Concepts of C++ Programming

Lecture 12: Inheritance

Alexis Engelke

Chair of Data Science and Engineering (125)
School of Computation, Information, and Technology
Technical University of Munich

Winter 2024/25

427

Object-Oriented Programming

Concepts of object-oriented programming:

» Data abstraction/encapsulation
~ Classes in C++

» Inheritance

~ Class derivation in C++
» Derived classes inherit the members of the base class

» Dynamic Binding (Polymorphism)
~» Virtual functions in C4++
» Derived classes can override methods of base classes
» By default, C++ inheritance is non-polymorphic

428

Derived Classes

» Class may be derived from one or more base classes

~ Inheritance hierarchy
» Syntax: class class-name : base-specifier-list

» Base specifiers: public/protected/private; virtual (optional)

struct Base {

int a;

+

struct DerivedA : public Base {
int b;

};

struct DerivedB : private Base, public DerivedA {
int c;

};

429

Constructors

» Constructors of derived classes also construct base classes

1. Direct base classes are initialized in left-to-right order
2. Non-static data members are initialized in declaration order
3. Constructor body is executed

» Base classes default-initialized unless specified otherwise
» Delegating constructor syntax: Derived() : Base(argl, arg2) {}

430

Constructors: Example

struct Base {
Base() { std::println("Base()"); }
Base(int) { std::println("Base(int)"); }
+;
struct Derived : public Base {
Derived() { std::println("Derived()"); }
Derived (int a, int) : Base(a) {
std: :println("Derived(int, int)"); }
+;
int main() {
Derived a;
Derived b{12, 34};

Output:

Base ()

Derived()
Base(int)
Derived(int, int)

431

Copy Constructors

A\ Quiz: What is the output of the program?

#include <print>
struct A {
A { std::println("A"); }
A(const A%) { std::println("a"); }
s
struct B : A {
B() { std::println("B"); }
B(const B&) { std::println("b"); }

};
int main() {

B b1, b2(bl);
+

A. (compile error) B. (unspecified) C. ABAB D. ABAb E. ABab

Destructors

» Destructors are executed in the opposite order as constructors

(O Quiz: What is the output of the program?

#include <print>

struct A { "AQ) { std::print("A"); } };

struct B { "B() { std::print("B"); } };

struct D : A, B { "D { std::print("D"); } };
int main() { D 4; }

A. (unspecified) B. ABD C. BAD D. DAB E. DBA

433

Constructors: Multiple Inheritance

% Quiz: What is the output of the program?

#include <print>

struct A { AQ) { std::print("A"); } };

struct B : A { BO { std::print("B"); } };
struct C : A { CO { std::print("C"); } };
struct D : B, C { DO { std::print("D"); } };
int main() { D 4; }

A. (compile error) B. (unspecified) ~ C. ABCD

D. ABACD

E. BACD

434

Unqualified Name Lookup®*’

» Names can be defined multiple times in inheritance hierarchy
» Unqualified (no ::) lookup algorithm decides which name to choose
» Approximation: declarations in derived classes hide names from base classes

struct A { void aQ); };

struct B : public A { void a(); void b() { aQ; /* B::a() */ } };
struct C : public B {

void c1() { a(); /* B::a() */ }

void ¢2(0) { A::a(); /* A::a() */ } // qualified lookup

};

147https ://en.cppreference.com/w/cpp/language/unqualified_lookup

435

https://en.cppreference.com/w/cpp/language/unqualified_lookup

Unqualified Name Lookup: Diamond Inheritance

struct
struct
struct

struct
void
void

};

A { void aQ); };
Bl : public A { };
B2 : public A { };

C : public B1, public B2 {
c1() { a(); /* ERROR: ambiguous, a() present in Bl and B2 */ }
c2() { Bil::a(); /* OK %/ }

436

Object Representation

» Base classes are stored as subobjects of the derived class

#include <cstddef>
struct A {
int& ail;
char a2;
}s
struct B {
short b;
};
struct C : public A, public B {
int c;
};
static_assert(offsetof (C, al) == 0);
static_assert(offsetof (C, a2) == 8);
static_assert(offsetof(C, b) == 10);
static_assert(offsetof(C, c) == 12);

437

Inheritance Modes: public

» public inheritance: public base members become public derived members
protected base members become protected derived members

» Default when derived class declared as struct

» Typically used to model subtyping/is-a relationship
» Pointers/references of derived should be usable when base class is expected
» Derived class should maintain invariants of base class
» Derived class should not strengthen preconditions of overridden members
» Derived class should not weaken postconditions of overridden members

438

Inheritance Modes: private

» private inheritance: public/protected base members become private
derived members

» Default when derived class declared as class

» Derived class can be used as base class only in derived class

» Sometimes useful

> Mixins (e.g., special storage management methods)

439

Inheritance Modes: protected

> protected inheritance: public/protected base members become protected
derived members

» Derived class can be used as base class in all further derived classes

» Rarely useful

» “Controlled polymorphism™: inheritance should be shared with subclasses

440

(Non-)Polymorphic Inheritance

(O Quiz: What is problematic about this code?

#include <vector>
struct Base { int a; };
struct Derived : Base { int b; Derived(int a, int b) : Base{a}, b(b) {} };
void foo(std::vector<Base>& v) {
v.push_back(Derived(1, 2));
}

A. Compile error: cannot convert Derived to Base.
B. The vector only stores Base; the value for b is discarded.

C. The vector stores Derived, but it consumes two entries.

D. Nothing, the vector now contains a Derived as last element.

441

(Non-)Polymorphic Inheritance

JAN

Quiz: What is the exit code of this program?

struct A { int compute() { return 5; } };
struct B : public A {

e
int
int

A

B
C
D

int compute() { return A::compute() + 10; }

callCompute (A& a) { return a.compute(); }

main() { B b; return callCompute(b); }
. Compile error: A::compute — attempt to call as static member
. Compile error: cannot pass B as A&
. Program always exits with code 5

. Program always exits with code 15

442

virtual Function Specifier'#?

» virtual enables dynamic dispatch for a function

= Allows function to be overridden in derived classes
» A class with at least one virtual function is polymorphic
» Overriding function can be annotated with override (see later)

» Calling a virtual function through pointer/reference of base class

invokes behavior defined in derived class

» Suppressed when using qualified name lookup for function call

149https ://en.cppreference.com/w/cpp/language/virtual

443

https://en.cppreference.com/w/cpp/language/virtual

virtual: Example

#include <print>
struct Base {
virtual void foo() { std::println("Base::foo()"); }
}
struct Derived : Base {
void foo() override { std::println("Derived::foo()"); }
};
int main() {
Base b;
Derived d;
Base& br = b;
Base& dr = d;
d.foo(); // prints Derived::foo()
dr.foo(); // prints Derived::foo()
d.Base::foo(); // prints Base::foo()
dr.Base::foo(); // prints Base::foo()
br.foo(); // prints Base::foo()

444

Overriding Functions

A function overrides a virtual base class function if:
» Same name, cv-qualifiers, ref-qualifiers, and
» Same parameter type list (but not the return type)

If conditions met:
» Function is also virtual and can be overridden in derived classes

» Return type must be same or covariant
» E.g., virtual Base* m(); can be overriden by Derived* m();

Otherwise: function might hide base class function

445

Overriding Functions: Example

struct Base {
virtual void bar();
virtual void foo();
};
struct Derived : public Base {
void bar(); // Overrides Base::bar()
void foo(int baz); // Hides Base::foo()
};
int main() {
Derived d;
Base& b = d;
d.foo(); // ERROR: lookup finds only Derived::foo(int)
b.foo(); // invokes Base::foo();

3

446

override Specifier!®®

» override: specify that function actually overrides a virtual function
» Useful to avoid bugs where function in derived class hides base class function

struct Base {
virtual void foo(int i);
virtual void bar();

};

struct Derived : public Base {
void foo(float i) override; // ERROR: no override, different parameter types
void bar() const override; // ERROR: no override, different cv-qualifier

};

15°https ://en.cppreference.com/w/cpp/language/override 447

https://en.cppreference.com/w/cpp/language/override

Final Overrider

» Final overrider: function that gets executed on virtual call
» Typically the overrider in the most derived class

» Can be more complex with multiple inheritance

Exception:
» During construction/destruction: behaves as if no more-derived classes exist
» While constructing the base class, the derived class doesn't yet exist

~» Care must be taken when using virtual functions in these cases

448

final Specifier

» final functions: cannot be overridden

» final classes: cannot be inherited from

struct Base { virtual void foo() final; };
struct Derived : Base {

void foo() override; // ERROR
}
struct Base final { virtual void foo(); };
struct Derived : Base { // ERROR

void foo() override;

}

449

Destructors and Inheritance
A Quiz: What is the output of this program?

#include <memory>
#include <print>
struct A { "AQ) { std::print("A"); } };
struct B : public A { "B { std::print("B"); } };
int main() {
B b;
std: :unique_ptr<A> a = std::make_unique();

}

Compile error: cannot assign unique_ptr to unique_ptr<A>
ABA

BAA

ABAB
BABA

moUonw>

450

Destructors and Inheritance

» Derived objects can be deleted through pointer to base class
» Undefined behavior unless destructor is virtual

= Destructor in base class should be public and virtual;
or: should be protected and non-virtual;
or: you know what you are doing

#include <memory>
#include <print>
struct A { virtual "AQ {} };
struct B : public A { };
int main() {
Ax a = new BQ);
delete a; // 0K
}

451

Abstract Classes®?

» Class which cannot be instantiated, but used as a base class
» Any class with a pure virtual function is abstract

» Pure virtual function: virtual declaration ending with = 0;
» Pure virtual function can still be defined out-of-line

struct Base {
virtual void foo() = 0; // pure virtual
};
struct Derived : Base {
void foo() override;
};
int main() {
Base b; // ERROR: Base is abstract
Derived d; // OK

Base& dr = d; // OK: pointers/references/smart pointers/etc. to abstract class

dr.foo(); // calls Derived::foo()
}

151pttps://en.cppreference. con/w/cpp/language/abstract_class

452

https://en.cppreference.com/w/cpp/language/abstract_class

Pure Virtual Destructor

» Destructor can be marked as pure virtual
» Useful when class shall be abstract, but no suitable functions exists

» Out-of-line definition must be provided

struct Base {
virtual ~“Base() = 0;
};
Base::"Base() {}
int main() {
Base b; // ERROR: Base is abstract
}

453

Calling Pure Virtual Functions

A Quiz: What is the problem with this code?

struct A {
virtual “"A(Q) { cleanup(O); }
virtual void cleanup() = 0;
};
struct B : A {
void cleanup() override {}

I8
int main() { B b; }

A. Compile error: cannot call pure virtual method in base class

B. Undefined behavior: calling pure virtual function in constructor/destructor
C. Semantic problem: B::cleanup doesn't get called, instead nothing happens
D. No problem: B::cleanup() gets called

454

Virtual Base Classes

» virtual base class: contained only once in the derived class,
even if it occurs multiple times in the inheritance DAG

» Changes rules for unqualified name lookup

» Advice: try to avoid multiple inheritance

struct A {int a;};

struct Bl : virtual A {};

struct B2 : virtual A {};

struct C : B1l, B2 {};

int getA(C& c) { return c.a; /* 0K, only one a in C */ }

455

dynami c_cast!®?

» Convert pointers/references to classes in inheritance hierarchy
» Syntax: dynamic_cast<new-type>(expression)
> new-type can be pointer or reference to class type

v

Most common use case: checked/safe downcast

» Runtime check whether new-type is actually a base of the type of
expression

v

Failure: nullptr (pointers)/exception (references)
» Requires runtime type information (enabled by default)

» Other use cases: see reference

152https ://en.cppreference.com/w/cpp/language/dynamic_cast

456

https://en.cppreference.com/w/cpp/language/dynamic_cast

dynamic_cast: Example

struct A {
virtual “A() = default;
};
struct B : A {
void foo() const;
3
struct C : A {
void bar() const;
};
void baz(const A* aptr) {
if (const B* bptr = dynamic_cast<const Bx*>(aptr)) {
bptr->foo();
} else if (const C* cptr = dynamic_cast<const C*>(aptr)) {
cptr->bar();
}
}

457

Implementation of Virtual Functions

» Vtable: table of function pointers
to final overrider for every class

» Vtable pointer stored at beginning
of every object

» Function invocation: load vtable,
load fn pointer, do indirect call

struct Base {
virtual void foo();
virtual void bar();
};
struct Derived : Base {
void foo() override;
};

int main() { Base b; Derived d; }

Code Segment

Base::foo(): vtable for Base:
| Instructions... |<— Base::foo() j
Base::bar(): Base::bar()
| Instructions... | vtable for Derived:ﬁ
Derived::foo(): Derived::foo()
| Instructions... | Base::bar()
Stack

Derived d:

| vtable pointer F—j

Base b:

| vtable pointer

458

Implementation of dynamic_cast

» Vtable contains pointer to data structure that describes type
» Type checks tend to be rather expensive = noticable performance impact

» Alternative: type enum and static_cast

struct Base { void foo(Basex b) {
enum class Type { Base, Derived, 1}; switch (b->type) {
Type type; case Base::Type:
// use Base
Base() : type(Type::Base) {} break;
Base(Type type) : type(type) {} case Base::Derived: {
auto* d = static_cast<Derived*>(Db);
virtual “Base(); // use Derived
}; break;
struct Derived : Base { }

Derived() : Base(Type::Derived) {} }
}; }

459

Polymorphism: Recommendations

» If performance doesn’t matter: whatever

» Generally avoid dynamic_cast, use type enum and static cast
» Runtime type information (RTTI) is big, cast is much more expensive

» Avoid virtual function calls where performance matters

» Indirection is very expensive, can be very noticeable when invoked frequently
» When important it is often possible and recommendable to avoid these

460

Compile-Time Polymorphism

» How to avoid virtual function calls? Templates

» Curiously Recurring Template Pattern (CRTP):13
base class takes derived class as template parameter

template <class Derived> struct Base {
Derived* derived() { return static_cast<Derived*>(this); }
int foo() { return derived()->bar(); }
int bar() { return 12; }

protected:
Base() = default; // prohibit creation of Base objects
};
struct MyImpl : public Base<MyImpl> {
int bar() { return 42; }
};
int main() { return MyImpl().foo(); } // returns 42

153https ://en.cppreference.com/w/cpp/language/crtp

461

https://en.cppreference.com/w/cpp/language/crtp

Deducing this

» C++23 introduces explicitly object member functions
» Type of this specified explicitly; this unusable in function body

struct Base {
int foo(this auto&& self) { return self.bar(); }
int bar() { return 12; }

protected:
Base() = default; // prohibit creation of Base objects
3
struct MyImpl : public Base {
int bar() { return 42; }
};
int main() { return MyImpl().foo(); } // returns 42

462

CRTP Compared to Virtual Functions

+

No runtime overhead of virtual function calls

Base class can call into functions of derived class

Definitions (generally) need to go into header files
Less flexibility
Cannot have container of polymorphic objects

P> l.e., no std::vector<std::unique_ptr<Base>>

463

Mixins
» Mixin: compose functionality from multiple classes

template <class D> struct Greeter {
D* derived() { return static_cast<D*>(this); }
void greet() {
std: :println("Hello, I’m {}!", derived()->name());
}
};
struct Person : Greeter<Person> {
std::string_view n;
std::string_view name() const { return n; }
}s
int main() {
Person p{.n = "foo"};
p-greet();
}

464

Inheritance — Summary

VvV VVyVYVYYVYY

C++ supports very flexible inheritance of classes

Classes can have zero, one, or more base classes

Base classes can be inherited public/protected/private

By default, inheritance is non-polymorphic

virtual functions enable overriding and dynamic polymorphism
Polymorphism needs care for implementing constructors/destructors
dynamic_cast allows dynamic type checking and casting
Templates allow implementing static polymorphism at compile-time

Dynamic polymorphism often has considerable runtime overhead

465

Inheritance — Questions

vVvyvVvyVvyVvyYVYyYvVvyy

In which order are constructors/destructors of base classes executed?
How does inheritance change the object representation of classes?
What is an advantage of non-polymorphic inheritance?

What is a disadvantage of non-polymorphic inheritance?

Why is using the override specifier highly recommendable?

How are virtual functions conceptually implemented?

Why should destructors of base classes often be virtual?

How to use CRTP for compile-time polymorphism?

466

	Inheritance
	Non-Polymorphic Inheritance
	Inheritance Modes
	Polymorphic Inheritance
	Type Conversions
	Implementation of Polymorphism
	Compile-Time Polymorphism

