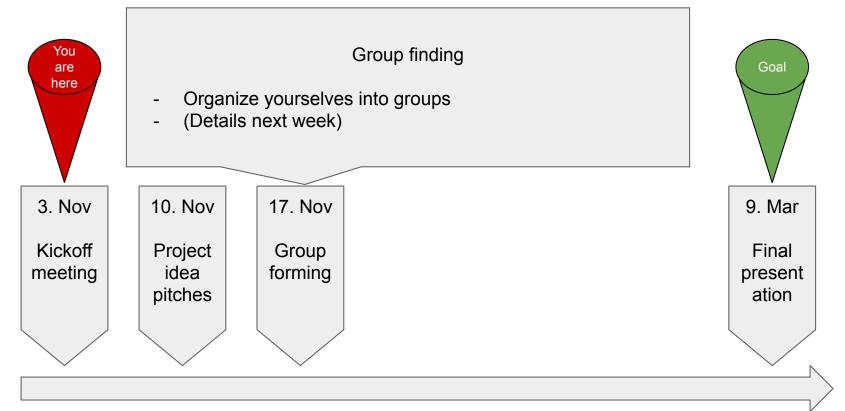
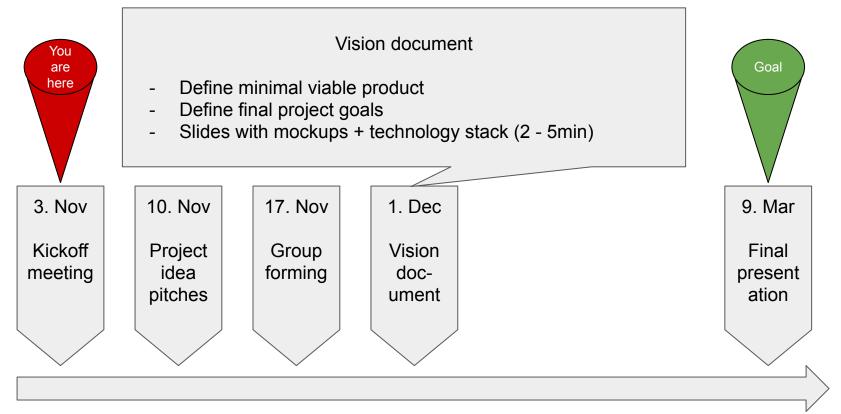
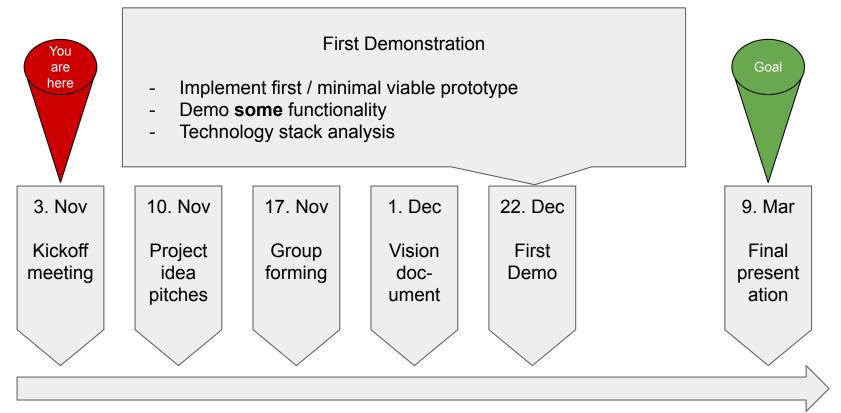
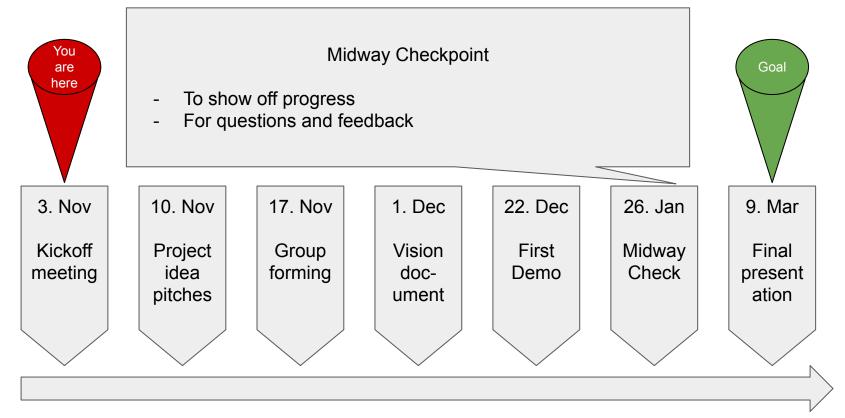

Programming Database Web Applications


Christian Winter (<u>winterch@in.tum.de</u>) Alexander van Renen (<u>renen@in.tum.de</u>) Prof. Alfons Kemper

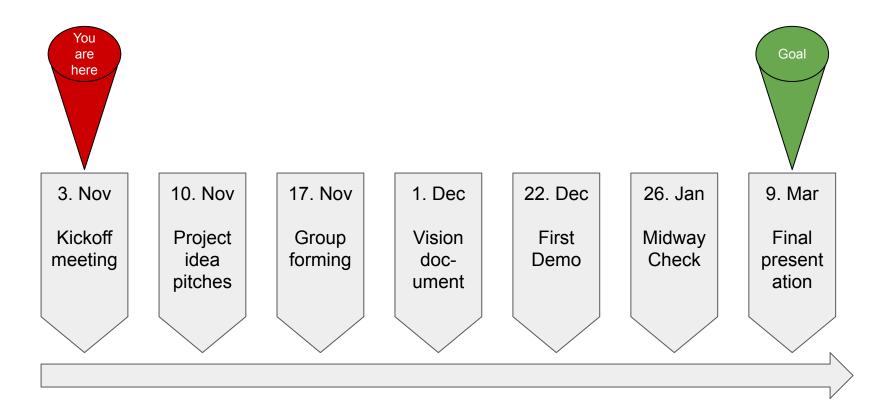

Topics

- 1. Course Organization
- 2. Inspiration for Projects
- 3. Prospeum Pitch




Vision Document

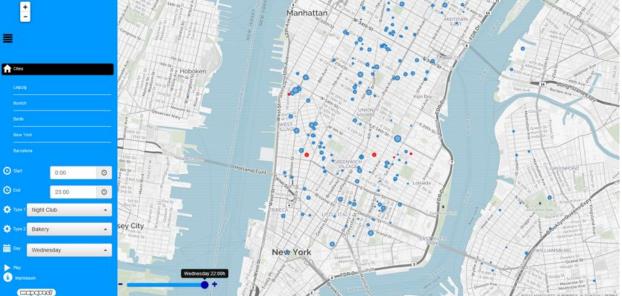
- Similar to scope + requirements statement
- Requirements statement ("Lastenheft"):
 - Motivation + Problem description
 - Project goal (what would the final product look like)
- Scope statement ("Pflichtenheft"):
 - System Architecture
 - Technology stack
 - Project scope (what will we implement for this course)
- Roughly 2-3 pages
- Due 1. December



First Demonstration: MVP

- Implement the first prototype
- Demo **some** functionality
- Technology Stack Analysis:
 - Justify the choices for the stack
 - Focus on database interaction
- Lessons learnt
 - What were the problems that you faced?
 - How did you solve them?
 - How did you divide the work among you?
- 5-8 slides
- Due 22. December

The Plan - Overview



MapViz (2016)

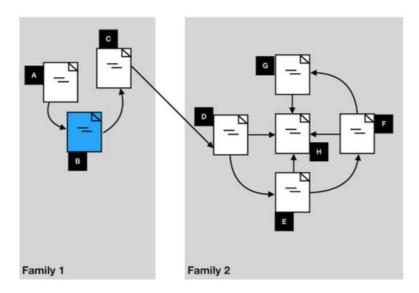
- Popular-Times feature by Google
- Feature shows relative amount of visitors at a specific place

ŧ

- Visualization of data
- Identify movement patterns of people

Pizza Ninja (2017)

 Crawl data from pizza delivery services


틯

- Decouple ordering from choosing a restaurant
- Order in a group

Research Graph (2019)

- Crawl online paper APIs
- Find familiarities between papers (weighted citations)
- Visualize !!!

#1 Smart Weather Forecast

Build a website to interactively explore these the differences between the forecasted weather and the actual (measured) weather.

- Allows professionals to identify weaknesses in weather models
- Detect which weather service is best for which location
- Analyse difference between forecast and measurement
- Temperature, wind, pressure ...
- Big data management: 100GB+ weather data

#2 Traffic Aware Routing

User wants to drive from A to B and wants to arrive by datetime X

When should he/she depart to minimize the travel time?

Tasks:

- Get necessary data from public data sources
- Design and create database
- Design and implement web interface
- Plot estimated travel (y axis) and departure times (x axis)

#3 phpMyAdmin for node.js

This project would allow web developers to configure their database in node js.

Tasks:

- Design and create secure management platform for a modern database.
- Could be done for postgres to help make it more popular in the node community.
- Many possibilities: Provide enhanced analytics, easy setup, management features, monitoring ...
- Contribution to open source community.

#4 Tutor Tool (!!!)

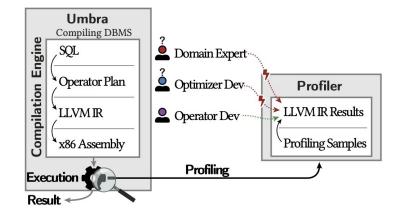
A website to help manage big lectures with multiple tutor groups.

Features:

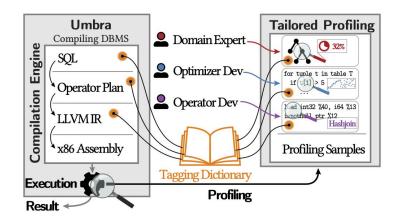
- Existing system
- Tutored accounts, tutor groups, bonus points, export, import
- If finished (and good), it will definitely be used !

#5 Plan Ahead

US has a number of National Parks and areas which do not have cellular coverage. Also, a number national parks do not have any options for food/water at the visitor centers.

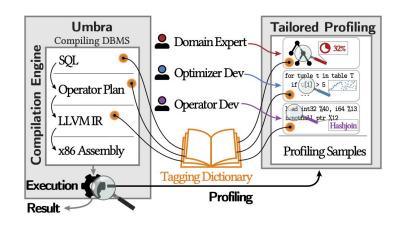

Tasks:

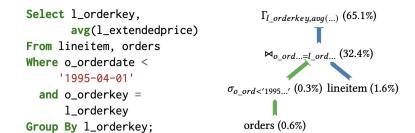
- Design and populate various databases for cellular coverage, and national parks that do not have food options etc
- Make an app that allows a user to plan a trip based on the data that you populated

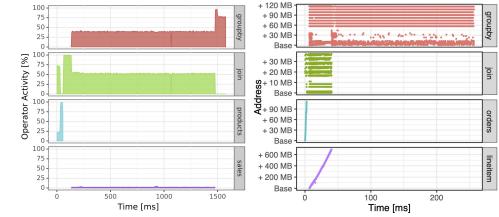

Compiling DBMSs use multiple abstraction levels. However, traditional profilers only report the results at the lowest level.

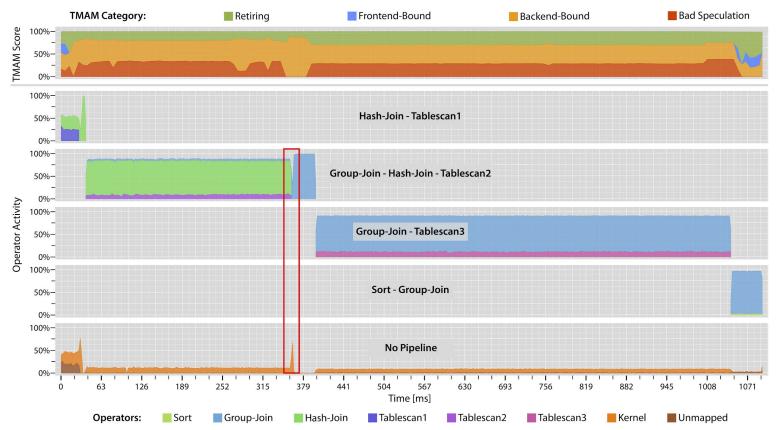
We developed a profiler that provides results at all abstraction levels.

The profiler provides the data as formatted CSV-file, but the visualizations are still prototypes.


Examples:




Select l_orderkey,	$\Gamma_{l_orderkey,avg()}$ (65.1%)
<pre>avg(l_extendedprice)</pre>	T
From lineitem, orders	M · · · · (32.49)
Where o_orderdate <	$\bowtie_{o_ord=l_ord} (32.4\%)$
'1995-04-01'	
and o_orderkey =	$\sigma_{o_ord<'1995'}$ (0.3%) lineitem (1.6%)
1_orderkey	
Group By 1_orderkey;	orders (0.6%)


1		<pre>loopTuples:(tablescan 2.4% hash join 45.7%)</pre>	
2		111	hash join
13	32.1%	%14 = load int32 %40, i64 %13	hash join
14	0.2%	%15 = isnotnull ptr %12	hash join
15	0.3%	<pre>condbr %15 %loopHashChain %nextTuple</pre>	hash join
16		loopHashChain: (hash join 1.9%)	
17	0.1%	<pre>%hashEntry = phi [%12, %loopTuples]</pre>	hash join
18	0.2%	%16 = getelementptr int8 %hashEntry,	hash join
19	1.1%	%17 = load int32 %16	hash join
20	0.3%	%18 = cmpeq i32 %5, %17	hash join
21	0.2%	<pre>condbr %18 %else %contProbe</pre>	hash join
22		else: (group by 50.0%)	
23	0.5%	%19 = getelementptr int8 %0, i64 786432	group by
24	2.2%	%20 = load int32 %19, %localTid	group by
25	9.8%	; // load values %22, %24, %26	group by
26	9.5%	%27 = sdiv i32 %22, %24	group by
27	9.6%	%28 = sdiv i32 %27, %26	group by
28			

Examples:

Your tasks:

- Design suited visualizations for the results of the different abstraction levels.
- Build an app to report the results from the CSV-file for the different levels.

Will be definitely used by the chair!

operator	pipeline	uir_code	<pre>src_line</pre>	dump_ linenr	time	addr	phys_addr	ev_name	period	сри
groupby1	groupby_join_join_t ablescan_partsupp 139711406319616	%13228 = call i64 TextRuntime::hashCRC (%12311, %13168)	TextRuntime.cpp: 585	730	9151245228 344180	139698211034120		mem_inst_retired. all_stores	500	4294967295
join2	join_tablescan_part 139998635408536	store int32 %8863, %8997	dump9.uir:496	496	9151245172 672389	139698115714648	9748225624	mem_inst_retired. all_stores	500	4294967295
sort1		%289 = load data128 %left	dump9.uir:68	68	9151245727 020600	139698219426512		mem_inst_retired. all_stores	500	4294967295

#7 Improving the Housing Market

ImmoScout recently started an API to their listings

- Find out what you can (legally) do with the data (ToS, request API key)
- Automatically extract good deals and notify the user
- Find dubious listings
- Visualize current trends by area/flat size

Also possible with other platforms (immowelt/wg-gesucht/ebay kleinanzeigen etc.)

A bit of inspiration...

SpiegelMining (<u>http://www.dkriesel.com/spiegelmining</u>)

BahnMining (<u>http://www.dkriesel.com/blog/2019/1229_video_und_folien_meines_36c3-vortrags_bahnmining</u>)

Talks also discuss ethics and code of conduct of mining public apis. Check them out!

One More Thing ...

Look for open data sets !

Google dataset explorer: <u>https://www.google.com/publicdata/directory</u>

Amazon co-purchasing set: <u>https://snap.stanford.edu/data/com-Amazon.html</u>

Flights: <u>http://stat-computing.org/dataexpo/2009/the-data.html</u>

IMDB: https://www.imdb.com/interfaces/

Wiki: <u>http://dumps.wikimedia.org</u>