
1

Cloud-Based Data Processing

Consensus

Jana Giceva



 Total order broadcast is very useful for state machine replication.

 Can implement total order broadcast by sending all messages via a single leader.

 Problem: what if the leader crashes / becomes unavailable?

 Manual failover:

a human operator chooses a new leader, and reconfigures each node to use a new leader.

Used in many databases. Fine for planned maintenance.

Unplanned outage? Humans are slow, may take a long time until the system recovers.

 Can we automatically choose a new leader?

Fault-tolerant total order broadcast

2



 Traditional formulation of consensus:

several nodes want to come to an agreement about a single value.

 In context of total order broadcast – this value is the next message to be delivered.

 Once one node decides on a certain message order, all nodes will decide the same order.

 A consensus algorithm must satisfy the following properties:

 Uniform agreement – no two nodes decide differently

 Integrity – no node decides twice

 Validity – if a node decides value v, then v was proposed by some node.

 Termination – every node that does not crash, eventually decides some value.

 Common consensus algorithms:

 Paxos: single-value consensus

 Multi-Paxos: generalization to total order broadcast

 Raft, Viewstampted Replication, Zab: FIFO-total order broadcast by default

Consensus and total order broadcast

3



 Paxos, Raft, etc. assume a partially synchronous, crash-recovery system model.

 Why not asynchronous?

 FLP result (Fischer, Lynch, Paterson):

There is no deterministic consensus algorithm that is guaranteed to terminate in an asynchronous 

crash-stop system model.

 Paxos, Raft, etc. use clocks only used for timeouts/failure detector to ensure progress. Safety 

(correctness) does not depend on timing.

 There are also consensus algorithms for a partially synchronous Byzantine system model 

(used in Blockchain).

Consensus system models

4



 Leader election

 Multi-Paxos, Raft, etc. use a leader to sequence messages.

 Use a failure detector (timeout) to determine suspected crash or unavailability of a leader.

 On suspected leader crash, elect a new one.

 Prevent two leaders at the same time (“split brain” problem).

 Ensure <= 1 leader per term:

 Term is incremented every time a leader election is started

 A node can only vote once per term

 Require a quorum of nodes to elect a leader in a term

Core of consensus: Leader

5



 Can guarantee unique leader per term.

 Cannot prevent having multiple leaders from different terms.

Example: node 1 is leader in term 𝑡, but due to network partitioning, it can no longer communicate

with nodes 2 and 3. 

Nodes 2 and 3 may elect a new leader in term 𝑡 + 1.

Node 1 may not even know that a new leader has been elected!

Can we guarantee there is only one leader?

6



 For every decision (message to deliver), the leader must first get acknowledgement from a quorum.

Checking if a leader has been voted out.

7



The Raft consensus algorithm



Node state transitions in Raft

9



 http://thesecretlivesofdata.com/raft/

Graphical visualization of the Raft protocol

10

http://thesecretlivesofdata.com/raft/


 https://raft.github.io/

Reference for paper and pseudo-code

11

https://raft.github.io/


 Consensus brings a list of safety properties to systems where everything else is uncertain:

 Support for agreement, integrity and validity, and fault-tolerant!

 But that all comes at a cost:

 Synchronous-based replication

 Much worse performance than asynchronous 

 Strict quorum majority to operate

 Needs a minimum of 3 nodes to tolerate 1 failure, or minimum of 5 nodes to tolerate 2 failures

 Static membership algorithm

 Cannot simply add or remove nodes in the cluster

 Relies on timeouts to detect failed nodes

 Known to have issues for highly variable network delays

Limitations of consensus

12



Case study: ZooKeeper

Membership and Coordination Services



The material covered in this class is mainly based on:

 The book “Designing Data-Intensive Applications – The Big Ideas Behind Reliable, Scalable, and 

Maintainable Systems” by Martin Kleppmann (Chapter 9) (link)

 Slides from “Distributed Systems” course from University of Cambridge (link)

 Raft (https://raft.github.io/)

References

32

https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://martin.kleppmann.com/2020/11/18/distributed-systems-and-elliptic-curves.html
https://raft.github.io/

