Concepts of C++ Programming

Lecture 10: Exceptions and Advanced Memory Management

Alexis Engelke

Chair of Data Science and Engineering (125)
School of Computation, Information, and Technology
Technical University of Munich

Winter 2024/25

365



C++ Exceptions®

» Exceptions have similar semantics as in other languages
= Transfer control and propagate information up the call stack

» Thrown by throw, new, and some standard library functions

» Exceptions can be handled in try—catch blocks

» Unhandled exceptions lead to termination

» When transferring control up the call stack, the runtime performs stack
unwinding

» All objects with automatic storage duration are destructed

~~ Correct behavior of RAII classes

13°https ://en.cppreference.com/w/cpp/language/exceptions

366


https://en.cppreference.com/w/cpp/language/exceptions

Throwing Exceptions'3?

» throw expression;

» Objects of any complete type can be thrown

» Exception object (heap-allocaetd) copy-initialized with expression
» Typically a subclass of std: :exception

#include <exception>
void foo(unsigned i) {
if (1 == 42)
throw 42;

throw std::exception();

}

131https ://en.cppreference.com/w/cpp/language/throw

367


https://en.cppreference.com/w/cpp/language/throw

Handling Exceptions!3?

» try { ... } catch (declaration) { ... };
» Exceptions occuring during try-block can be handled in catch-block
» Declaration type determines which type of exception is caught

#include <exception>
void bar() {
try {
foo(42);
} catch (int i) { // handle exception of type int
} catch (const std::exception& e) { // handle exception of type std
} catch (...) { // catch-all
}
}

132https ://en.cppreference.com/w/cpp/language/catch

::exception

368


https://en.cppreference.com/w/cpp/language/catch

Exceptions: Example
Quiz: What is problematic about this code?

#include <memory>
#include <print>
int foo(const int& x) { return x != 0 ? throw x : x; }
int bar(int x) { std::unique_ptr<int> ui(new int);
*ui = x * 2; return foo(*ui); }

int main() {

try { std::print("ok! {}\n", bar(21));

} catch (int x) {}
}

Compile error: throw is a statement, not an expression.

Memory leak: Memory from new is leaked on exception.

o w >

Nothing: the program terminates with exit code zero.

Unhandled exception: the exception has type const inté&.

369



Exceptions: Miscellaneous

» In a catch block, the current exception can be re-thrown

» Syntax: throw;
> E.g., to clean up resources and propagate exception further

» Functions can be marked as noexcept

» Part of the function type
» Indicates that the function will never throw an exception
» Any exceptions that would propagate cause program termination

» Destructors, move constructors/assignment must not throw exceptions

370



Quiz: Which answer is correct?

#include <print>
struct A { A() { throw 1; } };
struct B {
A a;
BO try : aQ) {
} catch (int x) {
std: :println("whoops? {}", x);
throw; // rethrow exception
}
g
int main() { try { B b; } catch (int x) { return x; } }

A. Compile error: Cannot use try outside function body.
. The throw; is not necessary.

B
C. ais life in the catch block of the constructor.
D. No object of type A can be constructed, but objects of type B can be.

371



Exceptions: Performance and Code Size Considerations

» Exception handling (stack unwinding) is rather expensive
» Low overhead if no exceptions are thrown
=

In any case, exceptions should be used rarely

» The mere possibility of exceptions inhibits some optimizations
» Increased control flow complexity, more state must be kept in stack memory

» For every possibly throwing call, corresponding cleanup code must be
generated

» Unwind tables that map code location to cleanup landing pad can grow large

~» Enabling exceptions can have substantial code size impact
» To disable exceptions: -fno-exceptions

372



Exceptions: Guidelines

>

Use exceptions only in rare cases

E.g., dynamic runtime errors (e.g., malformed data)

Do not use exceptions for programmer errors
» Use assertions for this

Do not use exceptions for control flow
» Use regular control flow operations for this

Generally: exceptions should be avoided where possible

When not using exceptions at all, disable them via a compiler flag

373



operator new

» operator new (<new>) can take arguments!®3

» Default, implicitly: operator new (size)
» Example: overload with extra arg std: :nothrow_t

#include <new>

#include <array>

#include <print>

struct A { /x ... %/ };

int main() {
// Will throw std::bad_alloc
auto* pl = new std::array<int, 100000000000>() ;
// Will return nullptr on allocation failure
auto* p2 = new(std::nothrow) std::array<int, 100000000000>() ;
if (!'p2)

std: :println("allocation failed!");

}

133https ://en.cppreference.com/w/cpp/memory/new/operator_new

374


https://en.cppreference.com/w/cpp/memory/new/operator_new

Manually managing memory

» Sometimes, the default memory management operations are not enough
> E.g., repeatedly calling new (explicit or implicit) is too expensive
» E.g., for reusing already available memory

~~ Placement new: construct object in already allocated storage
» Manually call constructor and destructor

375



Placement new

» operator new(size, void* ptr)
» Returns ptr without doing any allocation

» Alignment must be ensured manually

#include <cstddef>

#include <new>

struct A { /* ... x/ };

int main() {
alignas(A) std::byte buffer[sizeof(A)];
A* a = new(buffer) AQ;
// ... do something with a

a->"A(Q); // we must explicitly call the destructor
}

376



Placement new and Lifetime

» Placement new ends lifetime of overlapping objects; creates new object

» Lifetime is nested within the underlying storage

struct A { };
int main() {
Ax al = new A(); // lifetime of al begins, storage begins
al->"A(); // lifetime of al ends
Ax a2 = new (al) AQ); // lifetime of a2 begins
delete a2; // lifetime of a2 ends, storage ends

}

377



Quiz: How to deallocate s1? What to write instead of XXX7

template <class T, size_t N>
class TAlloc {
alignas(T) std::byte buffer[sizeof (T[N])];
size_t cnt = 0;
public:
T* make (T&& t) {
void* vp = &buffer[sizeof (T)*cnt++];
T* r = reinterpret_cast<T*>(vp);
£é:i¥iri;T(std..move(t)), ta."TAlloc():

} Nothing, the strings are
E automatically freed at the

int main() { end of main
TAlloc<std::string, 3> ta; ’

auto*x sl = ta.make("Hello, World!");
// XXX

delete(sl);
s1->"string();

s1->"basic_string();

mUnw>»

}

378



Placement new with unique_ptr

v

v

std: :unique_ptr<T, Deleter> — specify type of deleter

Second parameter in constructor to specify deleter instance

Default deleter calls delete

For use with non-standard allocation, a custom deleter is required

Code that uses custom allocators is typically rather complex
= unique_ptr is often not particularly useful in such contexts

379



Overloading operator new

» Classes can overload operator new and operator delete

» Can also provide overloads with extra arguments

» Rarely useful, e.g.:
» Allocating extra storage after/before the object

380



union

» Class type that holds only one of its non-static members at a time
» Storage large enough to hold largest element

» All data members have the same address

» Writing to a union member activates it

» Reading an inactive union member is undefined behavior

union MyUnion { float f; long 1; short al[2]; };
static_assert(sizeof (MyUnion) == sizeof(long));
int main() {
MyUnion u; // f active, default-initialized
u.f = 123.0; // f active
u.al[1] = 12; // a active
return u.al[1]; // ok
}

381



Union: Example

Quiz: What is the output of the program?

#include <print>

int main() {
using Converter = union { float f; unsigned u; };
std: :println("{:08x}", Converter{32.5f}.u);
return O;

}
A. Compile error: Cannot have untyped union.
B. Compile error: Union initializer is ambiguous.
C. Undefined behavior: Program reads inactive union member.
D. The integer representation of 32.5f (42020000).

382



std: :bit_cast134

» For bitwise reinterpretation of object representations, use
std: :bit_cast<TargetTy>() from <bit>

» Do not use union for this — C4++ differs from C here
» Do not use reinterpret_cast

134https ://en.cppreference.com/w/cpp/numeric/bit_cast

383


https://en.cppreference.com/w/cpp/numeric/bit_cast

Union

with Non-Primitive Types

» unions can have non-primitive members

» union doesn't know which member is active...

» Lifetime needs to be managed explicitly outside of the union

i vww

Typical use as part of a struct which tracks active element
Can be used to implement more efficient variant
Very difficult to get right

Prefer std: :variant

384



Union with Non-Primitive Types: Example

union U {
std::vector<int> v;
std::string s;

// needs explicit destructor -- can’t do anything!
// union doesn’t know which member is active
v {3

}s

int main() {
U u{}; // constructs first element
u.v.push_back(123);
u.v. vector<int>(); // lifetime of u.v ends
new(&u.s) std::string("123"); // lifetime of u.s begins
std: :println("{}", u.s);
u.s. basic_string(); // lifetime of u.s ends
// "U(Q) will be called, but is defined to do nothing

385



Implementing our own Vector

» At this point, we can implement our own vector

(see script)

386



Allocating Raw/Uninitialized Memory

» Cmalloc/free often work, but not always

» Problem: type might have increased alignment requirement

» std::allocator<T>!3® respects additional requirements

» allocate(elementCount) — allocate an array suitable for n objects
> deallocate(ptr, elementCount) — deallocate previously allocated
memory

135https ://en.cppreference.com/w/cpp/memory/allocator

387


https://en.cppreference.com/w/cpp/memory/allocator

Helper Functions for Handling Uninitialized Memory

v

Provides more guarantees in case of an exception

std::uninitialized_move
— move range of elements into uninitialized memory

std::uninitialized_default_construct
— default-construct range of elements into uninitialized memory

std: :destroy — destruct range of elements

388



Exception Safety when Moving

» Move constructor/assignment might throw exceptions
Quiz: (Why) is this problematic?

A. Afterwards, vector might be in unrepairable state
B. Exception cannot be caught properly
C. New allocation will always be leaked
D. This is not a problem, just annoying

» std::vector guarantees exception safety
» E.g., push_back guarantees to have no effect if any operations throws

» If move operations are not noexcept, elements will be copied instead

389



memcpy/memmove

v

For primitive data types, constructing/destructing is not required

std::is_trivially_copyable_v<T> — indicates whether byte-wise
copying is possible
» |n fact, this is also possible for structs of trivially copyable types

std: :memcpy(dest, src, count) — copy bytes between non-overlapping
regions

std: :memmove (dest, src, count) — copy bytes between regions

In both cases, alignment of destination must be suitable

390



Custom Allocators

» Sometimes, the default allocator is not good enough
» Many small allocations are expensive
» All allocations have to be freed separately
» Every allocation has memory overhead (e.g., tracking allocation size)
» Requires synchronization in multi-threaded applications
» Possibly bad locality

» Typical solution: bump pointer allocator
» Allocate large chunk of memory once
» Hand out slices for individual allocations
» Free allocated memory when allocator is destroyed

391



Custom Allocators in C++

» Requirements specified by Allocator
» In essence: value_type, allocate, deallocate

» Containers are allocator-aware and can use custom allocators

» Bump-ptr allocator in C++ standard library:
std: :pmr::monotonic_buffer_resource

» Usable with std: :pmr: :polymorphic_allocator as allocator
» Performance characteristics not that good (see inheritance later)
» For performance with many small allocations, custom allocators are often
required

392



Exceptions and Advanced Memory Management — Summary

vVYyy

vvyvyvyy

C++ Exceptions allow for unordinary control flow transfers
Almost everything can be thrown and caught

Exception unwinding calls destructors of objects with automatic storage
duration

Objects can be constructed in allocated memory with placement new
Required when memory allocation and object construction are separated
unions provide an untagged overlapping storage

Writing exception-safe code is difficult

Custom allocators can substantially improve performance in some
applications

393



Exceptions and Advanced Memory Management — Questions

vVvyvVvyVvyVvyYVYyYvVvyy

Why do some people see C++ exceptions as problematic?

What are upsides and downsides of C++ exceptions?

Why is writing exception-safe code difficult?

What happens when an exception is thrown in a noexcept function?
Why should move constructors/assignment be marked as noexcept?
What requirements must be met for placement new?

Why is using union much more difficult than in C?7

What are benefits of bump pointer allocators?

394



	Exceptions and Advanced Memory Management
	Exceptions
	Explicit Object Construction
	Unions
	Implementing a Vector


