
Graph Storage: How good is CSR really?

Mahammad Valiyev

December 10, 2017

Abstract

In the last decade, the data size is growing exponentially and processing
those data is becoming a difficult problem. Nowadays researchers and indus-
try have been interested in the analysis of the graph to get deep understanding
of social networks. Many of these graphs used in industry have become very
large, containing hundreds of millions of nodes and edges. In this paper, I com-
pare Compressed Sparse Row(CSR) as a fast graph container to Adjacency
List(AL) in terms of latency and memory consumption. My CSR implemen-
tation also supports updates on graph. On a static graph, CSR gives up to
3x better performance over AL Implementation on Depth-First-Search(DFS)
and Breadth-First-Search(BFS) and sometimes better performance on Dijk-
stra algorithm(Shortest path).

Keywords: Graph databases, Compressed Sparse Row

1 Introduction
Graph analysis have become more popular in the last few years. Graphs are usu-

ally used to represent social networks in which vertices indicate users and edges in-
dicate friendship between users. Facebook has 1.39 billion active users as of 12/2014
with more than 400 billion edges [1]. Therefore, processing big graphs is consuming
more time as the number of users and relationships significantly increased. The
proposed approach(CSR) gives slightly better performance over the other approach
on DFS algorithm. BFS algorithm in general is faster than DFS as it doesn’t have
an additional overhead of recursion. CSR gives a bit much better on BFS. In the
following subsections, I will give some details about CSR and two variants of AL.
In the following, I will give some details about existing approaches in Section 2,
then followed by implementation details(Section 3) and an evaluation(Section 4).
In Section 5 I will give conclusion about how good CSR is really.

2 Related Works
STINGER [2] is a mutable graph container which is capable of handling up-

dates which can be inserted parallel. it uses a fixed-size chained buckets to keep
edges. Due to its loosely synchronized parallel updates that only maintains physical
consistency of the data structure, a query may see the graph in a state that never
existed. Each bucket contains only edges of the same type.
LLAMA [3] is a new extention to CSR with the support of versioning. It provides
consistent snapshots on the graph and allow multiple accesses to them. At first,
updates are buffered in a change set and after some period of time creates a new
snapshots with the updates on change set. The main drawback is that the method
usually has many existing snapshots and accessing to the newer snapshots consume
more time. it merges old snapshots and apply a delta to CSR.

1

ASGraph [4] is also a new extention to which reduce update time to very small
latency by breaking up the edge list of CSR into multiple chunks and that support
efficient mutation and employing an append-only scheme for updates.

3 Implementation
I have implemented a nice graph interface for CSR graph container and two

variants of AL in which graph algorithms can easily be built upon on that. Thus,
graph algorithms are independent of the type of graph container. Moreover, modi-
fications on graph containers don’t affect the algorithms. For the future work, new
algorithms can easily be implemented using the methods of graph containers. In
the following subsections, I will briefly explain all three graph containers and show
how the edges are actually stored in the memory for sample graph in Figure 1.

1

2

3

4

Figure 1: Small sample graph with four nodes

3.1 Compressed Sparse Row
In CSR format, all edges are stored in the same array called edges and an ad-

dditional offsets array is used to get the first neighbor of a node. For each node,
the number of neighbors for a node n can be calculated offsets[n+1]-offsets[n].
Figure 1 shows a small graph with four nodes with few edges and Figure 2 shows
the corresponding CSR.

0 1 2 3 4 5 6 7

2 3 4 4 1 4 2 3

0 3 4 6 8

1 2 3 4 −

edges

offsets

Figure 2: CSR format of the sample graph

All edges are kept densely in the main memory. While iterating over all neighbors
of all nodes, the common task in graph algorithms is mostly memory accesses which
are usually sequential accesses. As it is a sequential access, the accesses to edges
and offsets arrays are also sequential. It is indeed a beneficial memory access
pattern as CPU can easily predict and prefetch. Therefore most of the memory
accesses hit the cache. In case of non-sequential access, CSR is not cache-friendly.

2

3.2 Ajdacency List with std::list

In this format, all edges which are outgoing are stored in std::list, thus at
the beginning for each node a std::list is kept. According to the structure of
std::list, the elements of std::list are not located sequentially in the memory.
Moreover, it is not cache-friendly at all.

head of 1

2 3 4
null

head of 2

4
null

head of 3

1 4
null

head of 4

2 3
null

Figure 3: The storage structure of the graph on Figure 1 using std::list.

As shown from Figure 3, std::list doesn’t show any cache friendly structure.
Thus, usage of it only gives us better update latency.

3.3 Ajdacency List with std::vector

Second approach of Adjacency List uses std::vector structure to keep outgoing
edges for each node. std::vector also uses an array structure to keep the elements,
however whenever it hits the capacity, it creates new doubled size array and copies
the contents of the old one including the newly added element, then removes the
old one. It may seem to be like a big overhead, but in reality it only does 3*n
additional operations for n inserts into it.

2 3 4edges[1]

4edges[2]

1 4edges[3]

2 3edges[4]

Figure 4: The storage structure of the graph on Figure 1 using std::vector.

As it is shown in Figure 4, std::vector implementation also has a cache-fiendly
structure.

4 Evaluation
All three approches are tested on different datasets which are generated ran-

domly. The number of users is 1,000,000. To make it as a real social network, the
number of neighbors differs from 50 to 200. The neighbors are actually selected

3

randomly. The graph that I generated is directed and weighted, as I need to run
Dijkstra Algorithm. In the following subsections, I discuss in which scenario CSR
gives better performance in terms of latency and memory consumption. My test
machine is a single socket server computer equipped with Intel(R) Core(TM) i7-
3930K CPU 6-core @ 3.20GHz and 64 GB of main memory. This server has 12
hardware cores (with hyperthreading enabled).

4.1 Algorithm comparisons
To get a feeling of how fast CSR is compared to Adjacency list, I evaluate three

different widely used and simple algorithms that cover a wide-ranging graph access
patterns.

Depth-first search and Breadth-first search

DFS is a mainly read-only graph search algorithm which usually reads them
sequentially. However on BFS, it also read and write to an additional queue. Theo-
retically both algorithms should be O(n). However depending on the depth of tree
for DFS and the size of queue for BFS, one of the algorithms may perform better
than the other one. In the following section, due to the property of sequential read,
CSR performs better than Ajdacency List.

(a) Result for DFS (b) Result for BFS

Figure 5: Results of DFS and BFS for the graph with 1,000,000 nodes.

I test the system with 200 DFS and BFS in which it starts from a random node.
CSR is up to 3 times faster than std::list approach. For std::vector, CSR
finishes it at least 15 secs earlier.

Dijkstra Algorithm

Dijkstra algorithm solves the shortest path problem between two nodes in the
graph. The complexity of the algorithm is O(nlogn). Despite the fact that it heavily
reads the data from main memory, the most time consuming operation is insertion
into priority queue which takes O(logn). Thus in the evaluation of Dijkstra, it is
difficult to interpret anything from the result.

4

Figure 6: Results of Dijkstra for the graph with 1,000,000 nodes.

CSR is still better on Dijkstra algorithm than std::list approach. It is difficult
to say whether CSR or std::vector is better than the other one.

4.2 Complex Scenario
I have implemented two different update structures for CSR. As it is seen from

the structure of Adjacency List on Section 3, updates on Adjacency List is super
fast operation which just appends the newly added edge to the corresponding list.
It takes much less than a milli second. For CSR, it is too heavy operation to handle.
In the following subsection, I will explain how both update structures works and
how fast they are.

Simple Update

Assume that the directed graph has V nodes and E edges. To keep the structure
of CSR, we need to allocate a new array with E+1 edges for each newly added edge.
Let’s call the new array as edges’ and the new edge is e=(v,u). First of all, I copy
all the content of the array edges from offsets[1] to offsets[v+1] and the rest
content of the array edges to the array edges’ starting from offsets[v+1] +
1 index. Then I set edges’[offsets[v+1]]=u. At the end, I increment all the
elements from offsets[v+1] to offsets[V+1]. To copy the content of array, I use
std::memcpy function which is better than std::memmove function.

Light Update

As it is shown from the results of Simple Update , it is the most time consum-
ing operation for CSR format. A new update structure -Light Update- is a much
faster update method compared to Simple Update .
The new approach is built on top of the previous approach. As an addition, the
structure of CSR format should be modified in this method. Assume that we are
given a directed graph which has V nodes and E edges. edges array should have
more than |E |, which I call it as additional space. For each new upcoming edge,
CSR doesn’t need to allocate a new big edges array to store a new one. Let’s call
the new edge as e=(v,u). It does a new allocation whenever edges array hits the
capacity. If it is already full, the update is exactly the same as in Simple Update .
If the edges array still has some space to store new edges, I copy all the array
elements from offsets[v+1] into edges array starting from offsets[v+1] + 1
index. As there is intersection between source and destination, I use std::memmove

5

function to do this copy operation. Then I set the corresponding element to u and
increment corresponding elements of offsets array as it is in Simple Update . As
it is shown, CSR doesn’t do new allocation and copy all the array for each update.
The speed-up comes along with having very few new allocations and copying. The
latency for Light Update can simply be twice as less if the graph is unweighted,
as I am also updating the weights array for each new edge.

Figure 7: Latencies of both updates for the graph with 1,000,000 nodes.

As it is shown from Figure 7, Light Update always performs 13-15x faster
than Simple Update . This gives us a possibility to use CSR for temporal graphs
as well.

Real World Example

I evaulate the system in a mixed workload in which every 20th operation of
queries is an update query(Light Update) which adds a new edge to the graph.
Therefore, it gives us an overview of how good CSR is really on temporal graphs.

Figure 8: Latencies for mixed workload for the graph with 1,000,000 nodes.

Figure 8 shows that CSR is still performing better in the case of having every 20th
operation as update. Thus, CSR can be an option for temporal graphs. However,
Light Update is too heavy operation for much bigger graphs. Further investigation
should be done on bigger graphs.

6

An Interesting Approach to Real World Example

Real-world graphs are usually clustered. Therefore, the likelihood that a neigh-
bor is already in the cache is higher if you access them in a sorted manner. One
might label nodes in such a way that neighbors have similar ids. I have generated a
graph with 1,000,000 nodes in which each node has neighbors between 50 and 200
and all neighbors have similar ids.

(a) Result for DFS (b) Result for BFS

Figure 9: Results of DFS and BFS for the graph stores neighbors in sorted.

For DFS, keeping neighbors in sorted way gives us 1.6-2.1x less latency. However,
for BFS it doesn’t really decrease the time. One can interpret from here that it is
always better to keep neighbors sorted in CSR. In order to keep sorted structure,
additional overhead is just to do binary search to find the corresponding index for
new edge which is just O(logn).

4.3 Memory consumption
So far we only compared CSR with other two approaches in terms of latency.

For the real world use, memory consumption should be considered as one of the
main property.

neighbors
per node

mem(std:list)÷mem(CSR) mem(std:vector)÷mem(CSR)

50 7.33 1.41
65 7.46 2.01
80 7.55 1.66
95 7.62 1.42
110 7.67 1.23
125 7.7 1.15
140 7.73 1.85
155 7.76 1.68
170 7.78 1.54
185 7.79 1.42
200 7.81 1.31
Table 1: Ratio of memory consumption of CSR with other approaches.

std::list is usually implemented as doubly linked list. Because of this struc-
ture it uses much more memory. But according to the structure of std::vector,
each of them is at least half full for each node, whereas there are some empty places.
However CSR has only one memory overhead which is offsets array. As shown
from Table 1, CSR is always using less memory than the other approaches, at least
7 times less than std::list and around 1.15 times less than std::vector.

7

5 Conclusion
As it is shown from the results, CSR is not that superior to other two approaches.

But considering the fact that social networks are growing so fast nowadays, a slight
better approach significantly matters. While most analysis still focuses on static
graphs, in the future there will be huge demand on temporal graphs. As CSR itself
is not update-friendly, more investigation should be done on the variants of CSR.
The CSR library, together with two Adjacency List implementation and generation
of graphs, is available online at https://github.com/mehemmedv/DB_Imp_Seminar

References
[1] Ching, A., Edunov, S., Kabiljo, M., Logothetis, D., Muthukrishnan, S. (2015).

One trillion edges: Graph processing at facebook-scale. Proceedings of the VLDB
Endowment, 8(12), 1804-1815

[2] Ediger, D., McColl, R., Riedy, J., Bader, D. A. (2012, September). Stinger: High
performance data structure for streaming graphs. In High Performance Extreme
Computing (HPEC), 2012 IEEE Conference on (pp. 1-5). IEEE.

[3] Macko, Peter, Virendra J. Marathe, Daniel W. Margo, and Margo I. Seltzer.
"LLAMA: Efficient graph analytics using large multiversioned arrays." In Data
Engineering (ICDE), 2015 IEEE 31st International Conference on, pp. 363-374.
IEEE, 2015.

[4] Haubenschild, Michael, Manuel Then, Sungpack Hong, and Hassan Chafi. "AS-
Graph: a mutable multi-versioned graph container with high analytical perfor-
mance." In Proceedings of the Fourth International Workshop on Graph Data
Management Experiences and Systems, p. 8. ACM, 2016.

8

	Introduction
	Related Works
	Implementation
	Compressed Sparse Row
	Ajdacency List with std::list
	Ajdacency List with std::vector

	Evaluation
	Algorithm comparisons
	Complex Scenario
	Memory consumption

	Conclusion

