
64

Concepts of C++ Programming
Lecture 3: Declarations/Definitions, Preprocessor, Linker

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology

Technical University of Munich

Winter 2024/25

65

On “Internet”

Search engines/AI are not your friend
when it comes to C++!

Use high-quality sources.
Use the C++ reference.

Read the script of this lecture.

66

Compiler: Overview (1)

hello.cpp hellohello.ii
Preprocessor Compiler

clang++ -E -o hello.ii hello.cpp
clang++ -o hello hello.ii

▶ Preprocessor transforms source code before actual compilation
▶ clang++ -E – stop after preprocessing

67

Preprocessor33

▶ Applies textual transformation before compilation
▶ E.g., to conditionally exclude certain code paths from compilation
▶ Preprocessor has no knowledge about “real” C++ language semantics

▶ Handles preprocessor directives: lines that begin with #
▶ Outputs program without directives

Use carefully, avoid if possible!

33https://en.cppreference.com/w/cpp/preprocessor

https://en.cppreference.com/w/cpp/preprocessor

68

Preprocessor: #include34

▶ #include "path/to/file" – copy content from file at current position
▶ Literal textual inclusion (“copy-paste”)

//--- magicNumber.inc
42

//--- magicNumber.cpp
int magic =
#include "magicNumber.inc"
;

▶ After preprocessing

// clang++ -E magicNumber.cpp
int magic =
42
;

34https://en.cppreference.com/w/cpp/preprocessor/include

https://en.cppreference.com/w/cpp/preprocessor/include

69

Preprocessor: Include Path

▶ #include "file"
▶ Search order: current directory, include path, system path
▶ Convention: use for files in current project

▶ #include <file> – search include path, then system path
▶ Search order: include path, system path
▶ Convention: use for libraries and system includes

▶ Compiler flag: -I<directory> – add directory to include path
▶ CMake: target_include_directories(target PUBLIC src/)

▶ Typical: add root of project source to include path
⇒ All files can be included by “absolute path”

70

Preprocessor: #define36

▶ #define SOMENAME – define a macro with the given name
▶ Can have an optional textual replacement
▶ #undef – undefined previously defined macro

#define EMPTY
#define return never
#define ANSWER 42
#define FUNC_DECL int getAnswer()
#undef return
FUNC_DECL { EMPTY return ANSWER; EMPTY }
// Preprocessed to:
// int getAnswer() { return 42; }

Don’t use the preprocessor like this, this is primarily for illustration.35

35NB: Re-defining keywords is undefined behavior if the standard library is included.
36https://en.cppreference.com/w/cpp/preprocessor/replace

https://en.cppreference.com/w/cpp/preprocessor/replace

71

Preprocessor: #define – Example

Quiz: What does the function f return?

#define ONE 1
#define TWO (ONE + ONE)
#define FOUR TWO+TWO
#define SIXTEEN FOUR*FOUR
int f() { return (SIXTEEN + FOUR) * TWO + TWO; }

A. (compile error) B. 2 C. 26 D. 42

Don’t use the preprocessor like this, this is primarily for illustration.

72

Preprocessor: Pre-defined Macros

▶ Some macros are pre-defined by the compiler
▶ Few are standardized, others vary between compilers
▶ Typically begin with double-underscore

Examples:
▶ __cplusplus – used C++ standard, e.g. 202302L
▶ __FILE__ – name of the current file
▶ __x86_64__ – defined if compiling for x86-64

▶ Compiler flag -D<macroname>=<expansion> – define a macro with the
(optional) expansion

73

Preprocessor: Conditions37 (1)

▶ #if <expr>/#elif <expr>/#ifdef <macro>/#ifndef <macro>/
#else/#endif – conditionally compile part of code
▶ Use cases: architecture-dependent code, code only for debug builds

▶ Expressions can use defined(MACRO) to test whether a macro is defined
▶ Preprocessor expressions only operate on macros!

#if defined(__x86_64__)
// x86-64-specific code goes here
#elif defined(__aarch64__)
// aarch64-specific code goes here
#else
// architecture-independent code goes here
#endif

37https://en.cppreference.com/w/cpp/preprocessor/conditional

https://en.cppreference.com/w/cpp/preprocessor/conditional

74

Preprocessor: Conditions (2)

▶ #error – cause compilation to fail with given message

#if defined(__x86_64__) || defined(__aarch64__)
// x86-64 and aarch64 code goes here
#else
#error Unsupported architecture!
#endif

#if 0 // #if 0 can be used for comments, can be nested (unlike /* */)
void commentedOut() {}
#if 0
void moreCommentedCode() {}
#endif
#endif

75

Preprocessor: Conditions (3)

Quiz: What does the function f return?

int j = 5;
#if j * j == 25
int f() { return j * j; }
#else
int f() { return 20; }
#endif

A. (compile error) B. depends on j C. 20 D. 25

Don’t use the preprocessor like this, this is primarily for illustration.

76

Preprocessor: Function-Like Macros

▶ Macros can have arguments, so they look like functions
▶ Again, purely textual replacement, no semantics

▶ Wrap all parameters in parentheses to avoid precedence issues

#define MIN(a,b) ((a)<(b)?(a):(b))

int min3(int a, int b, int c) {
// Preprocessed to:
// return ((((a)<(b)?(a):(b)))<(c)?(((a)<(b)?(a):(b))):(c));
return MIN(MIN(a, b), c);

}

Don’t use the preprocessor like this, this is primarily for illustration.

77

Preprocessor: Function-Like Macros (Quiz)

Quiz: Why is this macro problematic?

#define MIN(a,b) ((a) < (b) ? (a) : (b))

A. One parameter is evaluated multiple times.
B. The unnecessary parenthesis make the code difficult to read.
C. The macro doesn’t compute the minimum on unsigned integers.

▶ Don’t do this — we’ll cover modern replacements later

78

Preprocessor: Recommendations

Avoid if possible!

▶ Many pitfalls, code harder to read/analyze/debug
▶ Many use-cases have modern, safer C++ replacements (see later)

▶ No rule without exceptions...
▶ Some older code bases use preprocessor heavily

▶ Primary reason we cover it so extensively here

79

Runtime Checks for Debugging: assert

▶ assert(expr) – abort program if assertion is false
▶ Use to check invariants

▶ When NDEBUG is defined, assert generates no code
▶ CMake automatically defines NDEBUG in release builds

#include <cassert>
double div(double a, int b) {
assert(b != 0 && "divisor␣must␣be␣non-zero");
return a / b;

}

80

assert – Implementation

▶ assert(expr) is a preprocessor macro
⇒ Expression gets removed from source code when NDEBUG is defined!

//--- /usr/include/assert.h (glibc) (excerpt) (code simplified for slide)

/* void assert (int expression);

If NDEBUG is defined, do nothing.
If not, and EXPRESSION is zero, print an error message and abort. */

#ifdef NDEBUG
define assert(expr) ((void)(0))
#else
define assert(expr) ((expr) ? (void)(0) : __assert_fail(#expr, /*...*/))
#endif

81

Multiple Source Files

▶ C++ source files know nothing about each other
▶ Other than #include, which is just copy-paste

How do they know what functions other files define?

⇝ Explicit declarations

82

Declarations38

▶ Declarations introduce names
▶ Names must be declared before they can be referenced

▶ Variables: int x;
▶ Functions: void fn();
▶ Namespace: namespace A { }
▶ Using: using A::x;
▶ Class: class C;
▶ . . .

38https://en.cppreference.com/w/cpp/language/declarations

https://en.cppreference.com/w/cpp/language/declarations

83

Definition40

▶ A declared name can be used, but: most uses require39 a definition
▶ Reading/writing value or taking address of an object
▶ Calling or taking address of function

▶ Most declarations are also definitions, with some exceptions
▶ Function declaration without body
▶ Variable declarations with extern and no initializer

39Formally called odr-use
40https://en.cppreference.com/w/cpp/language/definition

https://en.cppreference.com/w/cpp/language/definition

84

Function Declarations: Example

▶ Forward declaration necessary for cyclic dependencies

void bar(int n); // declaration, no definition

void foo(int n) { // declare + define foo
std::println("foo");
if (n > 0)
bar(n - 1); // OK, bar declared above

}

void bar(int n) { // re-declare + define bar
std::println("bar");
if (n > 0)
foo(n - 1); // OK, foo declared above

}

85

Variable Declarations: Example

extern int global; // declaration
int otherGlobal; // declarartion + definition, zero-initialized

int readGlobal() {
return global;

}

int global = 5; // re-declaration + definition

▶ The first declaration is rather useless, could move definition there

86

cv-Qualifier: const and volatile41

▶ Part of the type, can appear in variable declarations
▶ const – object cannot be modified
▶ volatile – object access has a side-effect

▶ E.g., direct hardware access, communication with signal handlers

void function() {
int a = 4;
const int b = a;
a = 0; // OK
b = 10; // ERROR: assignment of read-only variable
volatile int v = 5; // will not be optimized out

}

41https://en.cppreference.com/w/cpp/language/cv

https://en.cppreference.com/w/cpp/language/cv

87

Compiler: Overview (2) – Multiple Files

hello.cpp hellohello.o
Compiler Linker

world.cpp world.o

clang++ -c -o hello.o hello.cpp
clang++ -c -o world.o world.cpp
clang++ -o hello hello.o world.o

▶ Compiler generates object file with machine code
▶ One compile invocation compiles one translation unit
▶ May contain references to not-yet-defined functions/globals

▶ Linker combines object files into executable
▶ Resolve all undefined references

88

Multiple Files
//--- foo.cpp
int globalVar = 7;
int foo() { return 6; }

//--- main.cpp
#include <print>
extern int globalVar;
int foo();
int main() {
std::println("{}", globalVar * foo());
return 0;

}

$ clang++ -std=c++23 -c -o foo.o foo.cpp
$ clang++ -std=c++23 -c -o main.o main.cpp
$ clang++ -o main main.o foo.o
$./main
42

89

Multiple Files: Undefined References
//--- foo.cpp
int bar();
int foo() { return 2 * bar(); }

//--- main.cpp
extern int undefinedGlobal;
int main() {
return undefinedGlobal;

}

$ clang++ -std=c++23 -c -o foo.o foo.cpp
$ clang++ -std=c++23 -c -o main.o main.cpp
$ clang++ -o main main.o foo.o
/usr/bin/ld: main.o: in function ‘main’:
main.cpp:(.text+0x8): undefined reference to ‘undefinedGlobal’
/usr/bin/ld: foo.o: in function ‘foo()’:
foo.cpp:(.text+0x8): undefined reference to ‘bar()’
clang++: error: linker command failed with exit code 1 (use -v to see invocation)

90

One Definition Rule (ODR)42

▶ At most one definition of a name allowed within one translation unit
▶ Exactly one definition of every used function or variable

must appear within the entire program

▶ (for more cases, exceptions, subtleties: see reference documentation)

NB: Some ODR violations make programs “ill-formed, no diagnostic required” —
only the linker can diagnose such violations

42https://en.cppreference.com/w/cpp/language/definition#One_Definition_Rule

https://en.cppreference.com/w/cpp/language/definition#One_Definition_Rule

91

One Definition Rule: Examples (Multiple Definitions)

int i = 0; // OK: declaration + definition
int i = 1; // ERROR: redefinition

//--- a.cpp
int foo() { return 1; }

//--- b.cpp
int foo() { return 2; }

clang++ -std=c++23 -c -o a.o a.cpp
clang++ -std=c++23 -c -o b.o b.cpp
clang++ a.o b.o
/usr/bin/ld: foo.o: in function ‘foo()’:
b.cpp:(.text+0x0): multiple definition of ‘foo()’; a.o:a.cpp:(.text+0x0):

first defined here

92

Header and Implementation Files

▶ Duplicating declarations into every file technically possible
▶ But: not maintainable, error-prone

Idea: split into implementation (.cpp) and header (.h) file:
▶ Header file: just declarations that should be usable in other files

▶ Conceptually: “API” of logical unit
▶ Also should include documentation

▶ Implementation file: definitions for names declared in header
▶ Conceptually: “implementation” of the API

Use preprocessor to copy-paste declaration

93

Header and Implementation Files: Example

//--- sayhello.h
#include <cstdint>
/// Print "Hello!" to standard output.
void sayHello(std::uint64_t number);

//--- sayhello.cpp
#include "sayhello.h"
#include <cstdint>
#include <print>
void sayHello(std::uint64_t number) { std::println("Hello␣{}!", number); }

//--- main.cpp
#include "sayhello.h"
int main() { sayHello(1); return 0; }

94

Header Guards

▶ Header files include other headers they require
▶ E.g., for defined data types (see later)

▶ Transitive includes: same header might be included multiple times!
▶ But: can cause problems due to redefinitions
⇝ Wrap entire header with #ifdef and unique identifier

//--- sayhello.h
#ifndef CPPLECTURE_HELLO_H
#define CPPLECTURE_HELLO_H

/// Print "Hello!" to standard output.
void sayHello();

#endif // CPPLECTURE_HELLO_H

▶ Non-standard alternative

//--- sayhello.h
#pragma once

/// Print "Hello!" to standard output.
void sayHello();

95

Header Files and #include

▶ Include (exactly) used header files at the beginning
▶ In both, header and implementation file
▶ Be careful about transitive includes

▶ Typically grouped by: (Example)

1. Accompanying header file
2. Project includes
3. Library includes
4. System includes

▶ Only include header files
▶ Never include implementation files!

96

Typical Project Layout

+-- CMakeLists.txt
+-- src/

+-- Module.cpp
+-- Module.hpp
+-- Printer.cpp
+-- Printer.hpp
+-- log/

+-- Log.cpp
+-- Log.hpp
+-- LogEntry.cpp
+-- LogEntry.hpp

+-- main.cpp

▶ Source files and header files
next to each other

▶ Entry points (main()) often separate
▶ Typically small files ⇝ easier testing

▶ CMakeLists defines
▶ add_executable with all sources (*.cpp)
▶ target_include_directories(... src)

▶ Alternative layouts exist

97

Tracking Changes in Source Code

//--- a.hpp
extern int globalA;
//--- a.cpp
#include "a.hpp"
int globalA = 10;
//--- square.hpp
#include "a.hpp"
int square(int n = globalA);
//--- square.cpp
#include "square.hpp"
void square(int n) {
return n * n;

}
//--- main.cpp
#include "square.hpp"
// ...

Quiz: a.hpp changed. Which files to
re-compile?

A. a.hpp
B. a.cpp
C. a.cpp, square.cpp
D. a.cpp, square.cpp, main.cpp
E. a.hpp, a.cpp, square.cpp, main.cpp

98

Tracking Changes in Source Code

▶ Incremental compilation: only recompile files that actually changed
▶ Substantially reduces build time during development

▶ Detecting files that need recompilation is non-trivial
▶ Transitive dependencies of header files

▶ Build systems like CMake use compiler to output list of used includes
▶ If any of the files changed, the source file needs recompilation

99

Linkage

▶ Linkage of declaration: visibility across different translation units

▶ No linkage: name only usable in their scope
▶ E.g., local variables

▶ Internal linkage: can only be referenced from same translation unit
▶ Global functions/variables with static
▶ const-qualified global variables without extern
▶ Declarations in namespace without name (“anonymous namespace”)

▶ External linkage: can be referenced from other translation units
▶ Global functions/variables (unless static)

100

Declaration Specifiers

▶ Variable/function declarations allow for additional specifier
▶ Controls storage duration and linkage

Specifier Global Func/Variable Local Variable

none static + external automatic + none
static static + internal static + none
extern static + external static + external
thread_local thread + ext/int thread + none

▶ And there’s inline (it deserves it’s own slide)

101

Declaration Specifiers – Example

//--- a.cpp
static int foo = 1;
int bar = 2;
static int add(int x, int y) { return x + y; }
int countMe() {
static int counter = 0; // static storage duration, no linkage
return counter++

}

//--- b.cpp
static int foo = 1; // OK
int bar; // ERROR: ODR violation

// OK: a.cpp’s and b.cpp’s add have internal linkage
static int add(int x, int y) { return x + y; }

102

Internal Linkage: Anonymous Namespaces

▶ Option A: Use static (only works for variables and functions)

static int foo = 1; // internal linkage
static int bar() { // internal linkage

return foo;
}

▶ Option B: Use anonymous namespaces (preferred)

namespace {
int foo = 1; // internal linkage
int bar() { // internal linkage

return foo;
}
} // end anonymous namespace

103

inline Specifier43

▶ inline – permit multiple definitions in different translation units
▶ No direct relation to the inlining optimization!

//--- sum.h
#ifndef SUM_H
#define SUM_H

inline int sum(int a, int b) {
return a + b;

}

#endif // SUM_H

//--- a.cpp
#include "sum.h"
// Now has definition of sum
// ...

//--- b.cpp
#include "sum.h"
// Now has definition of sum
// ...

▶ Linker keeps only one definition

43https://en.cppreference.com/w/cpp/language/inline

https://en.cppreference.com/w/cpp/language/inline

104

Declarations/Definitions, Preprocessor, Linker – Summary

▶ Preprocessor transforms source code before actual compilation
▶ Use (almost) exclusively for header guards and header includes

▶ Use assert() for invariants, but be aware that it is a macro
▶ Declarations introduce names, but not necessarily define them
▶ Exactly one definition of used func/var required in program
▶ For multiple files, separate header and implementation files
▶ There must be exactly one definition of every used name
▶ Exceptions: internal linkage and inline functions

105

Declarations/Definitions, Preprocessor, Linker – Questions

▶ Why is the use of function-like macros problematic?
▶ What are state modifications inside assert() problematic?
▶ What is the difference between a declaration and a definition?
▶ How to declare functions and global variables?
▶ Why is the header guard important?
▶ Why is including C++ implementation files (.cpp) a bad idea?
▶ What does the static specifier do on local variables?
▶ What is the effect of an unnamed namespace?

	Declarations/Definitions, Preprocessor, Linker
	Preprocessor
	Assertions
	Declaration & Definitions
	Linker
	One Definition Rule
	Header and Implementation Files
	Linkage

