
School of Computation, Information and Technology
Technical University of Munich

AACPP 2025
Week 11: NP-hardness

Mateusz Gienieczko, Mykola Morozov

School of Computation, Information and Technology
Technical University of Munich

2025.07.15

AACPP 2025 Mateusz Gienieczko

Eight round – survey

AACPP 2025 Mateusz Gienieczko

Ninth – final! – round

Deadline – 22.07.2025, 10:00 AM.

Last task!

AACPP 2025 Mateusz Gienieczko

PPM – Puzzle of the Perfect Meows

Given a weight function on the alphabet

𝑤 : Σ → ℕ+, Σ = {1, …, 𝑘}

construct the cheapest prefix-free code 𝐶 of 𝑛 words (cheapest sum of weights
of all letters of all words).

Prefix-free means that:

∀𝑤∈𝐶 .¬∃𝑢∈𝐶 .𝑢 ⊏ 𝑤

AACPP 2025 Mateusz Gienieczko

Prefix-free codes

Prefix-free codes can be unambiguously decoded.

A trie of a prefix-free code has terminal nodes only in leaves.

So we can decode by walking down the tree, accepting in leaves, going back to
root.

If a code is not prefix-free then there is ambiguity (in an accepting node do we
accept and go to root, or do we continue going down?).

AACPP 2025 Mateusz Gienieczko

PPM – Puzzle of the Perfect Meows

We can translate the task into constructing the cheapest trie with 𝑛 leaves.

AACPP 2025 Mateusz Gienieczko

PPM – Puzzle of the Perfect Meows

We can translate the task into constructing the cheapest trie with 𝑛 leaves.

The obvious greedy strategy that comes to mind is – for a tree of 𝑖 nodes add
the leaf that costs the least and obtain the tree on 𝑖 + 1 nodes.

For a node that is a leaf we need to create two children with the cheapest
letters.

This doesn’t work.

AACPP 2025 Mateusz Gienieczko

PPM – Puzzle of the Perfect Meows

Σ = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑤(𝑎) = 2, 𝑤(𝑏) = 2, 𝑤(𝑐) = 2, 𝑤(𝑑) = 4

For 𝑛 = 4 the optimal tree has cost 11.

AACPP 2025 Mateusz Gienieczko

PPM – Puzzle of the Perfect Meows

Σ = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑤(𝑎) = 2, 𝑤(𝑏) = 2, 𝑤(𝑐) = 2, 𝑤(𝑑) = 4

For 𝑛 = 4 the optimal tree has cost 11.

For 𝑛 = 5, the greedy algorithm splits one of the
leaves at depth 2 creating a tree of cost 17…

AACPP 2025 Mateusz Gienieczko

PPM – Puzzle of the Perfect Meows

Σ = {𝑎, 𝑏, 𝑐, 𝑑}, 𝑤(𝑎) = 2, 𝑤(𝑏) = 2, 𝑤(𝑐) = 2, 𝑤(𝑑) = 4

For 𝑛 = 4 the optimal tree has cost 11.

For 𝑛 = 5, the greedy algorithm splits one of the
leaves at depth 2 creating a tree of cost 17…

But the optimal tree here has cost 16!

This problem does not have optimal substructure.

AACPP 2025 Mateusz Gienieczko

PPM – Puzzle of the Perfect Meows

Correct solution – take the cheapest current leaf and add all of its possible
children.

Phase 1: continue until the number of leaves is ≥ 𝑛.

Phase 2: then take the cheapest leaf and see if adding some of its children
wouldn’t improve the cost. Continue while cost improves.

AACPP 2025 Mateusz Gienieczko

PPM – Puzzle of the Perfect Meows

Why does this work?

Lemma: In an optimal trie of 𝑛 leaves there cannot be an internal (non-leaf) node
𝑣 of depth (sum of weights on path to root) higher than that of some leaf 𝑢.

AACPP 2025 Mateusz Gienieczko

PPM – Puzzle of the Perfect Meows

Why does this work?

Lemma: In an optimal trie of 𝑛 leaves there cannot be an internal (non-leaf) node
𝑣 of depth (sum of weights on path to root) higher than that of some leaf 𝑢.

Proof: If it were the case, then we could take the subtree 𝑆 (non-empty by
assumption) of the internal node and “transplant” it as the subtree of the leaf.
This makes 𝑣 a leaf and changes the overall cost of the tree by (𝑟(𝑆) is the
number of leaves in 𝑆):

𝑑(𝑣) − 𝑑(𝑢) + 𝑟(𝑆)𝑑(𝑢) − 𝑟(𝑆)𝑑(𝑣)

which is negative if 𝑑(𝑢) < 𝑑(𝑣) and 𝑟(𝑆) > 1.
AACPP 2025 Mateusz Gienieczko

PPM – Puzzle of the Perfect Meows

The algorithm has two phases – expansion to 𝑛 leaves and then cost
improvement.

In the first phase, since we always develop the cheapest leaf, we don’t violate
the condition from the Lemma.

Cost improvement cannot make anything worse – it always leaves us with a
tree with 𝑛 leaves that does not violate the Lemma.

We need to show that if there are no more possible improvements then the tree
is optimal.

AACPP 2025 Mateusz Gienieczko

PPM – Puzzle of the Perfect Meows

Assume 𝑈 is optimal and 𝑇 is a tree in phase two of our algorithm. We assume
𝑤(𝑇) > 𝑤(𝑈) and we will show that the cost reduction rule applies.

Take the cheapest word 𝑢 that is in 𝑈 but is not in 𝑇 . Such a word must exist,
since 𝑤(𝑈) < 𝑤(𝑇). By the Lemma, in 𝑈 only leaves have weight > 𝑤(𝑢).

If 𝑢 is not a prefix of any word in 𝑇 then we can take the deepest leaf of 𝑇 and
apply the cost reduction rule.

AACPP 2025 Mateusz Gienieczko

PPM – Puzzle of the Perfect Meows

We now show 𝑢 cannot be a prefix of a word in 𝑇 .

AACPP 2025 Mateusz Gienieczko

PPM – Puzzle of the Perfect Meows

We now show 𝑢 cannot be a prefix of a word in 𝑇 . If 𝑎, 𝑏 are the cheapest letters
of Σ, then the node 𝑢 in 𝑇 has to have at least the children 𝑢𝑎 and 𝑢𝑏. Observe
that in 𝑈 the depth of all leaves has to be at least:

𝑤(𝑢) + 𝑤(𝑎) + 𝑤(𝑏)

or else we could apply the cost reduction rule to 𝑈 , which is the optimal tree.

AACPP 2025 Mateusz Gienieczko

PPM – Puzzle of the Perfect Meows

We now show 𝑢 cannot be a prefix of a word in 𝑇 . If 𝑎, 𝑏 are the cheapest letters
of Σ, then the node 𝑢 in 𝑇 has to have at least the children 𝑢𝑎 and 𝑢𝑏. Observe
that in 𝑈 the depth of all leaves has to be at least:

𝑤(𝑢) + 𝑤(𝑎) + 𝑤(𝑏)

or else we could apply the cost reduction rule to 𝑈 , which is the optimal tree.

Moreover, all of those words have to also be in 𝑇 , because they could only be
removed after 𝑢𝑎 and 𝑢𝑏 in the second phase (since they have higher weight).

But then we have |𝑈 ∩ 𝑇 | = 𝑛 − 1 and {𝑢𝑎, 𝑢𝑏} ∈ 𝑇 \ 𝑈 , which gives |𝑇 | = 𝑛 + 1. In
other words, if 𝑢 were expanded in 𝑇 then we would have too many leaves.
AACPP 2025 Mateusz Gienieczko

PPM – Puzzle of the Perfect Meows

It remains to show this algorithm terminates relatively quickly.

The key observation is that if a node is expanded in the second phase then its
two lightest children are never removed (it does not become a leaf again).

AACPP 2025 Mateusz Gienieczko

PPM – Puzzle of the Perfect Meows

It remains to show this algorithm terminates relatively quickly.

The key observation is that if a node is expanded in the second phase then its
two lightest children are never removed (it does not become a leaf again).

This bounds the number of iterations by 𝑛𝑘, since every node can be expanded
at most once and 𝑘 children added to it.

AACPP 2025 Mateusz Gienieczko

PPM – Puzzle of the Perfect Meows

If a node 𝑣 was expanded then it had some at-the-time minimal depth 𝑑 , while
the maximal leaf with depth ℎ was removed, and this was cost-negative:

𝑑 + 𝑤(𝑎) + 𝑤(𝑏) < ℎ

For the heavier child to be removed, 𝑑 + 𝑤(𝑏) would have to become the new
maximum, and a node 𝑢 of depth 𝑑′ expanded so that:

𝑑′ + 𝑤(𝑎) + 𝑤(𝑏) < 𝑑 + 𝑤(𝑏)

In particular, 𝑑′ < 𝑑 . But this cannot happen, because then our algorithm
would’ve expanded 𝑢 before 𝑣 .

AACPP 2025 Mateusz Gienieczko

PPM – Puzzle of the Perfect Meows

fn improve()

 s_ls = leaves()

 s_c = cost_sum()

 min_leaf = pop_min()

 add_leaf(min_leaf.0 + w[0])

 i = 1

 if s_ls < n { // Phase 1

 while i < k && leaves() < n

 new_l = min_leaf + w[i];

 add(new_l)

 i += 1

 }

 while i < k { // Phase 2

 new_l = min_leaf + w[i]

 if new_l < peek_max()

 pop_max()

 add(new_l)

 i += 1

 else

 break

 }

 return s_ls < n ||

 s_c > cost_sum()

AACPP 2025 Mateusz Gienieczko

PPM – Puzzle of the Perfect Meows

We need two heaps (min and max) and to maintain the number of leaves and
the current cost.

Since you can’t remove an arbitrary key from the heap, we need to keep track
of which weights are active in an auxiliary table or map.

Total cost is 𝒪(𝑛 + 𝑘) memory and 𝒪(𝑛𝑘 log 𝑛) time.

AACPP 2025 Mateusz Gienieczko

Recall the plan

• Greedy and dynamic programming (DP)
• Trees
• Graphs
• Ways to turn graphs into trees (DFS, BFS, Dijkstra, MST)
• Ways to run DP on graphs (Toposort)
• Advanced graph algorithms (Matchings, flows)
• Binary Search Trees
• Number theory
• String algorithms (KMP, tries, suffix tables)
• Some problems can’t* even be solved efficiently (NP-completeness)
↑ we are here

AACPP 2025 Mateusz Gienieczko

Hard graph problems

• What is the biggest clique? (set of vertices where each pair is connected)
•

•
•

•
•
•

AACPP 2025 Mateusz Gienieczko

Hard graph problems

• What is the biggest clique? (set of vertices where each pair is connected)
• What is the biggest independent set? (set of vertices where none are

connected)
•
•

•
•
•

AACPP 2025 Mateusz Gienieczko

Hard graph problems

• What is the biggest clique? (set of vertices where each pair is connected)
• What is the biggest independent set? (set of vertices where none are

connected)
• What is the smallest vertex cover? (set of vertices that touches all edges)
•

•
•
•

AACPP 2025 Mateusz Gienieczko

Hard graph problems

• What is the biggest clique? (set of vertices where each pair is connected)
• What is the biggest independent set? (set of vertices where none are

connected)
• What is the smallest vertex cover? (set of vertices that touches all edges)
• Can this graph be 3-coloured? (each vertex assigned one of three colours such

that no two vertices sharing an edge have the same colour)
•
•
•

AACPP 2025 Mateusz Gienieczko

Hard graph problems

• What is the biggest clique? (set of vertices where each pair is connected)
• What is the biggest independent set? (set of vertices where none are

connected)
• What is the smallest vertex cover? (set of vertices that touches all edges)
• Can this graph be 3-coloured? (each vertex assigned one of three colours such

that no two vertices sharing an edge have the same colour)
• Does this graph contain a path on 𝑛 vertices? (Hamiltonian path)
•
•

AACPP 2025 Mateusz Gienieczko

Hard graph problems

• What is the biggest clique? (set of vertices where each pair is connected)
• What is the biggest independent set? (set of vertices where none are

connected)
• What is the smallest vertex cover? (set of vertices that touches all edges)
• Can this graph be 3-coloured? (each vertex assigned one of three colours such

that no two vertices sharing an edge have the same colour)
• Does this graph contain a path on 𝑛 vertices? (Hamiltonian path)
• Does this graph contain a cycle on 𝑛 vertices? (Hamiltonian cycle)
•

AACPP 2025 Mateusz Gienieczko

Hard graph problems

• What is the biggest clique? (set of vertices where each pair is connected)
• What is the biggest independent set? (set of vertices where none are

connected)
• What is the smallest vertex cover? (set of vertices that touches all edges)
• Can this graph be 3-coloured? (each vertex assigned one of three colours such

that no two vertices sharing an edge have the same colour)
• Does this graph contain a path on 𝑛 vertices? (Hamiltonian path)
• Does this graph contain a cycle on 𝑛 vertices? (Hamiltonian cycle)
• What is the longest path in this graph?

AACPP 2025 Mateusz Gienieczko

Hard graph problems

• What is the biggest clique? (set of vertices where each pair is connected)
• What is the biggest independent set? (set of vertices where none are

connected)
• What is the smallest vertex cover? (set of vertices that touches all edges)
• Can this graph be 3-coloured? (each vertex assigned one of three colours such

that no two vertices sharing an edge have the same colour)
• Does this graph contain a path on 𝑛 vertices? (Hamiltonian path)
• Does this graph contain a cycle on 𝑛 vertices? (Hamiltonian cycle)
• What is the longest path in this graph?

Turns out we don’t know how to solve any of those in polynomial time.
AACPP 2025 Mateusz Gienieczko

P vs NP

Let us first give an informal but intuitive characterisation of P and NP.

We are talking about decision problems, where the answer is YES or NO.

AACPP 2025 Mateusz Gienieczko

P vs NP

Let us first give an informal but intuitive characterisation of P and NP.

We are talking about decision problems, where the answer is YES or NO.

The class P contains problems that can be solved in polynomial time wrt. to the
input size.

AACPP 2025 Mateusz Gienieczko

P vs NP

Let us first give an informal but intuitive characterisation of P and NP.

We are talking about decision problems, where the answer is YES or NO.

The class P contains problems that can be solved in polynomial time wrt. to the
input size.

The class NP contains problems to which a polynomial witness can be verified in
polynomial time (wrt. the sum of input and output sizes).

For example, if the problem is “is there a three-colouring of this graph”, and I
give you the colouring, it can be validated in linear time (check each edge).

AACPP 2025 Mateusz Gienieczko

NP problems can be solved in exptime

From the definition, any problem in NP can be solved in time exponential in the
input length.

Just generate all witnesses and verify them.

Unfortunately, NP-hard problems appear all over the place, so we need to cope
with them.

AACPP 2025 Mateusz Gienieczko

NP-hard

A problem is NP-hard if it is “at least as hard as the hardest problems in NP”.

This is determined by reductions. Solving a problem 𝑋 reduces to the problem 𝑌
if an algorithm solving 𝑌 can be easily¹ converted to an algorithm solving 𝑋 .

For example, solving Max Independent Set in a graph 𝐺 can be reduced to
solving Max Clique in 𝐺∁.

A problem is NP-complete if it is NP-hard and also in NP. Intuitively, knowing a
fast algorithm for an NP-c problem immediately gives algorithms for all NP
problems “for free” .

¹In P or L. L is slightly weaker, but we don’t actually know if it makes a difference.
AACPP 2025 Mateusz Gienieczko

More formally

NP is the problems solvable on a nondeterministic Turing Machine in
polynomial time, while P requires determinism.

A nondeterministic TM can “guess” a witness and verify it. A deterministic TM
cannot “guess”. This is why nondeterministic TMs seem more powerful.

The platonic NP-hard problem is “Given a nondeterministic TM and an instance
of a problem, determine if it accepts in polynomial time”.

Since every NP-complete problem could be used as a reduction for the above, if
NP = P then there would be no difference between deterministic and
nondeterministic algorithms (in poly time), which sounds weird.

AACPP 2025 Mateusz Gienieczko

Examples of reductions

We mentioned the Clique – Independent Set reduction.

AACPP 2025 Mateusz Gienieczko

Examples of reductions

We mentioned the Clique – Independent Set reduction.

There is an obvious duality with Min Cover and Max Independent Set.

AACPP 2025 Mateusz Gienieczko

Examples of reductions

We mentioned the Clique – Independent Set reduction.

There is an obvious duality with Min Cover and Max Independent Set.

Hamiltonian Cycle is easily reducible to Hamiltonian Path, which in turn
reduces to Longest Path.

AACPP 2025 Mateusz Gienieczko

Examples of reductions

We mentioned the Clique – Independent Set reduction.

There is an obvious duality with Min Cover and Max Independent Set.

Hamiltonian Cycle is easily reducible to Hamiltonian Path, which in turn
reduces to Longest Path.

For something less obvious, 3-colouring can be reduced to Independent Set.

AACPP 2025 Mateusz Gienieczko

“Non-graph” problems

Knapsack problem is NP-hard.

0-1 Integer Programming is NP-hard.

SAT and 3-SAT are NP-hard.

AACPP 2025 Mateusz Gienieczko

Coping with NP-Completeness

Sometimes, approximations are possible.

For example, Metric Travelling-Salesman can be approximated quite well…

AACPP 2025 Mateusz Gienieczko

Coping with NP-Completeness

Sometimes, approximations are possible.

For example, Metric Travelling-Salesman can be approximated quite well…

But general Travelling-Salesman cannot be approximated at all.

We can 2-approximate vertex cover…

AACPP 2025 Mateusz Gienieczko

Coping with NP-Completeness

Sometimes, approximations are possible.

For example, Metric Travelling-Salesman can be approximated quite well…

But general Travelling-Salesman cannot be approximated at all.

We can 2-approximate vertex cover…

But that’s pretty useless if the cover is big. Also it’s done with the dumbest
algorithm you can think of (just find the max matching and return that).

AACPP 2025 Mateusz Gienieczko

Coping with NP-Completeness

Sometimes, approximations are possible.

For example, Metric Travelling-Salesman can be approximated quite well…

But general Travelling-Salesman cannot be approximated at all.

We can 2-approximate vertex cover…

But that’s pretty useless if the cover is big. Also it’s done with the dumbest
algorithm you can think of (just find the max matching and return that).

Sometimes happen in competitive programming, but usually an exact solution
is expected.

AACPP 2025 Mateusz Gienieczko

How I Learnt to Stop Worrying and Love
the Backtrack

Backtracking is a quite direct way of implementing an NP algorithm.

We try to follow every possible sequence of choices. If it doesn’t lead to a
solution, we backtrack the choice and choose differently.

For example, we might choose any vertex into a vertex cover. So, choose one,
remove all its edges, and try to solve on the smaller graph. After that, backtrack
and make the opposite choice – choose all its neighbours – and solve again.

This is naturally exponential (for example on a path).

AACPP 2025 Mateusz Gienieczko

Backtracking

When backtracking we fight for each possible reduction in the search space.

Sometimes memoising the results like in usual recursive DPs gives speedups.

Optimising the time spent in each step is also crucial. For example, the classic
algorithm of Knuth for exact cover benefits greatly from efficiently removing
columns and rows in a matrix.

AACPP 2025 Mateusz Gienieczko

Parameterised complexity

Some NP-hard problems can be solved “with a parameter”.

For example, Clique is NP-hard. But “is there a clique of size 𝑘” is solvable in
𝒪(𝑛𝑘), which might be fine if 𝑘 is suitably small (like 3).²

Clique is actually pretty bad to parameterise – it’s like we can’t do better than
𝒪(𝑛𝑘) in general. But if we add a restriction on the max degree in the graph Δ,
then we can find an 𝒪(2ΔΔ2𝑛) algorithm.

All of those are paramaterised algorithms, where the complexity depends on
some parameter that depends on the input, but is not just its size.

²For 𝑘 = 3 we can do better on sparse graphs (𝒪(𝑛𝑚)).
AACPP 2025 Mateusz Gienieczko

Kernelisation

Sometimes when the parameter we’re considering is small, but the input size is
big, we can shrink the input to an equivalent instance.

If the result of this pre-processing is small (bounded by some reasonable
function of the parameter), then we call this kernelisation and the smaller
instance a kernel.

Intuitively, it’s the “hard part” of the problem that cannot be reduced further.

The existence of a (fast) simplification algorithm like this is a pretty good
characterisation of problems that are paramaterisable³.

³The formal term is FPT – Fixed-Parameter Tractable.
AACPP 2025 Mateusz Gienieczko

Kernelisation – example

Consider MAX-3-SAT (𝑛 variables, 𝑚 clauses) where we want to find an
assignment satisfying at least 𝑘 clauses.

1. If 𝑘 ≤ 𝑚
2 then this is always possible – choose any assignment, if it satisfies

fewer than half the clauses flip it.
2. Otherwise, 𝑚 < 2𝑘. Delete all variables not in any clause, getting 𝑛 ≤ 6𝑘.

We thus obtain a kernel of size 𝒪(𝑘).

AACPP 2025 Mateusz Gienieczko

Kernelisation – example 2

Dexter is organising a pawker tournament involving 𝑛 cats. Every cat played with
every other cat, and one always won. The results don’t give a good final ranking
though – there is no order of cats such that no cat lost any games to any cat lower
in the ranking. Dexter is wondering if he could just invalidate some games to get a
good ranking, but if he invalidates too many the cats will figure out the ruse. Help
Dexter find at most 𝑘 games which, when removed, would save the ranking!

AACPP 2025 Mateusz Gienieczko

Kernelisation – example 2

Given a tournament on 𝑛 vertices,
decide if it has a feedback arc set of size
at most 𝑘 (problem called FAST).

A feedback arc set is a set of edges 𝐴
such that every cycle contains at least
one edge from 𝐴. Equivalently,
removing 𝐴 from the graph makes it
acyclic.

AACPP 2025 Mateusz Gienieczko

Kernelisation – example 2

The key observation is that if there is a cycle in a tournament then there
necessarily is a triangle. Moreover:

Lemma: 𝐴 is an inclusion-minimal feedback arc set if and only if 𝐴 is an
inclusion minimal set of edges that, when reversed, give an acyclic graph.

Proof: Right-to-left is immediate. For left-to-right, remove 𝐴 and consider the
topological order of the resulting DAG. We can then add all edges from 𝐴 back
– directly if it does not break the order, flipped if it does.

AACPP 2025 Mateusz Gienieczko

Kernelisation – example 2

The idea is to find edges that are involved in many triangles and flip them.
Moreover, vertices outside of any triangles are boring. Kernelisation is thus:

1. If an edge 𝑒 is part of at least 𝑘 + 1 triangles, reverse 𝑒 and reduce 𝑘 by 1.
2. If a vertex 𝑣 is not part of any triangle remove it from the graph.

We need to show this preserves the equivalence.

Rule 1. is correct because if we didn’t reverse 𝑒 we would have to reverse 𝑘 + 1
other edges, one for each triangle, so the set would not be of size at most 𝑘.

AACPP 2025 Mateusz Gienieczko

Kernelisation – example 2

1. If an edge 𝑒 is part of at least 𝑘 + 1 triangles, reverse 𝑒 and reduce 𝑘 by 1.
2. If a vertex 𝑣 is not part of any triangle remove it from the graph.

Rule 2. is correct because removing 𝑣 partitions the tournament into two sets –
𝐼 , which had edges into 𝑣 , and 𝐹 , which had edges coming from 𝑣 . This is a
partition, since otherwise we’d get a triangle with 𝑣 .

Clearly then, if we take the union of any feedback arc set in 𝐼 and any feedback
arc set in 𝐹 , we get a feedback arc set on 𝐺; and any feedback arc set of 𝐺 can
be cleanly split into feedback arcs on 𝐼 and 𝐹 .

AACPP 2025 Mateusz Gienieczko

Kernelisation – example 2

Finally, if the tournament does contain a feedback arc set 𝐴 of size at most 𝑘,
then the result of this kernelisation has at most 𝑘(𝑘 + 2) vertices.

Every vertex of 𝐺 is in a triangle, every triangle must contain an edge from 𝐴,
and for every edge 𝑒 ∈ 𝐺 there are at most 𝑘 vertices in triangles containing 𝑒
plus the two endpoints of 𝑒. So, 𝑘 edges times 𝑘 + 2 vertices gives 𝑘(𝑘 + 2).

AACPP 2025 Mateusz Gienieczko

Kernelisation – example 2

We can apply our kernelisation and if the result has more than 𝑘(𝑘 + 2) vertices
then the answer is NO. Otherwise, we can apply a brutal algorithm to solve the
smaller instance.

In kernelisation we need to find all triangles, which takes 𝒪(|𝑉 |3).

AACPP 2025 Mateusz Gienieczko

Kernelisation – example 2

Finally, to solve the problem on the reduced instance:
• find all triangles;
• if there are none, we are done;
• otherwise, if we’ve chosen 𝑘 edges already the answer is NO;
• for each triangle choose one of the edges to be flipped and recurse (check all

combinations).

At each step we choose one of three edges and we can recurse at most 𝑘 times,
therefore we get 𝒪(3𝑘(𝑘(𝑘 + 2))2)

This gives reasonably efficient algorithms for 𝑘 ≤ 10.

AACPP 2025 Mateusz Gienieczko

Next week

Next week there is no new topic.

We will talk about APD, show the grade thresholds, and be open for discussion.

AACPP 2025 Mateusz Gienieczko

See you next week

APD: 22.07.2025, 10:00 AM

Good luck!

AACPP 2025 Mateusz Gienieczko

	AACPP 2025
	Week 11: NP-hardness

	Eight round – survey
	Ninth – final! – round
	PPM – Puzzle of the Perfect Meows
	Prefix-free codes
	PPM – Puzzle of the Perfect Meows
	PPM – Puzzle of the Perfect Meows
	PPM – Puzzle of the Perfect Meows
	PPM – Puzzle of the Perfect Meows
	PPM – Puzzle of the Perfect Meows
	PPM – Puzzle of the Perfect Meows
	PPM – Puzzle of the Perfect Meows
	PPM – Puzzle of the Perfect Meows
	PPM – Puzzle of the Perfect Meows
	PPM – Puzzle of the Perfect Meows
	PPM – Puzzle of the Perfect Meows
	Recall the plan
	Hard graph problems
	P vs NP
	NP problems can be solved in exptime
	NP-hard
	More formally
	Examples of reductions
	"Non-graph" problems
	Coping with NP-Completeness
	How I Learnt to Stop Worrying and Love the Backtrack
	Backtracking
	Parameterised complexity
	Kernelisation
	Kernelisation – example
	Kernelisation – example 2
	Kernelisation – example 2
	Kernelisation – example 2
	Kernelisation – example 2
	Kernelisation – example 2
	Kernelisation – example 2
	Kernelisation – example 2
	Kernelisation – example 2
	Next week
	See you next week

