Elimination

[Slide 151] Optimization Example 3

define i32 @foo(i32 %0, ptr %1, ptr %2) {
%4 = zext i32 %0 to i64

59

5. Analyses and Transformations

%5 = getelementptr i32, ptr %1, i64 %4
%6 = load i32, ptr %5, align 4
%7 = zext i32 %0 to i64
%8 = getelementptr i32, ptr %2, i64 %7
%9 = load i32, ptr %8, align 4
%10 = add nsw i32 %6, %9
ret i32 %10

}

[Slide 152] Common Subexpression Elimination (CSE) – Attempt 1

• Idea: find/eliminate redundant computation of same value
• Keep track of previously seen values in hash map
• Iterate over all instructions

– If found in map, remove and replace references
– Otherwise add to map

• Easy, right?

This algorithm only works for chains of blocks, but not for merging control flow.
It is therefore rarely useful, see later.

[Slide 153] CSE Attempt 1 – Example 1

define i32 @foo(i32 %0, ptr %1, ptr %2) {
→ ht %4 = zext i32 %0 to i64
→ ht %5 = getelementptr i32, ptr %1, i64 %4
→ ht %6 = load i32, ptr %5, align 4
dup %4 %7 = zext i32 %0 to i64
→ ht %8 = getelementptr i32, ptr %2, i64 %7%4
→ ht %9 = load i32, ptr %8, align 4
→ ht %10 = add nsw i32 %6, %9
→ ht ret i32 %10

}

• Obsolete instr. can be killed immediately, or in a later DCE

[Slide 154] CSE Attempt 1 – Example 2

define i32 @square(i32 %a, i32 %b) {
entry:

→ ht %cmp = icmp slt i32 %a, %b
→ ht br i1 %cmp, label %if.then, label %if.end

if.then: ; preds = %entry
→ ht %add1 = add i32 %a, %b
→ ht br label %if.end

if.end: ; preds = %if.then, %entry
→ ht %condvar = phi i32 [%add1, %if.then], [%a, %entry]
dup %add1 %add2 = add i32 %a, %b
→ ht %res = add i32 %condvar, %add2%add1
→ ht ret i32 %res

}

60

5.5. Dominator Tree

Instruction does not dominate all uses! error: input module is broken!

5.5. Dominator Tree

[Slide 155] Domination

• Remember: CFG G = (N,E, s) with digraph (N,E) and entry s ∈ N
• Dominate: d dom n iff every path from s to n contains d

– Dominators of n: DOM(n) = {d|d dom n}
• Strictly dominate: d sdom n⇔ d dom n ∧ d ̸= n
• Immediate dominator: idom (n) = d : d sdom n ∧ ̸ ∃d′.d sdom d′ ∧ d′ sdom n

⇒ All strict dominators are always executed before the block
⇒ All values from dominators available/usable
⇒ All values not from dominators not usable

[Slide 156] Dominator Tree

• Tree of immediate dominators
• Allows to iterate over blocks in pre-order/post-order
• Answer a sdom b quickly

Control Flow Graph
a

b

c d

e

fg

Dominator Tree
a

b

c d

e

f

g

[Slide 157] Dominator Tree – Example

In-Class Exercise:

Construct the dominator tree for the following CFGs (entry at a):

61

5. Analyses and Transformations

a

b

c

d e

f

g h

a

b

c

d

e f

g

h

i

Solution on page 87.

[Slide 158] Dominator Tree: Construction

• Naive: inefficient (but reasonably simple)3

– For each block: find a path from the root – superset of dominators
– Remove last block on path and check for alternative path
– If no alternative path exists, last block is idom

• Lengauer–Tarjan: more efficient methods4

– Simple method in O(m log n); sophisticated method in O(m · α(m,n)) (α(m,n)

is the inverse Ackermann function, grows extremely slowly)

– Used in some compilers5

• Semi-NCA: O(n2), but lower constant factors6

Most notable, LLVM doesn’t use the Lengauer–Tarjan algorithm. Instead, they use
the Semi-NCA algorithm, which has O(n2) runtime, but lower constant factors and is
therefore substantially faster for certain (typical) inputsa.
aJ Kuderski. “Dominator Trees and incremental updates that transcend times”. In: LLVM

Dev Meeting. Oct. 2017. url: https://llvm.org/devmtg/2017- 10/slides/Kuderski-
Dominator_Trees.pdf.

[Slide 159] Dominator Tree: Implementation

• Per node store: idom, idom-children, DFS pre-order/post-order number
• Get immediate dominator: ...lookup idom
• Iterate over all dominators/dominated by: ...trivial

3ES Lowry and CW Medlock. “Object code optimization”. In: CACM 12.1 (1969), pp. 13–22. url:
https://dl.acm.org/doi/pdf/10.1145/362835.362838.

4T Lengauer and RE Tarjan. “A fast algorithm for finding dominators in a flowgraph”. In: TOPLAS 1.1
(1979), pp. 121–141. url: https://dl.acm.org/doi/pdf/10.1145/357062.357071

5Example: https://github.com/WebKit/WebKit/blob/aabfacb/Source/WTF/wtf/Dominators.h
6L Georgiadis. “Linear-Time Algorithms for Dominators and Related Problems”. PhD thesis. Princeton

University, Nov. 2005. url: https://www.cs.princeton.edu/techreports/2005/737.pdf

62

https://llvm.org/devmtg/2017-10/slides/Kuderski-Dominator_Trees.pdf
https://llvm.org/devmtg/2017-10/slides/Kuderski-Dominator_Trees.pdf
https://dl.acm.org/doi/pdf/10.1145/362835.362838
https://dl.acm.org/doi/pdf/10.1145/357062.357071
https://github.com/WebKit/WebKit/blob/aabfacb/Source/WTF/wtf/Dominators.h
https://www.cs.princeton.edu/techreports/2005/737.pdf

5.6. Common Subexpression Elimination

• Check whether a sdom b7

– a.preNum < b.preNum ∧ a.postNum > b.postNum
– After updates, numbers might be invalid: recompute or walk tree

• Problem: dominance of unreachable blocks ill-defined ⇝ special handling

5.6. Common Subexpression Elimination

[Slide 160] CSE Attempt 2

• Option 1:
– For identical instructions, store all
– Add dominance check before replacing
– Visit nodes in reverse post-order (i.e., topological order)

• Option 2 (Global Value Numbering):8

– Do a DFS over dominator tree
– Use scoped hashmap to track available values

Does this work? Yes.

[Slide 161] CSE: Hashing an Instruction (and Beyond)

• Needs hash function and “relaxed” equality
• Idea: combine opcode and operands/constants into hash value

– E.g. assign number to values (hence “value numbering”)
– Alternatively: use pointer or index for instruction result operands

• Canonicalize commutative operations
– Order operands deterministically, e.g., by number/address

• Identities: a+(b+c) vs. (a+b)+c

[Slide 162] More Complex Global Value Numbering

• Hash-based approach only catches trivially removable duplicates
• Alternative: partition values into congruence classes

– Congruent values are guaranteed to always have the same value
• Optimistic approach: values are congruent unless proven otherwise
• Pessimistic approach: values are not congruent unless proven
• Combinable with: reassociation, DCE, constant folding
• Rather complex, but can be highly beneficial9

7PF Dietz. “Maintaining order in a linked list”. In: STOC. 1982, pp. 122–127. url: https://dl.acm.
org/doi/pdf/10.1145/800070.802184.

8P Briggs, KD Cooper, and LT Simpson. Value numbering. Tech. rep. CRPC-TR94517-S. Rice University,
1997. url: https://www.cs.rice.edu/~keith/Promo/CRPC-TR94517.pdf.gz.

9K Gargi. “A sparse algorithm for predicated global value numbering”. In: PLDI. 2002, pp. 45–56.

63

https://dl.acm.org/doi/pdf/10.1145/800070.802184
https://dl.acm.org/doi/pdf/10.1145/800070.802184
https://www.cs.rice.edu/~keith/Promo/CRPC-TR94517.pdf.gz

5. Analyses and Transformations

5.7. Inlining

[Slide 163] Inlining

• Inlining: copy function body in place of the call
– Historically also referred to as “procedure integration”

• Benefits:
– More optimization opportunities: constant propagation, dead code elimination,

better register allocation, etc.
– Avoids call overhead: stack frame setup, register saving, etc.

• Inlining is crucial for performance in many programming languages
– “Zero-cost” abstractions typically rely on small functions
– Critical in e.g. C++/Rust; not too important for C

[Slide 164] Inlining: Decision

• First: determine whether function is inlinable

Not all functions are inlinable. For example, in LLVM, functions with computed
goto cannot be inlined, because basic blocks whose address was taken cannot be
duplicated. Another example functions compiled from different languages with
different exception handling mechanisms (the exception handling routine needs
language-specific metadata, which in general cannot be merged; see later).

• Easy way: delegate to programmer (__attribute__((always_inline)))

This attribute is, in fact, considered as somewhat problematic, because it is not
just a very strong inlining hint, but guarantees inlining even with optimizations
disabled. Therefore, even at -O0, compilers must execute an optimization pass
to specifically handle functions annotated with this attribute.

• Otherwise: very difficult problem
• Problem 1: ordering

– Inlining big a() into b() might make b() too big to inline but inlining b()
into c() might provide more opportunities

• Problem 2: cost model and thresholds
– Estimate cost of inlining, e.g. additional code size, more branches
– Estimate optimization gains and hotness
– Some attempts to use machine learning here

Typical heuristics are based on somewhat arbitrary thresholds, which are typically
higher for higher optimization levels. There’re also approaches to use machine learning

64

5.8. Loop Analysis

to guide inlining decisionsa.
aM Trofin et al. MLGO: a Machine Learning Guided Compiler Optimizations Framework. 2021.

arXiv: 2101.04808 [cs.PL]. url: https://arxiv.org/abs/2101.04808.

[Slide 165] Inlining Transformation

• Copy original function in place of the call
– Split basic block containing function call
– Needs map of old to new value
– Constant fold/simplify instructions along the way
– Replace constant conditional branches ⇝ fewer copying

• Replace returns with branches and ϕ-node to/at continuation point
• Move static alloca to beginning
• Dynamic alloca: save/restore stack pointer

– Prevent unbounded stack growth in loops
– LLVM provides stacksave/stackrestore intrinsics

• Exceptions may need special treatment

5.8. Loop Analysis

[Slide 166] What is a Loop?

void func() {
while (a()) {
if (b()) {
d();
break;

}
c();

}
e();

}

a

b

c d

e

Blocks executed
more than once • Loops in source code

̸= loops in CFG
• d is not part of loop:

executed at most once
⇝ Need algorithm to find

loops in CFG

[Slide 167] Loops

• Loop: maximal SCC L with at least one internal edge10 (strongly connected component

(SCC): all blocks reachable from each other)

– Entry: block with an edge from outside of L
– Header h: first entry found (might be ambiguous)

• Loop nested in L: loop in subgraph L \ {h}

10P Havlak. “Nesting of reducible and irreducible loops”. In: TOPLAS 19.4 (1997), pp. 557–567. url:
https://dl.acm.org/doi/pdf/10.1145/262004.262005.

65

https://arxiv.org/abs/2101.04808
https://arxiv.org/abs/2101.04808
https://dl.acm.org/doi/pdf/10.1145/262004.262005

5. Analyses and Transformations

Entry +
Header

a

b

cd Note: {b, c} alone is
no loop, not maximal

a

b

c d

e

Entry +
Header

a

b

d

cEntry +
Header

Entry

[Slide 168] Natural Loops

• Natural Loop: loop with single entry
⇒ Header is unique
⇒ Header dominates all block
⇒ Loop is reducible

• Backedge: edge from block to header
• Predecessor: block with edge into loop
• Preheader: unique predecessor

Formal Definition
Loop L is reducible iff ∃h ∈ L . ∀n ∈ L . h dom n

CFG is reducible iff all loops are reducible

preheader

header

exiting

exit

latch

backedge backedge

[Slide 169] Finding Natural Loops

• Modified version11 of Tarjan’s algorithm12

• Iterate over dominator tree in post order
• Each block: find predecessors dominated by the block

– None ⇝ no loop header, continue
– Any ⇝ loop header, these edges must be backedges

• Walk through predecessors until reaching header again
– All blocks on the way must be part of the loop body
– Might encounter nested loops, update loop parent

11G Ramalingam. “Identifying loops in almost linear time”. In: TOPLAS 21.2 (1999), pp. 175–188. url:
https://dl.acm.org/doi/pdf/10.1145/316686.316687.

12R Tarjan. “Testing flow graph reducibility”. In: STOC. 1973, pp. 96–107. url: https://dl.acm.org/
doi/pdf/10.1145/800125.804040.

66

https://dl.acm.org/doi/pdf/10.1145/316686.316687
https://dl.acm.org/doi/pdf/10.1145/800125.804040
https://dl.acm.org/doi/pdf/10.1145/800125.804040

5.9. Loop Optimizations

[Slide 170] Finding Natural Loops: Example

Control Flow Graph

a

b

c

d

e

f

g

Dominator Tree

a

b

c

d

e

f

g

Loop Info

Loop A : {c}
header: c; parent: D
Loop B : {f,g}
header: f; parent: C
Loop C : {b,f,g}
header: b; parent: D
Loop D : {a,b,c,d,e,f,g}
header: a; parent: NULL

[Slide 171] Loop Analysis – Example

In-Class Exercise:

Apply the previous algorithm to find loops in the following CFGs (entry at a):

a

b

c

d e

f

g h

a

b

c

d

e f

g

h

i

Solution on page 87.

5.9. Loop Optimizations

[Slide 172] Loop Invariant Code Motion (LICM)

• Analyze loops, iterate over loop tree in post-order
– I.e., visit inner loops first

↑ Hoist:13 iterate over blocks of loop in reverse post-order

13https://github.com/bytecodealliance/wasmtime/blob/bd6fe11/cranelift/codegen/src/licm.rs

67

https://github.com/bytecodealliance/wasmtime/blob/bd6fe11/cranelift/codegen/src/licm.rs

5. Analyses and Transformations

– For each movable inst., check for loop-defined operands
– If not, move to preheader (create one, if not existent)
– Otherwise, add inst. to set of values defined inside loop

↓ Sink: Iterate over blocks of loop in post-order
– For each movable inst., check for users inside loop
– If none, move to unique exit (if existent)

[Slide 173] Loop Unswitch

• Hoist loop-invariant conditionals outside loop

After loop-invariant code is moved outside of the loop, it is trivial to determine
whether a condition is loop-invariant.

while (...)
if (loopInvariantCond)
A

else
B

C

→

if (loopInvariantCond)
while (...)
A
C

else
while (...)
B
C

• Might duplicate parts of the loop ⇝ needs heuristics
• Might lead to exponential code size increase

For n independently unswitchable conditions, fully unswitching the loop leads to 2n

loops.

[Slide 174] Loop Rotation

• Rotate loop condition to bottom
– Essentially, convert while{} to if{do{}while}

This reduces the number of branches per loop trip from 2 to 1. Additionally, if the
loop is known to have a trip count of at least 1, the initial condition can be eliminated.

define void @src() {
; ...

loopheader:
%iv = phi ...
%cond = ...
br i1 %cond, %body, %exit

body:
; ...
br %loopheader

exit: ; ...
}

→

define void @tgt() {
; ...
%cond1 = ...
br i1 %cond1, %body, %exit

body:
%iv = phi ...
; ...
%cond2 = ...
br i1 %cond2, %body, %exit

exit: ; ...
}

68

5.9. Loop Optimizations

[Slide 175] Loop Strength Reduction

• Loop induction variables (e.g., loop counters) are often multiplied
– E.g., for array indexing

• Strength reduction: replace “strong” multiply with “weak” addition
• Needs: analysis of loop induction variables and their recurrence
• Rewrite through replaced/extra loop induction variable

– E.g., replace scaled index operation with pointer addition
• Information about ISA addressing modes beneficial

[Slide 176] Analyses and Transformations – Summary

• Program Transformation critical for performance improvement
• Code not necessarily better
• Analyses are important to drive transformations

– Dominator tree, loop detection, value liveness
• Important optimizations

– Dead code elimination, sparse conditional constant propagation common sub-
expression elimination, loop-invariant code motion, loop unswitching, loop
rotation, loop strength reduction

[Slide 177] Analyses and Transformations – Questions

• Why is “optimization” a misleading name for a transformation?
• How to find unused code sections in a function’s CFG?
• Why is a liveness-based DCE better than a simple, user-based DCE?
• Why is SCCP more powerful than separate DCE/constant prop.?
• What is a dominator tree useful for?
• What is the difference between an irreducible and a natural loop?
• How to find natural loops in a CFG?
• How does the algorithm handle irreducible loops?
• Why is sinking a loop-invariant inst. harder than hoisting?

69

6. Optimizations in LLVM

6.1. Overview

[Slide 179] Optimizations in LLVM

• Analysis: collect information about IR
– Examples: loop info, alias analysis, branch probabilities
– Results are cached, re-run when outdated

• Pass: perform transformation on module/CGSCC/function/loop
– Examples: instruction combine, simplify CFG, global value numbering, scalar

replacement of aggregates (SROA; promotes alloca to SSA)
– Input and output IR must be valid
– Can use results of analyses; invalidates (some) analyses on changes

• Pass Manager: execute series of passes of same granularity
– Otherwise, use adaptor: createFunctionToLoopPassAdaptor

[Slide 180] LLVM Optimization Pipeline (Simplified)1

Module Pipeline (buildPerModuleDefaultPipeline): two parts
Module Simplification Pipeline (buildModuleSimplificationPipeline)
• Early function simplification (SimplifyCFG, SROA, EarlyCSE)
• CGSCC (post-order) (repeated after devirtualization):

– Inliner
– Function Simplification Pipeline (buildFunctionSimplificationPipeline)

∗ SROA, SimplifyCFG, InstCombine, Reassociate, GVN, DCE, LICM
∗ Most passes are here

Inside a call graph strongly-connected component (CGSCC), functions are
simplified in post-order (i.e., leaf functions first). The inliner therefore makes
decisions based on the simplified callee.
Other acronyms: SROA is Scalable Replacement Of Aggregates; GVN is Global
Value Numbering (elimination of common expressions); DCE is Dead Code
Elimination; LICM is Loop Invariant Code Motion (hoisting instructions that
compute the same value inside the loop out of the loop).

Module Optimization Pipeline (buildModuleOptimizationPipeline)

1See llvm/lib/Passes/PassBuilderPipelines.cpp for full details.

71

6. Optimizations in LLVM

• Primarily hard-to-reverse loop optimizations that are not simplifications
• E.g. vectorization, loop unrolling, loop distribution

6.2. Canonicalization

[Slide 181] SSA Construction: Mem2Reg and SROA

• Front-ends typically emit allocas for variables
– Easier; also simplifies debugging and debug information

Variables stored in allocas have a single location, which greatly simplifies
debug information, as the variable does not need to be tracked through
registers. Additionally, as the variable is loaded on every use, modifications
of the variable in the debugger are possible and in most cases immediately
propagated.

• Mem2reg: promote alloca to SSA values/phis
– Condition: only load/store, no address taken
– Essentially just SSA construction

In code, this pass is called PromotePass.

• SROA: scalar replacement of aggregate
– Separate structure fields into separate variables
– Also promote them to SSA, subsumes mem2reg

SROA is run multiple times in the pipeline, as further simplifications might enable
the promotion of more variables (e.g., when escapes of the variable are eliminated).

[Slide 182] Simplification

• Many operations can be expressed in various ways
– E.g.: sub i32 %x, 1, add i32 %x, -1, add i32 -1, %x

• Problem: always need to consider all equivalent cases
⇒ Canonicalize IR: one single preferred form

– Single instructions: e.g. operand order
– Instruction sequences: e.g. series of additions, useless PHIs
– CFG: e.g. branches, loop layout

• E.g.: constants go to the right, constant sub is add, loops with fixed trip count
turned into for (i = 0; i != 25; ++i), . . .

Canonicalization is one of LLVM’s core approaches to program optimizations. In
addition to simplifying the implementation of pattern matches (passes can assume the
IR to be canonical form, although they must work correctly even on non-canonical
IR), the canonicalizations also simplify and thereby optimize the program.

72

6.2. Canonicalization

In contrast to other optimizations, canonicalizations are not based on heuristics
and should always work in the same direction (i.e., one pass should not undo the
transformation of a previous pass). Inlining is a notable exception of a heuristics-based
pass run during the simplification pipeline.

Note that some canonicalization done on the IR are undone in the back-end.
Examples include tail duplication (duplicating the function returns) and moving
certain instructions back into loops (e.g., to reduce register pressure).

Unfortunately, there is no documentation on the canonical form of IR; it is defined
implicitly by what the passes (currently) produce.

[Slide 183] InstCombine

• Main instruction canonicalization and simplification pass
• Includes many arithmetic-logical patterns, folding of PHIs, ...
• Implementation:

– Add instructions to work list
∗ Trivially dead/constant instructions eliminated immediately
∗ Blocks traversed in reverse post-order

– Patterns applied to instructions; on match, replace all uses
– Changed instruction re-enqueues all users to work list

The block ordering in and adding instructions in the order as they appear inside
the basic block causes definitions to be visited before their uses (apart from
ϕ-nodes). Therefore, adding users to the work list frequently has no effect, as it
already contains all users.

• Historically: fixed-point iteration, now just one iter. per run

It turned out that most combines are performed in the first run. Very often,
the second iteration would not change the IR but would still need to inspect it,
causing easily avoidable compile time costs.
As the pass is executed multiple times throughout the default pass pipeline,
combines missed in the first iteration are then simply performed in a later run
of the pass.

• Covers many patterns, many patterns missing, >50kLOC C++

[Slide 184] IR Pattern Matching

• IR patterns are typically DAG matches on def–use graph
• Typically implemented via helper functions2

// Excerpt from InstCombinerImpl::visitAdd

// (add (xor A, B) (and A, B)) --> (or A, B)

2llvm/IR/PatternMatch.h

73

6. Optimizations in LLVM

// (add (and A, B) (xor A, B)) --> (or A, B)
if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),

m_c_And(m_Deferred(A), m_Deferred(B)))))
return BinaryOperator::CreateOr(A, B);

[Slide 185] LLVM: Use Tracking

• Values track their users
llvm::Value* v = /* ... */;
for (llvm::User* u : v->users())
if (auto i = llvm::dyn_cast<llvm::Instruction>(u))
// ...

• Allows for easy replacement:
– inst->replaceAllUsesWith(replVal);

[Slide 186] LLVM IR Implementation: Value/User

llvm::Value Type
Type*

UseList
Use*

subclassID
unsigned

flags. . .
unsigned

llvm::User
intrusive operands
fixed at allocation

Value Fields of
subclasses

Op 0
Use

Op 1
Use

. . .

llvm::User
hung-off operands
dynamic number

Value Fields of
subclasses

Operands
Use*

Op 0
Use

Op 1
Use

Op 2
Use

PHINode additionally stores n BasicBlock* after the operands, but aren’t users of blocks.

Every LLVM Instruction is a separate heap allocation. As the number of operands
is typically known when constructing the instruction, they are allocated before the
instruction data structure (this is implemented by User).

It can happen that the number of operands increases beyond the allocated storage,
for example, when a PHINode gets more operands than initially expected. In such
cases, the operand list gets hung off into a separate allocation.

As a special case, PHINode needs to store the associated BasicBlocks in addition
to the merged values. The blocks are stored after the operands, but are not operands
themselves. Therefore, PHINode operands are always hung off.

74

6.2. Canonicalization

[Slide 187] LLVM IR Implementation: Use

Used Value Type
Type*

UseList
Use*

. . .

Operand (llvm::Use)

User 1 Type
Type*

UseList
Use*

. . . Value
Value*

Next
Use*

Prev
Use**

Parent
User*

. . .

null

null

User 2 Type
Type*

UseList
Use*

. . . Value
Value*

Next
Use*

Prev
Use**

Parent
User*

. . .

nullnull

The use list is a doubly-linked list. Starting from Value::UseList, one can find all
used by following the Use::Next pointer. The Use::Prev pointer does not point to
the previous Use, but the previous Use::Next pointer or the Value::UseList — this
way, unlinking does not need to distinguish the special case of the beginning of the
use list.

A Use also has a pointer to the actual Value, so that when inspecting an operand
one can actually find the operand itself.

There is also a Parent pointer, which points to the User which owns the operand:
when iterating over the use list, this is the only way to find out which instruction
(User) uses the value.

In sum, an LLVM-IR operand is quite large, using 32 bytes on a 64-bit system.
In addition to every instruction being a separate heap allocation and every operand
update requires updating the use list (less data locality), the IR data structures are
(in absolute terms) not very efficient — despite being fairly optimized for the use
cases they serve.

[Slide 188] LLVM IR Implementation: Instructions/Blocks

• Instruction and BasicBlock have pointers to parent and next/prev
– Linked list updated on changes and used for iteration
– Instructions have cached order (integer) for fast “comes before”

• BasicBlock successors: blocks used by terminator
• BasicBlock predecessors:

– Iterate over users of block – these are terminators (and blockaddress)
– Ignore non-terminators, parent of using terminator is predecessor
– Same predecessor might be duplicated (⇝ getUniquePredecessor())

• Finding first non-ϕ requires iterating over ϕ-nodes

75

6. Optimizations in LLVM

[Slide 189] Valid Transforms?

In-Class Exercise:

Which of these transformations src→tgt are valid?

define float @src1(float %x) {
%a = fadd float %x, 0.0
ret float %a

}
define i1 @src2(i8 %x) {
%xm1 = add i8 %x, -1
%y = xor i8 %x, %xm1
%r = icmp ule i8 %x, %y
ret i1 %r

}
define i8 @src3(i8 %x) {
%div = sdiv i8 %x, 4
ret i8 %div

}

define float @tgt1(float %x) {
ret float %x

}

define i1 @tgt2(i8 %x) {
%ctpop = call i8 @llvm.ctpop(i8 %x)
%r = icmp ult i8 %ctpop, 2
ret i1 %r

}

define i8 @tgt3(i8 %x) {
%div = ashr i8 %x, 2
ret i8 %div

}
Solution on page 87.

[Slide 190] Alive2

• Seemingly correct transformations might be wrong in edge cases
• Unexpected transformations can be correct
⇒ Prove correctness of transformations
• Alive23: translation validation tool for LLVM-IR
• Convert LLVM-IR into SMT formulas
• Proves that target is a refinement of source function

Alive2 transforms LLVM-IR functions, including memory accesses and control
flow, into SMT formulas and uses the Z3 SMT solver to prove that the target
function is indeed a refinement of the source function, i.e., that the target is
more defined than the source. There is limited support for undef values (which
are not tracked per-bit but just per-value) and loops (which are completely
unrolled for a fixed number of iterations).

• InstCombine transformations require Alive2 proofs nowadays4

[Slide 191] Value Tracking

• Many transformations benefit from value ranges and known bits
– E.g., fold trunc+shift into smaller shift if shift amount is known small

• computeKnownBits: recursively collect information from instrs
– Arithmetic-logical instrs, casts, several intrinsics, etc.

3NP Lopes et al. “Alive2: bounded translation validation for LLVM”. in: PLDI. 2021, pp. 65–79. url:
users.cs.utah.edu/~regehr/alive2-pldi21.pdf.

4Random Example: https://alive2.llvm.org/ce/z/xe_vb2

76

users.cs.utah.edu/~regehr/alive2-pldi21.pdf
https://alive2.llvm.org/ce/z/xe_vb2

6.3. Flags

• Bitwise instructions easier to reason about ⇝ preferred canonicalization
– E.g. (1 << X) - 1 → (-1 << X) ˆ -1
– E.g. sext(X) → zext(X) if X is known non-negative

• Also use knowledge from front-end (but how encoded?)

6.3. Flags

[Slide 192] Attribute, Flags, Assume

• Paramter/return attributes: constrain value ranges
– range(from, to), nonnull, noundef, . . .
– Values outside of the range are poison

• Instruction flags: encode additional knowledge about operation
– add/sub/mul/trunc nsw/nuw: no signed/unsigned wrap

This can be used, e.g., to restrict the value range or get more precise
information about loop trip counts, memory access offsets.

– or disjoint: combination of disjoint bits

This permits back-ends to replace the or with an add, which can be folded
into other operations (e.g., lea on x86).

– udiv/sdiv/lshr/ashr exact: divisor multiple of dividend

Permit replacing division with shift and implies that the bits that are
shifted out are zero.

– getelementptr nuw/nusw/inbounds: no wrap/stays inside allocation

Bounds information primarily improves alias analysis: if two base pointers
are known to refer to different allocations, they will never be the same
after two inbounds computations.

– zext/uitofp nneg: operand is non-negative

When a value is known to be non-negative, the instruction is converted
into the canonical unsigned form. However, some targets might want to
undo this transformation in the back-end, e.g., because sign-extension is
cheaper (RISC-V) or the floating-point conversion is cheaper for signed
integers (x86), but it might be difficult to re-prove the non-negativeness
after other transformations. This flag retains this information and permits
relaxing the operations later on.

– icmp samesign: operands have the same sign

77

6. Optimizations in LLVM

When both operands are known to have the same sign, icmp is canonicalized
into the unsigned comparison predicate. However, when there are multiple
comparisons of the same value with some being signed while others are
unsigned, it is more difficult to the aggregate information. This flag retains
this information and indicates that the signed and unsigned variants of the
comparison predicate can be used interchangeably.

– Violation is poison

[Slide 193] Assume

• Intrinsic llvm.assume(i1)
• Conditional immediate undefined behavior if argument is false
• Requires extra instruction for condition ⇝ might be problematic

– Instructions use other values, etc. ⇝ prevent optimizations
• Also supports operand bundles for nonnull, align, separate_storage

Here’s an example which demonstrate the use of separate_storage assumptions:
struct Buffer {
char *data;
void write(char c) {
*data++ = c;

}
};
void writeLE(unsigned x, Buffer &buf) {
buf.write(x);
buf.write(x >> 8);
buf.write(x >> 16);
buf.write(x >> 24);

}

The resulting machine code will repeatedly load the data pointer from buf, because
data might alias with buf, because in C/C++ char* can alias with everything. When
exposing the information that inside write() the pointers this and this->data do
not alias, the four stores can get combined.
// Inside write:
__builtin_assume_separate_storage(this, data);
// LLVM IR: call void @llvm.assume(i1 true) ["separate_storage"(ptr %this, ptr %data)]

Full example: https://godbolt.org/z/TMGrTco9T

[Slide 194] Valid Transforms?

In-Class Exercise:

Which of these transformations src→tgt are valid?

78

https://godbolt.org/z/TMGrTco9T

6.3. Flags

define i8 @src1(i8 %x) {
%div = udiv exact i8 1, %x
ret i8 %div

}
define i1 @src2(i8 %x, i8 %y) {
%cmp = icmp sge i8 %x, %y
%cmpeq = icmp samesign eq i8 %x, 127
%r = select i1 %cmp, i1 %cmpeq, i1 false
ret i1 %r

}
define i8 @src3(i8 %x, i8 %y, i8 %z) {
%xy = add nsw i8 %x, %y
%xyz = add nsw i8 %xy, %z
ret i8 %xyz

}

define i8 @tgt1(i8 %x) {
ret i8 1

}

define i1 @tgt2(i8 %x, i8 %y) {
%cmpeq = icmp samesign eq i8 %x, 127
ret i1 %cmpeq

}

define i8 @tgt3(i8 %x, i8 %y, i8 %z) {
%xz = add nsw i8 %x, %z
%xyz = add nsw i8 %xz, %y
ret i8 %xyz

}
Solution on page 87.

[Slide 195] Fast-Math Flags

• Floating-point arithmetic typically follows IEEE 754
– Except for NaN, which is more relaxed

The behavior of floating-point instructions w.r.t. NaN varies strongly
between different targets (e.g., taking one of the operands, returning a
canonical NaN, converting signalling NaN to quiet NaN). Therefore, the
semantics are specified rather generic for LLVM-IR.

• Implication: almost impossible to optimize
– non-associative, NaNs, infinity, negative zero, no reciprocals, no contraction
– Transformations can result in vastly different results!

• Additionally: floating-point exceptions
– Typically ignored, but some users might be interested

• Value/operation flags to permit transformations locally
• strictfp function attribute allows more control through constrained floating-point

intrinsics

[Slide 196] Branch Weights

• Annotation of branch with expected probabilities
– Sources: programmer annotations, execution profiles

• Added as metadata to branch instructions
• Can compute block execution frequencies

define i32 @f(i32 %x) {
; ...
%cmp = icmp eq i32 %x, 0
br i1 %cmp, label %then, label %else, !prof !5
; ...

}

!5 = !{!"branch_weights", !"expected", i32 1, i32 2000}

79

6. Optimizations in LLVM

6.4. Inter-Procedural Optimizations

[Slide 197] Function Argument Optimizations

• Inferring argument attributes
• Eliminate dead arguments

– Optimistic liveness analysis of arguments (assume dead)
– Create new function with fewer arguments

• Promote pointer arguments to value arguments
– Esp. relevant for C++ pass-by-reference
– Only possible when both caller/callee CPU features match

[Slide 198] Other Inter-Procedural Optimizations

• Inlining / Outlining
• Function Specialization
• Optimization of global variables

– Marking as constant, delete dead variables, attributes, etc.
• Inter-procedural SCCP
• Devirtualization / call-target speculation
• Hot-Cold Splitting
• . . .

[Slide 199] Optimization Remarks

• Understanding optimization decisions can be difficult
– Complex code base, abstraction, heuristics, ...

• Optimization remarks: passes can report information
– Inlining decisions: provide cost values/thresholds for decisions
– Others: GVN, LICM, FastISel

• Output also provided as YAML or a binary format for analysis
• Lots of verbose output, hard to identify important points
• Clang: -Rpass=<pass> -Rpass-analysis=<pass> -Rpass-missed=<pass>

[Slide 200] Other Aspects not Covered Here

• Analyses: alias analysis, MemorySSA, Scalar Evolution (SCEV), target-specific
analyses/heuristics, . . .

• Optimizations: various loop transformations (distribute, fuse, flatten, polyhedral
optimizations), value propagation, vectorization, reassociation, . . .

• Loop-Closed SSA canonical form
– Values defined inside loop only used in loop or in ϕ-node in exit
– Simplifies tracking uses of values defined in loops

80

6.5. Running and Writing LLVM Passes

6.5. Running and Writing LLVM Passes

[Slide 201] Using LLVM (New) Pass Manager

void optimize(llvm::Function* fn) {
llvm::PassBuilder pb;
llvm::LoopAnalysisManager lam{};
llvm::FunctionAnalysisManager fam{};
llvm::CGSCCAnalysisManager cgam{};
llvm::ModuleAnalysisManager mam{};
pb.registerModuleAnalyses(mam);
pb.registerCGSCCAnalyses(cgam);
pb.registerFunctionAnalyses(fam);
pb.registerLoopAnalyses(lam);
pb.crossRegisterProxies(lam, fam, cgam, mam);

llvm::FunctionPassManager fpm{};
fpm.addPass(llvm::DCEPass());
fpm.addPass(llvm::createFunctionToLoopPassAdaptor(llvm::LoopRotatePass()));
fpm.run(*fn, fam);

}

[Slide 202] Writing a Pass for LLVM’s New PM – Part 1

#include "llvm/IR/PassManager.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Passes/PassPlugin.h"

class TestPass : public llvm::PassInfoMixin<TestPass> {
public:
llvm::PreservedAnalyses run(llvm::Function &F,

llvm::FunctionAnalysisManager &AM) {
// Do some magic
llvm::DominatorTree *DT = &AM.getResult<llvm::DominatorTreeAnalysis>(F);
// ...
llvm::errs() << F.getName() << "\n";
return llvm::PreservedAnalyses::all();

}
};
// ...

[Slide 203] Writing a Pass for LLVM’s New PM – Part 2

extern "C" ::llvm::PassPluginLibraryInfo LLVM_ATTRIBUTE_WEAK
llvmGetPassPluginInfo() {
return { LLVM_PLUGIN_API_VERSION, "TestPass", "v1",
[] (llvm::PassBuilder &PB) {
PB.registerPipelineParsingCallback(
[] (llvm::StringRef Name, llvm::FunctionPassManager &FPM,

llvm::ArrayRef<llvm::PassBuilder::PipelineElement>) {
if (Name == "testpass") {
FPM.addPass(TestPass());
return true;

}
return false;

81

6. Optimizations in LLVM

});
} };

}
c++ -shared -o testpass.so testpass.cc -lLLVM -fPIC

opt -S -load-pass-plugin=$PWD/testpass.so -passes=testpass input.ll

[Slide 204] Optimizations in LLVM – Summary

• LLVM provides a wide range of analyses and optimizations
• Optimizations organized in flexibly composeable passes
• Simplification centered around canonicalization
• Much knowledge inferred from assumptions (and poison/UB)
• SSA simplifies many transforms through explicit def–use chains
• Only few non-simplifying transformation passes

[Slide 205] Optimizations in LLVM – Questions

• Why are some passes executed multiple times during optimization?
• How does the simplification pipeline relate to inlining?
• What is the key benefit of canonicalizing the IR?
• How does LLVM’s replaceAllUsesWith work?
• What is the benefit of instr. flags like nsw?
• Why are floating-point optimizations problematic?
• How is C++ [[likely]] represented in LLVM-IR?

82

A. Exercise Solutions

[Slide 22]

Some suggestions:
• Sequences of +/-/</>
• [-] → set zero
• [>] → find next zero (memchr)
• [->+>+«] → add to next two siblings, set zero
• [->+++<] → add 3 times to next sibling, set zero
• . . .

[Slide 28]

Indirect/direct threading and computed goto/tail calls are orthogonal.
• Computed goto is a non-standard feature. A lot of state can be kept in registers

across different bytecode operations, this is done automatically by the compiler.
The possibility of indirect jumps inside the function may prevent some compiler
optimizations.

• Tail calls (largely) rely on standard features and the code is typically more maintain-
able (e.g., operations can be implemented in separate functions). Some state can be
kept in registers across operations, but this has to be implemented manually; the
usable number of preservable registers is defined by the calling convention and is
architecture-dependent. Non-standard calling convention (e.g., ghccc) can be used
to increase this limit. Compilers cannot perform optimization across the different
functions.

• Indirect threading permits a small opcode (e.g., one byte as in this example), which
leads to higher code density and therefore increased data locality.

• Direct threading avoids the indirection to the opcode handler at the cost of larger
bytecode (in the example, an operation grows from 2 to 16 bytes). On modern
out-of-order CPUs, avoiding the indirection might not lead to significant performance
differences.

[Slide 33]

As a simple approach, check the array boundaries at every pointer move, when reaching
bounds, re-allocate to larger buffer and copy the elements. As pointer moves occur often,
the bounds checks are rather expensive.

To improve efficiency, it is possible to use virtual memory by padding the buffer with
known-unmapped pages (guard pages) and intercepting accesses to these pages (e.g.,
through a signal handler). On an access, the buffer can grow and/or be moved (e.g.,

83

A. Exercise Solutions

through mremap). Care must be taken to ensure that the guard pages are large enough
(the length of the program should be sufficient).

[Slide 52]

Example for input: a = 3 * 2 + 1;

Rec. Depth 1 Rec. Depth 2 Rec. Depth 3

minPrec 1
lhs a
op (prec/assoc) = (2/r)

minPrec 1 2
lhs a 3
op (prec/assoc) = (2/r) * (12/l)

minPrec 1 2 13
lhs a 3 2
op (prec/assoc) = (2/r) * (12/l) + (11/l)

minPrec 1 2
lhs a 3*2
op (prec/assoc) = (2/r) + (11/l)

minPrec 1 2 12
lhs a 3*2 1
op (prec/assoc) = (2/r) + (11/l) ; (0/–)

minPrec 1 2
lhs a (3*2)+1
op (prec/assoc) = (2/r) ; (0/–)

minPrec 1
lhs a=((3*2)+1)
op (prec/assoc) ; (0/–)

[Slide 60]

There are two ways of implementing a scoped hash table:

• Chain of hash maps: Scope = (Map[Name → Type] names, Scope parent). This
is, however, very slow for deeply nested scopes, as all hash maps of the parent scopes
must be queried. Hash map lookups are fairly expensive.

• Hash map of lists: Map[Name → List[Tuple[Depth, Type]]]. For every identifier,
the type at a given scope nesting depth is stored. Invalidation can be implemented
with an epoch counter for every depth. The downside is that this hash map can grow
very large, as entries are never removed.

84

[Slide 83]

Control flow graph for fn1:
a

b

c+d

e

g

f

Control flow graph for fn2:
a

c

d

e

f

g

h

b

[Slide 99]

phis(v1, v2) {
entry:

v3 = mul v1, v2 // a * b
v4 = mul v2, v2 // b * b
v5 = cmpgt v1, v4 // a > b * b
br v5, ifthen, ifelse

ifthen:
br header

header:
phi1 = phi(ifthen: v1, body: v7) // a
phi2 = phi(ifthen: 1, body: phi2) // c
v6 = cmpgt phi1, 0 // a > 0
br v6, body, cont

body:
v7 = sub phi1, phi2 // a - c
br header

cont:
br ret

ifelse:
v8 = mul v2, v2 // b * b
br ret

ret:
phi3 = phi(cont: phi1, ifelse: v8) // a
ret phi3

}

swap(v1, v2, v3) {
entry:

br header
header:

phi1 = phi(entry: v3, body: v5) // c
// Note: all phi nodes execute concurrently. Therefore, these two phi nodes swap a and b.
phi2 = phi(entry: v1, body: phi3) // a
phi3 = phi(entry: v2, body: phi2) // b
v4 = cmpgt phi1, 0 // a > 0
br v4, body, cont

body:

85

A. Exercise Solutions

v5 = sub phi1, 1 // c - 1
br header

cont:
ret phi2

}

[Slide 128]

int sw(int x) {
switch (x) {
case 4:
case 100: return 12;
case 5: return 32;
case 8: return 9;
default: return x;
}

}

[Slide 129]

int sw(int x) {
switch (x) {
case 4:
case 10: return 12;
case 5: return 32;
case 8: return 9;
default: return x;
}

}

[Slide 149]

The algorithm never visits the %else block and therefore can prove that %j4 and thus %j2
are always the constant 1.
define i32 @fn() {
entry:
br label %loop

loop:
%k2 = phi i32 [0, %entry], [%k3, %ifmerge]
%kcond = icmp slt i32 %k2, 100
br i1 %kcond, label %loopbody, label %ret

loopbody:
br label %then

then:
%k3 = add i32 %k2, 1
br label %ifmerge

ifmerge:
br label %loop

ret:
ret i32 1

}

86

[Slide 157]

a

b c

d e f

g

h

a

b

c d

e f g

h

i

[Slide 171]

The first CFG has no reducible loop, so the algorithm as written will not find any loops.
The second CFG contains two reducible loops:
• Loop 1: d (header), e, f, g
• Loop 2: b (header), c, d, e, f, g, h

[Slide 189]

You can use Alive2 as validation tool: https://alive2.llvm.org/ce/z/_PuqaK
1. The neutral element of floating-point addition is −0.0; adding +0.0 to −0.0 results

in +0.0, which is not a generally correct transformation.
2. This transformation, although non-obvious, is correct.
3. sdiv rounds towards zero, but ashr, so for e.g. −3, src3 returns 0 while tgt3 return
−1.

[Slide 194]

You can use Alive2 as validation tool: https://alive2.llvm.org/ce/z/HgpRmK
1. Correct: udiv exact results in poison when 1 is not a multiple of the parameter,

i.e., when the parameter is not 1. Thus, always returning 1 makes the target function
more defined than the source function.

2. Not correct: %cmpeq is poison if %x is negative. The transformation would be correct
if the samesign flag was dropped.

3. Not correct: integer addition is associative, but the nsw flag needs to be dropped.

87

https://alive2.llvm.org/ce/z/_PuqaK
https://alive2.llvm.org/ce/z/HgpRmK

Bibliography

[AC71] FE Allen and J Cocke. A catalogue of optimizing transformations. 1971. url:
https://www.clear.rice.edu/comp512/Lectures/Papers/1971-allen-
catalog.pdf.

[BCS97] P Briggs, KD Cooper, and LT Simpson. Value numbering. Tech. rep. CRPC-
TR94517-S. Rice University, 1997. url: https://www.cs.rice.edu/~keith/
Promo/CRPC-TR94517.pdf.gz.

[Bel73] JR Bell. “Threaded Code”. In: CACM 16.6 (1973), pp. 370–372. url: https:
//dl.acm.org/doi/pdf/10.1145/362248.362270.

[Bra+13] M Braun et al. “Simple and efficient construction of static single assignment
form”. In: CC. 2013, pp. 102–122. url: https : / / link . springer . com /
content/pdf/10.1007/978-3-642-37051-9_6.pdf.

[Cyt+91] R Cytron et al. “Efficiently computing static single assignment form and
the control dependence graph”. In: TOPLAS 13.4 (1991), pp. 451–490. url:
https://dl.acm.org/doi/pdf/10.1145/115372.115320.

[Die82] PF Dietz. “Maintaining order in a linked list”. In: STOC. 1982, pp. 122–127.
url: https://dl.acm.org/doi/pdf/10.1145/800070.802184.

[EG03] MA Ertl and D Gregg. “The structure and performance of efficient interpreters”.
In: JILP 5 (2003), pp. 1–25. url: http://www.jilp.org/vol5/v5paper12.
pdf.

[Gar02] K Gargi. “A sparse algorithm for predicated global value numbering”. In: PLDI.
2002, pp. 45–56.

[Geo05] L Georgiadis. “Linear-Time Algorithms for Dominators and Related Prob-
lems”. PhD thesis. Princeton University, Nov. 2005. url: https://www.cs.
princeton.edu/techreports/2005/737.pdf.

[Hab13] J Haberman. Parsing C++ is literally undecidable. 2013. url: https://blog.
reverberate.org/2013/08/parsing-c-is-literally-undecidable.html.

[Hav97] P Havlak. “Nesting of reducible and irreducible loops”. In: TOPLAS 19.4 (1997),
pp. 557–567. url: https://dl.acm.org/doi/pdf/10.1145/262004.262005.

[Kud17] J Kuderski. “Dominator Trees and incremental updates that transcend times”.
In: LLVM Dev Meeting. Oct. 2017. url: https://llvm.org/devmtg/2017-
10/slides/Kuderski-Dominator_Trees.pdf.

[LA04] C Lattner and V Adve. “LLVM: A compilation framework for lifelong program
analysis & transformation”. In: CGO. 2004, pp. 75–86. url: http://www.llvm.
org/pubs/2004-01-30-CGO-LLVM.pdf.

89

https://www.clear.rice.edu/comp512/Lectures/Papers/1971-allen-catalog.pdf
https://www.clear.rice.edu/comp512/Lectures/Papers/1971-allen-catalog.pdf
https://www.cs.rice.edu/~keith/Promo/CRPC-TR94517.pdf.gz
https://www.cs.rice.edu/~keith/Promo/CRPC-TR94517.pdf.gz
https://dl.acm.org/doi/pdf/10.1145/362248.362270
https://dl.acm.org/doi/pdf/10.1145/362248.362270
https://link.springer.com/content/pdf/10.1007/978-3-642-37051-9_6.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-37051-9_6.pdf
https://dl.acm.org/doi/pdf/10.1145/115372.115320
https://dl.acm.org/doi/pdf/10.1145/800070.802184
http://www.jilp.org/vol5/v5paper12.pdf
http://www.jilp.org/vol5/v5paper12.pdf
https://www.cs.princeton.edu/techreports/2005/737.pdf
https://www.cs.princeton.edu/techreports/2005/737.pdf
https://blog.reverberate.org/2013/08/parsing-c-is-literally-undecidable.html
https://blog.reverberate.org/2013/08/parsing-c-is-literally-undecidable.html
https://dl.acm.org/doi/pdf/10.1145/262004.262005
https://llvm.org/devmtg/2017-10/slides/Kuderski-Dominator_Trees.pdf
https://llvm.org/devmtg/2017-10/slides/Kuderski-Dominator_Trees.pdf
http://www.llvm.org/pubs/2004-01-30-CGO-LLVM.pdf
http://www.llvm.org/pubs/2004-01-30-CGO-LLVM.pdf

Bibliography

[LM69] ES Lowry and CW Medlock. “Object code optimization”. In: CACM 12.1 (1969),
pp. 13–22. url: https://dl.acm.org/doi/pdf/10.1145/362835.362838.

[Lop+21] NP Lopes et al. “Alive2: bounded translation validation for LLVM”. In: PLDI.
2021, pp. 65–79. url: users.cs.utah.edu/~regehr/alive2-pldi21.pdf.

[LT79] T Lengauer and RE Tarjan. “A fast algorithm for finding dominators in a
flowgraph”. In: TOPLAS 1.1 (1979), pp. 121–141. url: https://dl.acm.org/
doi/pdf/10.1145/357062.357071.

[Ram99] G Ramalingam. “Identifying loops in almost linear time”. In: TOPLAS 21.2
(1999), pp. 175–188. url: https://dl.acm.org/doi/pdf/10.1145/316686.
316687.

[Tar73] R Tarjan. “Testing flow graph reducibility”. In: STOC. 1973, pp. 96–107. url:
https://dl.acm.org/doi/pdf/10.1145/800125.804040.

[Tro+21] M Trofin et al. MLGO: a Machine Learning Guided Compiler Optimizations
Framework. 2021. arXiv: 2101.04808 [cs.PL]. url: https://arxiv.org/
abs/2101.04808.

[Vel03] TL Veldhuizen. C++ templates are Turing complete. 2003. url: http://
port70.net/~nsz/c/c%2B%2B/turing.pdf.

[WZ91] MN Wegman and FK Zadeck. “Constant propagation with conditional branches”.
In: TOPLAS 13.2 (1991), pp. 181–210. url: https://dl.acm.org/doi/pdf/
10.1145/103135.103136.

90

https://dl.acm.org/doi/pdf/10.1145/362835.362838
users.cs.utah.edu/~regehr/alive2-pldi21.pdf
https://dl.acm.org/doi/pdf/10.1145/357062.357071
https://dl.acm.org/doi/pdf/10.1145/357062.357071
https://dl.acm.org/doi/pdf/10.1145/316686.316687
https://dl.acm.org/doi/pdf/10.1145/316686.316687
https://dl.acm.org/doi/pdf/10.1145/800125.804040
https://arxiv.org/abs/2101.04808
https://arxiv.org/abs/2101.04808
https://arxiv.org/abs/2101.04808
http://port70.net/~nsz/c/c%2B%2B/turing.pdf
http://port70.net/~nsz/c/c%2B%2B/turing.pdf
https://dl.acm.org/doi/pdf/10.1145/103135.103136
https://dl.acm.org/doi/pdf/10.1145/103135.103136

	Introduction and Interpretation
	Organization
	Overview
	High-Level Structure of Compilers
	Interpretation
	Context of Compilation

	Compiler Front-end
	Lexing
	Parsing
	Semantic Analysis
	Miscellaneous

	Intermediate Representations
	Motivation
	Control Flow Graph
	Other Graph IRs
	Linear IRs
	Single Static Assignment
	IR Design

	LLVM-IR
	Overview
	LLVM-IR
	API

	Analyses and Transformations
	Motivation
	Dead Code Elimination
	Sparse Conditional Constant Propagation
	Simple Common Subexpression Elimination
	Dominator Tree
	Common Subexpression Elimination
	Inlining
	Loop Analysis
	Loop Optimizations

	Optimizations in LLVM
	Overview
	Canonicalization
	Flags
	Inter-Procedural Optimizations
	Running and Writing LLVM Passes

	Exercise Solutions

