
366

Code Generation for Data Processing
Lecture 12: Query Compilation

Alexis Engelke

Chair of Data Science and Engineering (I25)
School of Computation, Information, and Technology

Technical University of Munich

Winter 2022/23



367

Motivation: Fast Query Execution

I Databases are often used in latency-critical situations
I Mostly transactional workload

I Databases are often used for analyzing large data sets
I Mostly analytical workload; queries can be complex
I Latency not that important, but through-put is

I Databases are also used for storing data streams
I Streaming databases, e.g. monitoring sensors
I Throughput is important; but queries often simple



368

Data Representation

I Relational algebra: set/bag of tuples
I Tuple is sequence of data with different types
I All tuples in one relation have same schema
I Order does not matter
I Duplicates might be possible (bags)

I Might have special values, e.g. NULL

I Values might be variably-sized, e.g. strings

I But: databases have high degree of freedom wrt. data representation



369

Query Plan

I Query often specified in “standardized format” (SQL)

I SQL is transformed into (logical) query plan
I Logical query plan is optimized

I E.g., selection push down, transforming cross products to joins,
join ordering

I Physical query plan
I Selection of actual implementation for operators
I Determine use index structures, access paths, etc.



370

Query Plan: Subscripts

I Query plan strongly depends on query

I Operators have query-dependent subscripts
I E.g., selection/join predicate, aggregation function, attributes
I Implementation of these also depends on schema

I Can include arbitrarily complex expressions

I Examples: onHJ
s.matrnr=h.matrnr , σa.x<5·(b.y−a.z)



371

Subscripts: Execution

I Option: keep as tree, interpret
+ Simple, flexible
− Slow

I Option: compile to bytecode
+ More efficient
− More effort to implement, some compile-time

I Option: compile to machine code
I Code can be complex to accurately represent semantics
+ Most efficient
− Most effort to implement, may need short compile-times



372

SQL Expressions

I Arithmetic expressions are fairly simple
I Need to respect data type and check for errors (e.g., overflow)
I Numbers in SQL are (fixed-point) decimals

I String operations can be more complex
I like expressions
I Regular expressions – strongly benefit from optimized execution
I But: full-compilation may not be worth the effort

often, calling runtime functions is beneficial

I Support Unicode for increased complexity



373

Query Execution: Simplest Approach

onHJ
s.matrnr=h.matrnr

studenten hoeren

I Execute operators individually
I Materialize all results after each operator
I “Full Materialization”

+ Easy to implement
+ Can dynamicnamically adjust plan
− Inefficient, intermediate results can be big



374

Iterator Model51

I Idea: stream tuples through operators
I Every operator implements set of functions:

I open(): initialization, configure with child operators
I next(): return next tuple (or indicate end of stream)
I close(): free resources

I Current tuple can be pass as pointer or held in global data space
I Possible: only single tuple is processed at a time

51G Graefe. “Volcano—an extensible and parallel query evaluation system”. In: IEEE Transactions on Knowledge and Data
Engineering 6.1 (1994), pp. 120–135.



375

Iterator Model: Example
struct TableScan : Iter {
Table* table;
Table::iterator it;
void open() { it = table.begin(); }
Tuple* next() {
if (it != table.end())
return *it++;

return nullptr;
} };

struct Select : Iter {
Predicate p;
Iter base;
void open() { base.open(); }
Tuple* next() {
while (Tuple* t = base.next())
if (p(t))
return t;

return nullptr;
} };

struct Cross : Iter {
Iter left, right;
Tuple* curLeft = nullptr;
void open() { left.open(); }
Tuple* next() {
while (true) {
if (!curLeft) {
if (!(curLeft = left.next()))
return nullptr;

right.open();
}
if (Tuple* tr = right.next())
return concat(curLeft, tr);

curLeft = nullptr;
}

}
};

I HashJoin builds hash table on first read; materialization might be useful



376

Iterator Model

I “Pull-based” approach
I Widely used (e.g., Postgres)
I Often have separate function for first() or rewind

+ Fairly straight-forward to implement
+ Avoids data copies, no dynamic compilation
− Only single tuple processed at a time, bad locality
− Huge amount virtual function calls



377

Push-based Model52

I Idea: operators push tuples through query plan bottom-up

I Every operator implements set of functions:
I open(): initialization, store parents
I produce(): produce items

I Table scan calls consume() of parents
I Others call produce() of their child

I consume(): consume items from children, push them to parents

I Only one tuple processed at a time

52T Neumann. “Efficiently compiling efficient query plans for modern hardware”. In: VLDB 4.9 (2011), pp. 539–550.



378

Push-based Model: Example

struct TableScan {
Table table;
Consumer cons;
void produce() {
for (Tuple* t : table)
cons.consume(t, this);

}
};
struct Select {
Predicate p;
Producer prod;
Consumer cons;
void produce() { prod.produce(); }
void consume(Tuple* t, Producer src) {
if (p(t))
cons.consume(t)

}
};

struct Cross : Iter {
Producer left, right;
Consumer cons;
Tuple* curLeft = nullptr;
void produce() { left.produce(); }
// Materializing one side might be better
void consume(Tuple* t, Producer src) {
if (src == left) {
curLeft = t;
right.produce();

} else { // src == right
cons.consume(concat(curLeft, t));

}
}

};



379

Push-based Model

I “Push-based” approach
I More recent approach

+ Fairly straight-forward, but less intuitive than iterator
+ Avoids data copies, no dynamic compilation
− Only single tuple processed at a time, bad locality
− Huge amount virtual function calls



380

Pull-based Model vs. Push-based Model53

I Two fundamentally different approaches
I Push-based approach can handle DAG plans better

I Pull-model: needs explicit materialization or redundant iteration
I Push-model: simply call multiple consumers

I Performance: nearly identical
I Push-based model needs handling for limit operations

otherwise table scan would not stop, even all tuples are dropped
I But: push-based code is nice after inlining

53A Shaikhha, M Dashti, and C Koch. “Push versus pull-based loop fusion in query engines”. In: Journal of Functional Programming
28 (2018).



381

Pipelining

I Some operators need materialized data for their operation
I Pipeline breaker: operator materializes input
I Full pipeline breaker: operator materializes complete input before producing

I Other operators can be pipelined (i.e., no materialization)

I Aggregations
I Join needs one side materialized (pipeline breaker on one side)
I Sorting needs all data (full pipeline breaker)

I System needs to take care of semantics, e.g. for memory management



382

Code Generation for Push-Based Model

I Inlining code in push-based model yields nice code

I No virtual function calls
I Producer iterates over materialized tuples and loads relevant data

I Tight loop over base table – data locality
I Operators of parent operators are applied inside the loop
I Pipeline breaker materializes result (e.g., into hash table)



383

Code Generation: Example

σs.matrnr=h.matrnr

×

studenten hoeren

struct Query {
Output out;
Table tabLeft, tabRight;
Tuple* curLeft = nullptr;
void produce() {
for (Tuple* tl : tabLeft) {
curLeft = tl;
for (Tuple* tr : tabRight) {
Tuple* t = concat(curLeft, tr);
if (t.s_matrnr == t.h_matrnr)
out.write(t);

}
}

}
};



384

How to Generate Code

I Code generator executes produce/consume methods
I Method bodies don’t do actual operations, but construct code
I E.g., call IRBuilder
I Call to helper functions for complex operations

e.g. hash table insert/lookup, string operations, memory allocation, etc.

I Resulting code doesn’t contain produce/consume methods
only loops that iterate over data
I No overhead of function calls

I Generate (at most) one function per pipeline
I Allows for parallel execution of different pipelines



385

What to Generate

I Code generation allows for substantial performance increase
I Fairly popular, even in commercial systems, despite engineering effort
I Competence in compiler engineering is a problem, though

I Bytecode
I Extremely popular: fairly simple, portable, and flexible

I Machine code through programming language (C, C++, Scala, . . . )
I Also popular: no compiler knowledge required, but compile-times are bad

I Machine code through compiler IR (mostly LLVM)
I Machine code through specialized IR (Umbra only)



386

What to Generate

Query Plan

VoilaMAT

PIT

Scala

CLite

C/C++ LLVM IR

LLVM MIR

Umbra IR

Query Program

Hekaton
LegoBaseVoila Umbra

HyPer

Em
itt

er

Compiler



387

Case Study: Amazon Redshift54

“Redshift generates C++ code specific to the query plan and the schema being
executed. The generated code is then compiled and the binary is shipped to the
compute nodes for execution [12, 15, 17]. Each compiled file, called a segment,
consists of a pipeline of operators, called steps. Each segment (and each step
within it) is part of the physical query plan. Only the last step of a segment can
break the pipeline.”

54N Armenatzoglou et al. “Amazon Redshift Re-invented”. In: SIGMOD. 2022.



388

Case Study: Amazon Redshift55

“Figure 7(a) illustrates [...] from an out-of-box TPC-H 30TB dataset [...]. The TPC-H
benchmark workload runs on this instance every 30 minutes and we measure the
end-to-end runtime. Over time, more and more optimizations are automatically applied
reducing the total work- load runtime. After all recommendations have been applied,
the workload runtime is reduced by 23% (excluding the first execution that is higher
due to compilation).

55N Armenatzoglou et al. “Amazon Redshift Re-invented”. In: SIGMOD. 2022.



389

Compile Times: Umbra

10-410-310-210-110-0
Latency [s]

0

2000 M

4000 M

6000 M

8000 M

10000 M

Th
ro

ug
hp

ut
[T

up
le

s/
s]

Interpreted Flying Start LLVM LLVM opt C (O3)

σ
2σ
3σ

Lower Latency

H
igher

Throughput

TPC-H sf=30, AMD Epyc 7713 (64 Cores, 1TB RAM)



390

Vectorized Execution

I Problem: still only process single tuple at a time
I Doesn’t utilize vector extensions of CPUs

I Idea: process multiple tuples at once
I Also allows eliminating data-dependent branches, which not well-predictable
I Esp. relevant when selectivity is between 10–90%

I Use of SIMD instructions requires column-wise store
I Row-wise store would require gather operation for each load
I Gather is very expensive



391

Vectorized Execution: SIMD Instructions

I Obvious candidate: initial selection over tables
I Load vector of elements, use SIMD operations for comparison
I Write back compressed result to temporary location

for use in subsequent operations
I Special compress instructions (AVX-512, SVE) highly beneficial

I Other operations much more difficult to vectorize
I Initial hash table lookup requires gather; collisions difficult
I When many elements are masked out, performance suffers



392

Vectorized Execution

I Bytecode interpretation substantially benefits from vectorized execution
I Key benefit: less dispatch overhead
I Typically much larger “vectors” (>1000)

I Comparison with non-vectorized machine code generation:
I Vectorization often beneficial for initial scan
I Code generation is faster than bytecode-interpred vec. execution
I But: a good vectorized engine is not necessarily slow

I Vectorized execution probably more popular than code generation



393

Query Compilation – Summary

I Databases have trade-off between low latency and high throughput
I Evaluation needed for operators and subscripts
I Subscripts easy to compile
I Operator execution: full materialization vs. pipelined execution
I Pull-based vs. push-based execution
I Push-based allows for good code generation
I Bytecode and programming languages are widely used in practice
I Vectorized execution improves performance without native code gen.



394

Query Compilation – Questions

I Why are low compile times important for databases?
I What is the difference between push-based and pull-based execution?
I Why does push-based execution allow for higher performance?
I How to generate code for a query?
I How does vectorized execution improve performance?
I Why do many database engines not use machine code generation?


	Query Compilation
	Overview
	Subscripts
	Query Execution


