
1 / 22

NoSQL

Thomas Neumann



2 / 22

What are NoSQL databases?

• hard to say
• more a theme than a well defined thing

Usually some or all of the following:
• no SQL interface
• no relational model / no schema
• no joins, emphasize on key/value pairs
• scale out to many machines
• weak or no consistency guarantees



3 / 22

Why not relational databases?

Some commonly stated reasons:
• RDBMS are hard to use
• do not scale to ”web-scale”
• relational model is too restrictive
• NoSQL is faster, scales better

Some of this is true (as we will see), but most likely will not affect you!



4 / 22

Illustrational Web Video

MongoDB is web scale
http://www.xtranormal.com/watch/6995033



5 / 22

The Performance Argument

Voter benchmark: People call to vote for American Idol
• at most 12 votes are counted per caller-id
• very simple transaction model

On a 8 core Intel Xeon X5570 with 64GB main memory:
• MongoDB: ca. 10,000 transactions per second
• relational main-memory database: ca. 1,000,000 transactions per
second

Do not blindly follow a hype, do the math!



6 / 22

Sucess stories from the net

• Why we chose MongoDB [...] Very easy to install. [...] Very easy
replication

• [...] We cut down the names to 2-3 characters. This is a little more
confusing in the code but the disk storage savings are worth it [...] a
massive saving.

• [...] Was it the right move? Yes. MongoDB has been an excellent
choice [...] MongoDB is going to be very cool!

• MongoDB works fine, but the same query is 25 times faster in
PostgreSQL

• [...] MongoDB will win once I have 26 machines



7 / 22

Technical Arguments in favor of NoSQL

CAP-Theorem: In a distributed system you can only have two of the
following

• Consistency
I all nodes see the same data at the same time

• Availability
I node failures do not prevent survivors from continuing to operate

• Partition Tolerance
I he system continues to operate despite arbitrary message loss

Basis for the claim the RDBMS are not ”web-scale”



8 / 22

Scalability

How to scale to thousands of nodes?

• traditional RDBMS usually scale to less than 100 node
• transaction semantic requires a lot of coordination
• two phase commit is expensive
• O(n2) network connections
• does not scale to thousands of nodes

Partitioning helps, but usually requires human interaction.



9 / 22

Key/Value - Stores

Life would be much simpler if we only stored key/value pairs
• only (or mostly) point-access
• transactions operate on a single item
• allows for simple partitioning
• by spreading keys over nodes we distribute the data
• usually scales perfectly

Life is much simpler if you only care about individual values...



10 / 22

Distributed Hash Tables

Basis for many distributed storage schemes:
• spread a hash table over a large number of nodes
• nodes can enter and leave (more or less) at will
• nodes know only a few other nodes
• offers scalable distributed storage

Many algorithms exists: Chord, Pastry, P-Grid, etc.
• usual idea: hash nodes into hash domain
• nodes responsible to for hash values near to them



11 / 22

Distributed Hash Tables - Chord

Both items and nodes are hashed into ring structure

Finger tables similar to skip lists



12 / 22

Expressiveness

• DHTs are one giant Key→Value table
• only three operations: lookup, insert, delete
• each operations is limited to a single data item
• range queries not supported efficiently

This is a severe limitation. Scalability is obtained by eliminating functionality



13 / 22

What about Consistency?
We want our database to be consistent

• as long as transactions operate on single items (note: strong
restriction) life is relatively simple

• one node is responsible for the data item
• as long as all changes are atomic or idempotent everything is fine

But: nodes will be replicated for availability
• ensuring consistency adds the same costs as in standard distributed
RDBMSs

• most systems aim at ”eventual consistency”
• after waiting long enough (without updates in between), all replicas
will have the same value

This is usually unacceptable if the data is valuable (e.g., involves money)!



14 / 22

What about Multi-Item Transactions?

Short answer: not supported

Long answer: not supported very well
• one can ignore the issue and run multi single-level transactions
• completely messes up consistency
• some systems offer explicit locking
• some problems as in distributed RDBMSs



15 / 22

How to Query the Data

Data is spread over thousands of nodes
• point query are supported by DHTs
• range queries are not
• aggregation queries are very important

Requires some very heavy machinery inside the NoSQL database
• query response time usually multiple seconds, even minutes
• not really suited for interactive queries
• data will change during query execution
• usually queries inconsistent data



16 / 22

Map/Reduce

Programming paradigm that allows for easy parallelization. Sequence of two
operations:
1. Map: (k1, v1) → list(k2, v2)

I constructs key-value pairs from input pair
I can be computed in parallel, no interaction

2. Reduce: (k2, list(v2) → list(k3, v3)
I reduces all k2 pairs into one (or more) value
I different k2s can be parallelized

Simple, scalable scheme, but involves massive movement of data



17 / 22

Map/Reduce - Canonical Example

Word count is the classical example:

1. map(documentId ,document)
for each word w in document

emit (w ,1)
2. reduce(word ,counts)

count=0
for each c in counts

count+ = c
emit(word ,count)

Computes the frequency of each word



18 / 22

Map/Reduce - Database Queries
Can also be used to query distributed key/value stores:

1. map(customerId ,customerData)
emit (customerId ,customerData.amount)

2. reduce(customerId ,revenues)
sum = 0
for each r in revenues

sum+ = r
emit(customerId ,r)

3. reduce(customerId ,revenue)
if revenue > 10000

emit (customerId ,revenue)

• executed across all nodes
• very heavy operation



19 / 22

Systems

There is a huge number of NoSQL systems around
• BigTable

I key/value store used inside Google, row/column/time dimensions, slicing
• Casandra

I key/value store with tunable consistency
• MongoDB

I document centric, JavaScript driven, relatively rich queries
• CouchDB

I document centric, JavaScript driven, MVCC
• Dynamo, Project Voldemort, Hbase, ...

Unfortunately all incompatible, all different in some aspects



20 / 22

Who needs this ultra-scalability?

Going fully ”web-scale” makes sense in a few cases:
• the data amount is huge

I petabytes of data
• consistency is not important

I click streams, not payment data
• access is mostly single-item

I more complicated queries are expensive

But: very few companies have these characteristics



21 / 22

The real reason why (some) people use NoSQL: Money

A 1TB main-memory machine costs ca. 60K

• most people do not have large amounts of data anyway
• or if they have, the data is not that important
• enterprise database systems are expensive
• NoSQL products tend to be free or cheap
• startups do not have money

But is this really an argument for NoSQL?



22 / 22

Conclusion

NoSQL is a fuzzy term, but usually
• stores non-relational data
• aims at scalability to thousands of nodes
• sacrifices consistency
• support mainly simple queries efficiently

Mainly makes sense if
• data is really huge
• and not very valuable

Otherwise, use a RDBMS!


