Concepts of C++ Programming

Lecture 5: Classes and Conversions

Alexis Engelke

Chair of Data Science and Engineering (125)
School of Computation, Information, and Technology
Technical University of Munich

Winter 2024/25

160

static_assert59

» static_assert(bool expr, string) — assert at compile-time
» Expression must be a compile-time constant

» Can have an optional failure message

Example:

static_assert(sizeof (int) == 4, "program only, works on 4-byte integers");

59https ://en.cppreference.com/w/cpp/language/static_assert

161

https://en.cppreference.com/w/cpp/language/static_assert

Classes

class Namel {

// member specifications...
};
struct Name2 {

// member specifications...

};

» Name can be any valid identifier
» Members can be:

» Variables (data members)
» Functions (member functions)
» Types (nested types)

» Note the trailing semicolon

162

Data Members®

» Declarations of (non-extern) variables
» Size of declared variable must be known (see later)
» Variable name must be unique within class

» Variables can have default value

class Name {
int foo = 10;
int& iref;
float* ptr;
const char x;

};

6ohttps ://en.cppreference.com/w/cpp/language/data_members

163

https://en.cppreference.com/w/cpp/language/data_members

Data Layout

» Class is essentially just a sequence of its data members

» Members are stored in memory in declaration order
» Alignment of members is respected ~» padding between objects

» Alignment of class is largest alignment of data members

class C {
int i; // sizeof = 4; alignof = 4; offset = 0
// (4 padding bytes)
int* p; // sizeof = 8; alignof = 8; offset
char c; // sizeof = 1; alignof 1; offset
// (2 padding bytes)
short s; // sizeof = 2; alignof = 2; offset = 18
// (4 padding bytes -- sizeof must be multiple of alignof)
}; // sizeof(C) = 24; alignof(C) ==

8
16

164

Data Layout

Quiz: What is the size of Line?

class Point {
int x;
int y;
unsigned char color;
};
class Line {
Point a;
Point b;
unsigned char lineWidth;

s
A. (compile error) B. 19 C.24

D. 28

E. 32

165

Bit Fields®?

» Can specify bit-size for integer members
» Adjacent bit fields packed together
» Access is fairly expensive, but might reduce memory usage

~» Use only when strongly beneficial

class Bitfields {
unsigned short flaghA : 1;
unsigned short flagB : 1;
unsigned short tinyVar : 11;

}s
static_assert(sizeof (Bitfields) == 2);
static_assert(alignof (Bitfields) == 2);

6:lhttps ://en.cppreference.com/w/cpp/language/bit_field

166

https://en.cppreference.com/w/cpp/language/bit_field

Data Layout

Quiz: What is the size of this class?

class Value { // (excerpt from llvm/include/1lvm/IR/Value.h)
const unsigned char SubclassID;

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

char HasValueHandle : 1;

char SubclassOptionalData : 7;
short SubclassData;
NumUserOperands : 27;
IsUsedByMD : 1;

HasName : 1;

HasMetadata : 1;
HasHungOffUses : 1;
HasDescriptor : 1;

Type *VTy;
Use *Uselist;

}; // NB: sizeof (void*) == 8; sizeof (unsigned

A. (compile error)

B. 24 C. 32

== 4

D. 40 E. 45

167

Data Layout: Consequences

» Order of members has impact on class size
= When class size is important, reduce padding

= Recommendation: place all data members together at beginning/end
» Potential padding etc. is easily findable

» All users of the class need to know the declaration
= Class declarations often put in header files

= Adding/modifying members requires changes data layout = recompilation
» Especially important when distributing libraries — all users must rebuild

168

Member Functions

» Declaration of methods just like regular function declarations
» Inline definitions are implicitly inline

» Out-of-line definitions are preferable for non-trivial methods

//--- foo.h
#pragma once
class Foo {
int foo();
int bar(int x) { // inline definition
return x + 1;
}
};
//--- foo.cpp
int Foo::foo() { // out-of-line definition
return 10;

}

169

Inline vs. Out-Of-Line Definitions

Quiz: Which answer is NOT correct?

A. Out-of-line definitions tend to allow for more optimizations.
B. Out-of-line definitions tend to reduce compile time.
C. Inline definitions tend to allow for more optimizations.

D. Inline definitions in headers are possibly compiled several times.

» Similar considerations as for inline functions apply

170

Member Access

struct Vec {
unsigned x;
unsigned y;

};

Vec v;

Vecx vp = ...;

// member access:

int lildist_a = v.x + v.y;

// ptr->member is a shorthand for (*ptr).member
int lldist_b = vp->x + vp->y;

171

this

» Member functions have implicit parameter this; type is Class*

» In member functions, members can be accessed without this (preferred)

struct Vec {
unsigned x;
unsigned y;

unsigned 11dist() {
return this->x /* explicit access */ + y /* implicit access*/;
}
};
Vec v;
Vecx vp = ...;
int lildist_a = v.1l1ldist();
int 1idist_b = vp->11dist();

172

const-Qualified Member Functions

» Member functions can be const-qualified
» this is a const Class*

= Data members are immutable

struct Vec {
unsigned x;
unsigned y;
unsigned getX() const { return x; }
unsigned getY() const { return y; }
unsigned 11dist() const;

+;

unsigned Vec::11dist() const {
return x + y; // this is a const Vec*

}

173

Constness and Member Functions

» For non-const Ivalues non-const overloads are preferred over const ones

» For const Ivalues only const-qualified functions are selected

struct Foo { Expression Value

int getA() { return 1; 2 foo.getA() 1

int getA() const { return 2; }

int getB() const { return getA(); } foo.getBO) 2

int getC() { return 3; } foo.getCO 3
}; cfoo.getA() 2
Fook foo = /* ... */; cfoo.getB() 2

const Foo& cfoo = /* ... */; cfoo.getC() error

174

Constness of Member Variables

» Constness propagates through pointer Ivalue access
» const data members are always constant

» Can only be set once during construction (see later)

» mutable member variables are always non-const (use carefully!)

Expression Value Category

struct Foo {

int i; foo.1i non-const lvalue
const int c; foo.c const lvalue
mutable int m; foo.m non-const lvalue
¥ cfoo.i const lvalue
Foo& foo = /* ... %x/; f t lval
const Fook cfoo = /* ... */; croo.c const lvalue

cfoo.m non-const lvalue

175

Static Members®?

» Static data members: members not bound to class instances
» Only one instance in the program, like global variables
» Static member functions: no implicit this parameter

» Static members can be accessed with :: operator

//--- foo.h
struct Foo {
static int var; // declaration
static void statfn(); // declaration
};
//--- foo.cpp
int Foo::var = 10; // definition
void Foo::statfn() { /* ... */ } // definition

62ht:tps ://en.cppreference.com/w/cpp/language/static 176

https://en.cppreference.com/w/cpp/language/static

Constructors

» ... are special functions that are called when an object is initialized
» ... have no return type, no const-qualifier, and name is class name
» ... can have arguments, constructor without arguments is default constructor
» ... are sometimes implicitly defined by the compiler
struct Foo { struct Foo {

Foo() { int a;

// default constructor Bar b;

} // Default constructor is

}; // implicitly defined, does

// nothing with a, calls
// default constructor of b

177

Initializer List

» Specify how member variables are initialized before constructor body
» Other constructors can be called in the initializer list

» Members initialized in the order of their definition

» const member variables can only be initialized in the initializer list

struct Foo {

int a = 123; float b; const char c;

// default constructor initializes a (to 123), b, and c

Foo() : b(2.5), c(7) {}

// initializes a and b to the given values

Foo(int a, float b, char c) : a(a), b(b), c(c) {}

Foo(float £f) : Foo() {
// First the default constructor is called, then the body
// of this constructor is executed
b *= f;

178

Initializing Objects®

v

Constructor executed on initialization
» Arguments given in the initialization are passed to the constructor
» C++ has several types of initialization that are very similar but
unfortunately have subtle differences:

» default initialization (Foo £3;)

» value initialization (Foo £{}; and Foo())

» direct initialization (Foo £(1, 2, 3);)

» list initialization (Foo £{1, 2, 3};)

» copy initialization (Foo £ = g;)
» Simplified syntax: class-type identifier(arguments); or
class-type identifier{arguments};

63https ://en.cppreference.com/w/cpp/language/initialization

179

https://en.cppreference.com/w/cpp/language/initialization

Constructors (1)

Quiz: What is the output of the following program?

#include <print>
struct Foo {
int answer;
Foo() : answer(42) {}

Fe

int main() {
Foo £();
std: :println("{}", f.answer);
return 0;

}

A. (compile error) B.0 C. 42

D. (undefined behavior)

180

Constructors (2)

Quiz: What is the return value of foo?

struct C {
int i;
C() = default;
e
int foo() {
const C c;
return c.i;
}

A. (compile error) B. an arbitrary integer

C.0

D. (undefined behavior)

181

Constructors (3)

Quiz: What is problematic about this program?

#include <print>
struct Foo {
const int& answer;

int main() {
int answer = 42;

Foo f (answer);
Foo() {} . S w
. std: :println("{}", f.answer);
Foo(const int& answer)
return O;
: answer (answer) {} }
g

Compile error: Two constructors are not allowed.
Compile error: answer not always initialized.
Compile error: £ is a function declaration.

Undefined behavior: f.answer is a dangling reference.

moUnw>

There is no problem: the program always prints 42.

Constructors (4)

Quiz: What is problematic about this program?

#include <print> int main() {
struct Foo { int answer = 42;
const int& answer; Foo f = answer;
Foo(const int& answer) std: :println("{}", f.answer);
: answer (answer) {} return O;
}; }
A. Compile error: Cannot assign integer to type Foo.
B. Compile error: Cannot convert integer to Foo.
C. Undefined behavior
D. There is no problem: the program always prints 42.

Converting and Explicit Constructors®*

» Constructors with one argument used for explicit and implicit conversions
» Use explicit to disallow implicit conversion

» Generally, use explicit unless there's a good reason not to

struct Foo { struct Bar {

Foo(int 1i); explicit Bar(int i);
s I
void print_foo(Foo f); void print_bar(Bar f);
// Implicit conversion, // Implicit conversion,
// calls Foo::Foo(int) // compiler error!
print_foo(123); print_bar(123);
// Explicit conversion, // Explicit conversion,
// calls Foo: :Foo(int) // calls Bar::Bar(int)
static_cast<Foo>(123); static_cast<Bar>(123);

6“ht:tps ://en.cppreference.com/w/cpp/language/converting_constructor

https://en.cppreference.com/w/cpp/language/converting_constructor

Member Access Control

» Every member has public, protected or private access
» Default for class: private; for struct: public
» Recommendation: always explicitly specify access control

» public = accessible by everyone, private only by class itself

class Foo {
int a; // a is private

public: // All following declarations are public
int b;
int getA() const { return a; }

protected: // All following declarations are protected
int c;

public: // All following declarations are public
static int getX() { return 123; }

};

185

Friend Declarations®®

» Class body can contain friend declarations

» Friend: has access to private/protected members

» friend function-declaration; (for friend function)

» friend class-specifier; (for friend class)

class A {
int a; // private
friend class B;
friend void foo(A&);

};
class B {
void bar (A& a) {
a.a =42; // 0K
}
};

65ht:tps ://en.cppreference.com/w/cpp/language/friend

class C {
void foo(A& a) {
a.a = 42; // ERROR
}
}
void foo(A& a) {
a.a = 42; // 0K
}

186

https://en.cppreference.com/w/cpp/language/friend

Nested Types

» For nested types classes behave just like a namespace
» Nested types are accessed with : :
» Nested types are friends of their parent

struct A {
struct B {
int getI(const A& a) {
return a.i; // OK, B is friend of A
}
+;
private:
int i;
};
A::B b; // reference nested type B of class A

187

Forward Declarations

» Classes can be forward declared: class Name;
» Type is incomplete until defined later

» Incomplete type can be used, e.g., for pointer/reference

//--- foo.h
class A;
class ClassFromExpensiveHeader;
class B {
ClassFromExpensiveHeader* member;
void foo(A& a);

}s
class A {

void foo(B& b);
};

//--- foo.cpp
#include "ExpensiveHeader.hpp"

/...

188

Incomplete Types®

» No operations that require size/layout of type are possible

» No pointer arithmetic
» No access to members, member functions, etc.
» No definition/call of function with incomplete return/argument type

» Sometimes, this information is not needed:

» E.g., pointer/reference declarations can refer to incomplete types
» E.g., member functions with incomplete parameter types

66https ://en.cppreference.com/w/cpp/language/types#Incomplete_type

189

https://en.cppreference.com/w/cpp/language/types#Incomplete_type

Operator Overloading®’

Classes can overload built-in operators like +, ==, etc.
Many overloaded operators can also be written as non-member functions

Overloaded operators are selected with the regular overload resolution

vvyyvyy

Overloaded operators are not required to have meaningful semantics

» Almost all operators can be overloaded, exceptions are: ::, ., .*, 7:

\4

This includes “unusual” operators like:
= (assignment), () (call), * (dereference), & (address-of), , (comma)

67https ://en.cppreference.com/w/cpp/language/operators

190

https://en.cppreference.com/w/cpp/language/operators

Arithmetic Operators®®

lhs op Ths ~ lhs.operator op(rhs) or operator op(lhs, rhs)
» Overloaded versions of || and && lose their special behaviors
» Should be const and take const references

» Usually return a value and not a reference

struct Int {
int i;
Int operator+(const Int& other) const { return Int{i + other.i}; }
Int operator-() const { return Int{-i}; };
}s
Int operator*(const Int& a, const Int& b) { return Int{a.i * b.i}; }
Int a{123}; Int b{456};
a + b; /* is equivalent to */ a.operator+(b);
a * b; /* is equivalent to */ operator*(a, b);
-a; /* is equivalent to */ a.operator-();

68ht:tps ://en.cppreference.com/w/cpp/language/operator_arithmetic

191

https://en.cppreference.com/w/cpp/language/operator_arithmetic

Comparison Operators®

All binary comparison operators (<, <=, >, >=, ==, 1=, <=>) can be overloaded.
» Should be const and take const references
» Return bool, except for <=> (see next slide)
» If only operator<=> is implemented, <, <=, >, and >= work as well
» operator== must be implemented separately (then != works, too)

struct Int {
int 1i;
std: :strong_ordering operator<=>(const Int& a) const {
return i <=> a.i;
}
bool operator==(const Int& a) const { return i == a.i; }
};
Int a{123}; Int b{456};
a < b; /* is equivalent to */ (a.operator<=>(b)) < 0;
a == b; /* is equivalent to */ a.operator==(b);

69https ://en.cppreference.com/w/cpp/language/operator_comparison 192

https://en.cppreference.com/w/cpp/language/operator_comparison

Three-Way'®

operator<=> should return one of the following types from <compare>:
std::partial_ordering, std::weak_ordering, std::strong_ordering.

» When comparing two values a and b with ord = (a <=> b), then ord has
one of the three types and can be compared to 0:

ord == 0 & a ==
ord K 0& ax<b
ord >0« a>bo

strong_ordering convertible to weak_ordering and partial_ordering

vvyyVvyyvyy

weak_ordering convertible to partial_ordering

7Ohttps://en.cppreference.com/w/cpp/utility/compare/partial_ordering

193

https://en.cppreference.com/w/cpp/utility/compare/partial_ordering

Three-Way Comparison (2)

» partial_ordering can be unordered, i.e. neither a <= bnora >= b
> std: :partial_ordering::less, ::equivalent, ::greater, ::unordered
> Example: floating-point numbers, NaN is unordered

» std::weak_ordering or std::strong_ordering for total order
» ::less, ::equivalent, ::greater
strong_ordering: equal values must be completely indistinguishable

>
» Example for strong ordering: integers
» Example for weak ordering: points in 2d-space ordered by distance from origin

194

Increment and Decrement’}
Pre- and post-inc/dec are distinguished by an (unused) int argument

» C& operator++(); C& operator--();
pre-increment or -decrement, modify object, return *this

» C operator++(int); C operator--(int);
post-increment or -decrement, copy self, modify self, return unmodified copy

struct Int {
int i;
Int& operator++() { ++i; return *this; }
Int operator--(int) { Int copy{*this}; --i; return copy; }
};
Int a{123};
++a; // a.i is now 124
a++; // ERROR: post-increment is not overloaded
Int b = a-—; // b.i is 124, a.i is 123
--b; // ERROR: pre-decrement is not overloaded

71https ://en.cppreference.com/w/cpp/language/operator_incdec

195

https://en.cppreference.com/w/cpp/language/operator_incdec

Subscript Operator?

Classes behaving like containers/pointers usually override the subscript []
» a[b] is equivalent to a.operator[] (b)

» Type of b can be anything, for array-like containers it is usually size_t

struct Foo { /x ... %/ };
struct FooContainer {
Foo* fooArray;
Foo& operator[](size_t n) { return fooArray[n]; }
const Foo& operator[](size_t n) const { return fooArray([n]; }

};

72https ://en.cppreference.com/w/cpp/language/operator_member_access

196

https://en.cppreference.com/w/cpp/language/operator_member_access

Dereference Operators’3

Classes behaving like pointers usually override the operators * and ->

» operator*() usually returns a reference

» operator->() should return a pointer or an object that itself has an
overloaded -> operator

struct Foo { /* ... *x/ };
struct FooPtr {
Foox ptr;

Foo& operator*() { return *ptr; }
const Foo& operator*() const { return *ptr; }
Foox operator->() { return ptr; }
const Foox operator->() const { return ptr; }

};

73https ://en.cppreference.com/w/cpp/language/operator_member_access

197

https://en.cppreference.com/w/cpp/language/operator_member_access

Assignment Operators’

» Operator = is often used for copying/moving (see next week)

» All assignment operators usually return *this

struct Int {
int i;
Foo& operator+=(const Foo& other) { i += other.i; return *this; }
}s
Foo a{123};
a = Foo{456}; // a.i is now 456
a += Foo{1}; // a.i is now 457

74https ://en.cppreference.com/w/cpp/language/operator_assignment

198

https://en.cppreference.com/w/cpp/language/operator_assignment

Conversion Operators

» Conversion can be done using converting constructors (seen before)
» or conversion operators: operator type ()

» The explicit keyword can be used to prevent implicit conversions
» Explicit conversions are done with static_cast

struct Int { struct Float {
int i; float f£;
operator int() const { explicit operator float() comnst {
return i; return f;
} }
}; };
Int a{123}; Float b{1.0};
int x = a; // 0K, x is 123 float y = b; // ERROR, implicit conversion
float y = static_cast<float>(b); // OK

75https ://en.cppreference.com/w/cpp/language/cast_operator

199

https://en.cppreference.com/w/cpp/language/cast_operator

operator bool

» operator bool: converts to bool
» Used to enable use of object in if, while, etc.
> if, while etc. perform an explicit conversion

struct Ptr {
void *p;
explicit operator bool() const {
return p; // pointers have an implicit conversion to bool
}
}
Ptr p{nullptr};
if (p) {} // OK: explicit conversion
bool hasPtr = p; // ERROR: implicit conversion

200

Argument-Dependent Lookup”®

» Overloaded operators are usually defined in the same namespace as the type
of one of their arguments
» Regular unqualified lookup would not allow the following example to compile

» To fix this, unqualified names of functions are also looked up in the
namespaces of all arguments

» This is called Argument Dependent Lookup (ADL)

namespace A { class X {}; X operator+(const X&, const X&); }
int main() {
A X x, v;
A::operator+(x, y); // OK
x +y; // How to specify namespace here?
// -> OK: ADL finds A::operator+()
operator+(x, y); // OK for the same reason

}

76https ://en.cppreference.com/w/cpp/language/adl

201

https://en.cppreference.com/w/cpp/language/adl

Enums

7

» Typically used like integral types with a restricted range of values

» Also used to assign descriptive names instead of “magic” integer values
» Syntax: enum-key name { enum-list };

> enum-key can be enum, enum class, or enum struct

» Without explicit value, first element gets zero, other increment from previous

enum Color {

};

Red, // Red ==

Blue, // Blue ==

Green, // Green == 2

White = 10,

Black, // Black == 11

Transparent = White // Transparent == 10

77https ://en.cppreference.com/w/cpp/language/enum

202

https://en.cppreference.com/w/cpp/language/enum

Using Enum Values

» Names from the enum list can be accessed with the scope resolution
operator
» Enums can be converted to integers and vice versa with static_cast
» enum without class/struct: C-style enums
» Names also introduced in the enclosing namespace
» Can be converted implicitly int
» enum class and enum struct are equivalent

» Recommendation: Use enum class unless you have a reason not to

Color::Red; // Access with scope resolution operator
Blue; // Access from enclosing namespace

int i = Color::Green; // i == 2, implicit conversion
int j = static_cast<int>(Color::White); // j == 10
Color c¢ = static_cast<Color>(11); // c == Color::Black

203

Type Aliases’®

» Type names nested deeply in namespaces/classes can become very long
~ Type alias: using |namel = |typel;

» name is the name of the alias, type must be an existing type

» (C compatibility: equivalent to typedef, but prefer using)

namespace A::B::C { struct D { struct E {}; }; }
using E = A::B::C::D::E;
E e; // e has type A::B::C::D::E
struct MyContainer {
using value_type = int;
};

MyContainer: :value_type i = 123; // i is an int

78https ://en.cppreference.com/w/cpp/language/type_alias

https://en.cppreference.com/w/cpp/language/type_alias

Classes and Conversions — Summary

VvV VVyVYVYYVYY

Classes are a sequence of their data members

Classes can have member functions with implicit this pointer
Member functions can be const-qualified

Constructors are called for initializing objects

Constructors and operators provide implicit/explicit conversions
Class members can have different access control

Access control can be circumvented by friend declarations
Almost all operators can be overloaded with custom semantics

Enums are, optionally scoped, integer types with descriptive value names

205

Classes and Conversions — Questions

vvyyvyyvyy

vy

What is the difference between class and struct?
When is padding required between fields?

How can the size of a struct be reduced?

What is the type of this? Is it always the same?

Why do methods returning references typically have a non-const-qualified
and a const-qualified overload? Which overload is taken in which cases?

Why do references members have to be initialized in initializer lists?
Why could massive operator overloading be problematic in large projects?

How to access the raw integer value of enum class enumerators?

206

	Classes and Conversions
	Classes
	Constructors
	Member Access Control
	Forward Declarations
	Operator Overloading
	Enums
	Type Aliases

