Concepts of C++ Programming

Lecture 14: Larger Projects

Alexis Engelke

Chair of Data Science and Engineering (125)
School of Computation, Information, and Technology
Technical University of Munich

Winter 2024/25

503

Parallelism in C++

» Writing correct parallel code is hard
» Writing efficient parallel code is extremely hard

» Writing efficient parallel C++ requires understanding of hardware
» Especially: atomic operations and memory ordering

~ Be especially careful when writing parallel code

504

Libraries and Executables

Executables

» Compiled code that can be
executed on a certain OS

» Can depend on other libraries
» Can be executed directly

» Code cannot be reused elsewhere

Libraries

» Compiled code that can be reused
in libraries or executables

» Can depend on other libraries
» Cannot be executed on their own
» Can be static/shared library

505

Separating Libraries and Executables

» Usually advisable to separate executables from core functionality
» Executables: front-end for library functionality

> Keeps interaction logic separate (e.g., |/O, parsing) from core functionality
» Library functionality can be reused in other programs

» E.g., unit tests, other executable, etc.

= Put libraries in separate directories with separate CMakeLists.txt
» Use CMake's add_subdirectory; also eases future modularization

506

Libraries: Include Directories

» Usually, library include path should contain prefix
» E.g., for library foo: #include "foo/..."
» Requires suitable directory layout

mylib/
+-- CMakelLists.txt
+-- include/
+-- mylib/
+-- Module.hpp
+-- Printer.hpp
+-- src/
+-- Module.cpp
+-- Printer.cpp

507

Static Libraries

v

v

Static library: archive of object files
Dependencies resolved at link-time

Typical extensions: .a (Windows: .1ib)

During linking, static libraries are copied into executable

At runtime, no dependency on the library exists

No indirections, no compatibility issues

Larger file size due to copying, need recompile if lib changes

508

Shared Libraries

vy

Shared library: collection of linked object files
Dependencies resolved at program startup
Typical extensions: .so (Windows: .d11)

During loading, system needs to search for libraries
At runtime, library is loaded into memory just once
» All programs that use the library share the same code

Smaller size, lower memory consumption, can exchange compatible versions

Slower due to additional runtime indirection, compatibility is hard

509

Shared Libraries: ABI Compatibility

» Application Binary Interface: interface between two compiled programs

» Includes structure layouts, argument/return types, enum values, . ..
» C++: vtable layout, mangled names, ...
» Also be careful when using the preprocessor

» Unintended ABI breaks can happen easily in C++

» Substitution of shared library requires compatible ABI

» ABI-incompatible versions often have different so-names
» Otherwise: might lead to subtle problems

510

Header-Only Libraries

|

Some libraries only consist of header files
» Example: only templated types
Some people put everything in header files regardless
» Primarily to simplify downstream adoption (no build system to integrate)

Possibly easier to integrate

Like static libraries; and longer compilation times

511

Libraries in CMake

add_library(my_libA STATIC
src/A.cpp
src/B.cpp
)
-
add_library(my_libB SHARED
src/C.cpp
src/D.cpp
Y# -
add_library(my_1ibC INTERFACE) # no source files

512

Libraries in CMake

» Include directory of libraries/executables needs to be set

target_include_directories(target PUBLIC|PRIVATE dirs...

» Public: add to include path for the target and all its dependents
» Private: add to include path just for the target

» Specify dependencies between target:
target_link_libraries(target PUBLIC|PRIVATE 1libs...)
» Adds dependencies: takes care of include paths and linker flags
» Public: add dependency to the target and all its dependents
» Private: add dependency just to the target

513

Third-Party Libraries

» Often, reinventing the wheel is not a good idea
» Reusing existing third-party libraries can save substantial effort

» However: be aware of the general downsides of dependencies

» If possible: don't bundle dependencies

» Many libraries can be installed through a package manager

» Use CMake's find_package (<PackageName> [version] [REQUIRED])

» If no Find*.cmake is provided: find_library(<VAR> name [pathl path2
D

» Alternatively: submodules with CMake add_subdirectory

514

Interfacing with C
» C headers often surrounded by extern "C" {...}

» Changes language linkage to C for external declarations (= no name
mangling)

//--- my-c-1lib.h

#ifdef __cplusplus

extern "C" {
#endif

// Usual C header content
#ifdef __cplusplus

T

#endif

» If C header doesn’t include wrappers: wrap #include

Other Build Systems

» Meson (e.g., GNOME, QEMU)
» Automake/Autoconf (e.g., GCC)
» SCons

> Bazel (e.g., Google)

» GN (e.g., Chromium)

516

Unified Builds

+
|

Unified build: concatenate multiple source files into one compilation unit

Faster build times: less redundant parsing of headers
Enables more optimizations between . cpp files
Longer incremental build times

Possible correctness issues on naming collisions

517

Other Build Options

» Link-Time Optimization (LTO): Cross-CU Optimizations
» Object files don't contain machine code, but internal compiler representation
» Only at link time, everything gets compiled

» Profile-Guided Optimization (PGO):
» First build with instrumentation to track taken branches etc.
» Run application on typical load, collect profile
» Second build that uses the profile for further optimizations
» Can lead to substantial speedups in practice

518

Build Tools for Developers

» Pre-Compiled Headers (PCH): precompile headers to improve build times
» CMake: target_precompile_headers

» C4++420 Modules'>®
» Module consists of multiple translation units, can import modules, can export
declarations
> Alternative to header files in certain situations
» Faster compilation: exported definitions are compiled into binary format
» Implementation still not ready, thus rarely used up to this point

159https ://en.cppreference.com/w/cpp/language/modules

519

https://en.cppreference.com/w/cpp/language/modules

Where to go from here?

» Advanced Concepts of Programming Languages

» Covers memory model and C++ class implementation in detail
» Compiler Construction 1

» Covers implementation of compiler front-ends
» Code Generation

» Covers implementation of compiler back-ends

520

Thanks to...

» Michael Freitag, Moritz Sichert, and Maximilian Rieger
for the lab course slides “Systems Programming in C++"

» Tobias Lasser for his adaption of the slides

» The various authors of cppreference

» Florian Drescher and Mateusz Gienieczko for the exercises

~and of course to YOU

for participating in this coursel

522

	Larger Projects
	Libraries
	Interfacing with C
	Miscellaneous

