
427

Concepts of C++ Programming
Lecture 12: Inheritance

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology

Technical University of Munich

Winter 2024/25



428

Object-Oriented Programming

Concepts of object-oriented programming:

▶ Data abstraction/encapsulation
⇝ Classes in C++

▶ Inheritance
⇝ Class derivation in C++
▶ Derived classes inherit the members of the base class

▶ Dynamic Binding (Polymorphism)
⇝ Virtual functions in C++
▶ Derived classes can override methods of base classes
▶ By default, C++ inheritance is non-polymorphic



429

Derived Classes

▶ Class may be derived from one or more base classes
⇝ Inheritance hierarchy

▶ Syntax: class class-name : base-specifier-list
▶ Base specifiers: public/protected/private; virtual (optional)

struct Base {
int a;

};
struct DerivedA : public Base {

int b;
};
struct DerivedB : private Base, public DerivedA {

int c;
};



430

Constructors

▶ Constructors of derived classes also construct base classes
1. Direct base classes are initialized in left-to-right order
2. Non-static data members are initialized in declaration order
3. Constructor body is executed

▶ Base classes default-initialized unless specified otherwise
▶ Delegating constructor syntax: Derived() : Base(arg1, arg2) {}



431

Constructors: Example

struct Base {
Base() { std::println("Base()"); }
Base(int) { std::println("Base(int)"); }

};
struct Derived : public Base {

Derived() { std::println("Derived()"); }
Derived (int a, int) : Base(a) {

std::println("Derived(int,␣int)"); }
};
int main() {

Derived a;
Derived b{12, 34};

}

Output:
Base()
Derived()
Base(int)
Derived(int, int)



432

Copy Constructors

△ Quiz: What is the output of the program?

#include <print>
struct A {

A() { std::println("A"); }
A(const A&) { std::println("a"); }

};
struct B : A {

B() { std::println("B"); }
B(const B&) { std::println("b"); }

};
int main() {

B b1, b2(b1);
}

A. (compile error) B. (unspecified) C. ABAB D. ABAb E. ABab



433

Destructors

▶ Destructors are executed in the opposite order as constructors

⃝ Quiz: What is the output of the program?

#include <print>
struct A { ~A() { std::print("A"); } };
struct B { ~B() { std::print("B"); } };
struct D : A, B { ~D() { std::print("D"); } };
int main() { D d; }

A. (unspecified) B. ABD C. BAD D. DAB E. DBA



434

Constructors: Multiple Inheritance

⋆ Quiz: What is the output of the program?

#include <print>
struct A { A() { std::print("A"); } };
struct B : A { B() { std::print("B"); } };
struct C : A { C() { std::print("C"); } };
struct D : B, C { D() { std::print("D"); } };
int main() { D d; }

A. (compile error) B. (unspecified) C. ABCD D. ABACD E. BACD



435

Unqualified Name Lookup147

▶ Names can be defined multiple times in inheritance hierarchy
▶ Unqualified (no ::) lookup algorithm decides which name to choose
▶ Approximation: declarations in derived classes hide names from base classes

struct A { void a(); };
struct B : public A { void a(); void b() { a(); /* B::a() */ } };
struct C : public B {
void c1() { a(); /* B::a() */ }
void c2() { A::a(); /* A::a() */ } // qualified lookup

};

147https://en.cppreference.com/w/cpp/language/unqualified_lookup

https://en.cppreference.com/w/cpp/language/unqualified_lookup


436

Unqualified Name Lookup: Diamond Inheritance

struct A { void a(); };
struct B1 : public A { };
struct B2 : public A { };

struct C : public B1, public B2 {
void c1() { a(); /* ERROR: ambiguous, a() present in B1 and B2 */ }
void c2() { B1::a(); /* OK */ }

};



437

Object Representation
▶ Base classes are stored as subobjects of the derived class

#include <cstddef>
struct A {

int& a1;
char a2;

};
struct B {

short b;
};
struct C : public A, public B {

int c;
};
static_assert(offsetof(C, a1) == 0);
static_assert(offsetof(C, a2) == 8);
static_assert(offsetof(C, b) == 10);
static_assert(offsetof(C, c) == 12);



438

Inheritance Modes: public

▶ public inheritance: public base members become public derived members
protected base members become protected derived members

▶ Default when derived class declared as struct

▶ Typically used to model subtyping/is-a relationship
▶ Pointers/references of derived should be usable when base class is expected
▶ Derived class should maintain invariants of base class
▶ Derived class should not strengthen preconditions of overridden members
▶ Derived class should not weaken postconditions of overridden members



439

Inheritance Modes: private

▶ private inheritance: public/protected base members become private
derived members

▶ Default when derived class declared as class
▶ Derived class can be used as base class only in derived class

▶ Sometimes useful
▶ Mixins (e.g., special storage management methods)



440

Inheritance Modes: protected

▶ protected inheritance: public/protected base members become protected
derived members

▶ Derived class can be used as base class in all further derived classes

▶ Rarely useful
▶ “Controlled polymorphism”: inheritance should be shared with subclasses



441

(Non-)Polymorphic Inheritance

⃝ Quiz: What is problematic about this code?

#include <vector>
struct Base { int a; };
struct Derived : Base { int b; Derived(int a, int b) : Base{a}, b(b) {} };
void foo(std::vector<Base>& v) {
v.push_back(Derived(1, 2));

}

A. Compile error: cannot convert Derived to Base.
B. The vector only stores Base; the value for b is discarded.
C. The vector stores Derived, but it consumes two entries.
D. Nothing, the vector now contains a Derived as last element.



442

(Non-)Polymorphic Inheritance

△ Quiz: What is the exit code of this program?

struct A { int compute() { return 5; } };
struct B : public A {

int compute() { return A::compute() + 10; }
};
int callCompute(A& a) { return a.compute(); }
int main() { B b; return callCompute(b); }

A. Compile error: A::compute – attempt to call as static member
B. Compile error: cannot pass B as A&
C. Program always exits with code 5
D. Program always exits with code 15



443

virtual Function Specifier149

▶ virtual enables dynamic dispatch for a function
⇒ Allows function to be overridden in derived classes
▶ A class with at least one virtual function is polymorphic
▶ Overriding function can be annotated with override (see later)

▶ Calling a virtual function through pointer/reference of base class
invokes behavior defined in derived class

▶ Suppressed when using qualified name lookup for function call

149https://en.cppreference.com/w/cpp/language/virtual

https://en.cppreference.com/w/cpp/language/virtual


444

virtual: Example
#include <print>
struct Base {
virtual void foo() { std::println("Base::foo()"); }

};
struct Derived : Base {
void foo() override { std::println("Derived::foo()"); }

};
int main() {
Base b;
Derived d;
Base& br = b;
Base& dr = d;
d.foo(); // prints Derived::foo()
dr.foo(); // prints Derived::foo()
d.Base::foo(); // prints Base::foo()
dr.Base::foo(); // prints Base::foo()
br.foo(); // prints Base::foo()

}



445

Overriding Functions

A function overrides a virtual base class function if:
▶ Same name, cv-qualifiers, ref-qualifiers, and
▶ Same parameter type list (but not the return type)

If conditions met:
▶ Function is also virtual and can be overridden in derived classes
▶ Return type must be same or covariant

▶ E.g., virtual Base* m(); can be overriden by Derived* m();

Otherwise: function might hide base class function



446

Overriding Functions: Example

struct Base {
virtual void bar();
virtual void foo();

};
struct Derived : public Base {
void bar(); // Overrides Base::bar()
void foo(int baz); // Hides Base::foo()

};
int main() {
Derived d;
Base& b = d;
d.foo(); // ERROR: lookup finds only Derived::foo(int)
b.foo(); // invokes Base::foo();

}



447

override Specifier150

▶ override: specify that function actually overrides a virtual function
▶ Useful to avoid bugs where function in derived class hides base class function

struct Base {
virtual void foo(int i);
virtual void bar();

};

struct Derived : public Base {
void foo(float i) override; // ERROR: no override, different parameter types
void bar() const override; // ERROR: no override, different cv-qualifier

};

150https://en.cppreference.com/w/cpp/language/override

https://en.cppreference.com/w/cpp/language/override


448

Final Overrider

▶ Final overrider: function that gets executed on virtual call
▶ Typically the overrider in the most derived class
▶ Can be more complex with multiple inheritance

Exception:
▶ During construction/destruction: behaves as if no more-derived classes exist

▶ While constructing the base class, the derived class doesn’t yet exist

⇝ Care must be taken when using virtual functions in these cases



449

final Specifier

▶ final functions: cannot be overridden
▶ final classes: cannot be inherited from

struct Base { virtual void foo() final; };
struct Derived : Base {
void foo() override; // ERROR

}
struct Base final { virtual void foo(); };
struct Derived : Base { // ERROR
void foo() override;

}



450

Destructors and Inheritance
△ Quiz: What is the output of this program?

#include <memory>
#include <print>
struct A { ~A() { std::print("A"); } };
struct B : public A { ~B() { std::print("B"); } };
int main() {
B b;
std::unique_ptr<A> a = std::make_unique<B>();

}

A. Compile error: cannot assign unique_ptr<B> to unique_ptr<A>
B. ABA
C. BAA
D. ABAB
E. BABA



451

Destructors and Inheritance

▶ Derived objects can be deleted through pointer to base class
▶ Undefined behavior unless destructor is virtual
⇒ Destructor in base class should be public and virtual;

or: should be protected and non-virtual;
or: you know what you are doing

#include <memory>
#include <print>
struct A { virtual ~A() {} };
struct B : public A { };
int main() {
A* a = new B();
delete a; // OK

}



452

Abstract Classes151

▶ Class which cannot be instantiated, but used as a base class
▶ Any class with a pure virtual function is abstract
▶ Pure virtual function: virtual declaration ending with = 0;
▶ Pure virtual function can still be defined out-of-line

struct Base {
virtual void foo() = 0; // pure virtual

};
struct Derived : Base {
void foo() override;

};
int main() {
Base b; // ERROR: Base is abstract
Derived d; // OK
Base& dr = d; // OK: pointers/references/smart pointers/etc. to abstract class
dr.foo(); // calls Derived::foo()

}
151https://en.cppreference.com/w/cpp/language/abstract_class

https://en.cppreference.com/w/cpp/language/abstract_class


453

Pure Virtual Destructor

▶ Destructor can be marked as pure virtual
▶ Useful when class shall be abstract, but no suitable functions exists
▶ Out-of-line definition must be provided

struct Base {
virtual ~Base() = 0;

};
Base::~Base() {}
int main() {
Base b; // ERROR: Base is abstract

}



454

Calling Pure Virtual Functions

△ Quiz: What is the problem with this code?

struct A {
virtual ~A() { cleanup(); }
virtual void cleanup() = 0;

};
struct B : A {
void cleanup() override {}

};
int main() { B b; }

A. Compile error: cannot call pure virtual method in base class
B. Undefined behavior: calling pure virtual function in constructor/destructor
C. Semantic problem: B::cleanup doesn’t get called, instead nothing happens
D. No problem: B::cleanup() gets called



455

Virtual Base Classes

▶ virtual base class: contained only once in the derived class,
even if it occurs multiple times in the inheritance DAG

▶ Changes rules for unqualified name lookup

▶ Advice: try to avoid multiple inheritance

struct A {int a;};
struct B1 : virtual A {};
struct B2 : virtual A {};
struct C : B1, B2 {};
int getA(C& c) { return c.a; /* OK, only one a in C */ }



456

dynamic_cast152

▶ Convert pointers/references to classes in inheritance hierarchy
▶ Syntax: dynamic_cast<new-type>(expression)

▶ new-type can be pointer or reference to class type

▶ Most common use case: checked/safe downcast
▶ Runtime check whether new-type is actually a base of the type of

expression
▶ Failure: nullptr (pointers)/exception (references)
▶ Requires runtime type information (enabled by default)

▶ Other use cases: see reference

152https://en.cppreference.com/w/cpp/language/dynamic_cast

https://en.cppreference.com/w/cpp/language/dynamic_cast


457

dynamic_cast: Example

struct A {
virtual ~A() = default;

};
struct B : A {
void foo() const;

};
struct C : A {
void bar() const;

};
void baz(const A* aptr) {
if (const B* bptr = dynamic_cast<const B*>(aptr)) {
bptr->foo();

} else if (const C* cptr = dynamic_cast<const C*>(aptr)) {
cptr->bar();

}
}



458

Implementation of Virtual Functions
▶ Vtable: table of function pointers

to final overrider for every class
▶ Vtable pointer stored at beginning

of every object
▶ Function invocation: load vtable,

load fn pointer, do indirect call

struct Base {
virtual void foo();
virtual void bar();

};
struct Derived : Base {
void foo() override;

};
int main() { Base b; Derived d; }

Stack

Base b:
vtable pointer

Derived d:
vtable pointer

Code Segment
vtable for Base:

vtable for Derived:

Base::foo():

Base::bar():

Derived::foo():
Instructions...

Instructions...

Instructions... Base::foo()
Base::bar()

Derived::foo()
Base::bar()



459

Implementation of dynamic_cast
▶ Vtable contains pointer to data structure that describes type
▶ Type checks tend to be rather expensive ⇒ noticable performance impact

▶ Alternative: type enum and static_cast

struct Base {
enum class Type { Base, Derived, };
Type type;

Base() : type(Type::Base) {}
Base(Type type) : type(type) {}

virtual ~Base();
};
struct Derived : Base {
Derived() : Base(Type::Derived) {}

};

void foo(Base* b) {
switch (b->type) {
case Base::Type:
// use Base
break;

case Base::Derived: {
auto* d = static_cast<Derived*>(b);
// use Derived
break;

}
}

}



460

Polymorphism: Recommendations

▶ If performance doesn’t matter: whatever

▶ Generally avoid dynamic_cast, use type enum and static cast
▶ Runtime type information (RTTI) is big, cast is much more expensive

▶ Avoid virtual function calls where performance matters
▶ Indirection is very expensive, can be very noticeable when invoked frequently
▶ When important it is often possible and recommendable to avoid these



461

Compile-Time Polymorphism
▶ How to avoid virtual function calls? Templates

▶ Curiously Recurring Template Pattern (CRTP):153

base class takes derived class as template parameter

template <class Derived> struct Base {
Derived* derived() { return static_cast<Derived*>(this); }
int foo() { return derived()->bar(); }
int bar() { return 12; }

protected:
Base() = default; // prohibit creation of Base objects

};
struct MyImpl : public Base<MyImpl> {
int bar() { return 42; }

};
int main() { return MyImpl().foo(); } // returns 42
153https://en.cppreference.com/w/cpp/language/crtp

https://en.cppreference.com/w/cpp/language/crtp


462

Deducing this

▶ C++23 introduces explicitly object member functions
▶ Type of this specified explicitly; this unusable in function body

struct Base {
int foo(this auto&& self) { return self.bar(); }
int bar() { return 12; }

protected:
Base() = default; // prohibit creation of Base objects

};
struct MyImpl : public Base {
int bar() { return 42; }

};
int main() { return MyImpl().foo(); } // returns 42



463

CRTP Compared to Virtual Functions

+ No runtime overhead of virtual function calls
+ Base class can call into functions of derived class

− Definitions (generally) need to go into header files
− Less flexibility
− Cannot have container of polymorphic objects

▶ I.e., no std::vector<std::unique_ptr<Base>>



464

Mixins
▶ Mixin: compose functionality from multiple classes

template <class D> struct Greeter {
D* derived() { return static_cast<D*>(this); }
void greet() {
std::println("Hello,␣I’m␣{}!", derived()->name());

}
};
struct Person : Greeter<Person> {
std::string_view n;
std::string_view name() const { return n; }

};
int main() {
Person p{.n = "foo"};
p.greet();

}



465

Inheritance – Summary

▶ C++ supports very flexible inheritance of classes
▶ Classes can have zero, one, or more base classes
▶ Base classes can be inherited public/protected/private
▶ By default, inheritance is non-polymorphic
▶ virtual functions enable overriding and dynamic polymorphism
▶ Polymorphism needs care for implementing constructors/destructors
▶ dynamic_cast allows dynamic type checking and casting
▶ Templates allow implementing static polymorphism at compile-time
▶ Dynamic polymorphism often has considerable runtime overhead



466

Inheritance – Questions

▶ In which order are constructors/destructors of base classes executed?
▶ How does inheritance change the object representation of classes?
▶ What is an advantage of non-polymorphic inheritance?
▶ What is a disadvantage of non-polymorphic inheritance?
▶ Why is using the override specifier highly recommendable?
▶ How are virtual functions conceptually implemented?
▶ Why should destructors of base classes often be virtual?
▶ How to use CRTP for compile-time polymorphism?


	Inheritance
	Non-Polymorphic Inheritance
	Inheritance Modes
	Polymorphic Inheritance
	Type Conversions
	Implementation of Polymorphism
	Compile-Time Polymorphism


