
School of Computation, Information and Technology
Technical University of Munich

AACPP 2025
Week 10: String Algorithms

Mateusz Gienieczko, Mykola Morozov

School of Computation, Information and Technology
Technical University of Munich

2025.07.09

AACPP 2025 Mateusz Gienieczko

Seventh round – survey

AACPP 2025 Mateusz Gienieczko

Eighth round

Deadline – 15.07.2025, 10:00 AM.

Only one task this time!

AACPP 2025 Mateusz Gienieczko

TAP – Totally Aligned Buttons

Given 𝑠1, 𝑐1, 𝑠2, 𝑐2 and 𝑛 find smallest 𝑘 ≥ 𝑛 such that there exist 𝑥, 𝑦 ∈ ℕ:

𝑥𝑐1 + 𝑠1 = 𝑘 = 𝑦𝑐2 + 𝑠2

Equivalently, find minimal such 𝑥, 𝑦 that:

𝑥𝑐1 + 𝑠1 = 𝑦𝑐2 + 𝑠2 ≥ 𝑛

We have no guarantees on the parameters (might not be coprime).

AACPP 2025 Mateusz Gienieczko

TAB – Totally Aligned Buttons

𝑥𝑐1 + 𝑠1 = 𝑦𝑐2 + 𝑠2

Let 𝑑 = gcd(𝑐1, 𝑐2).

If 𝑠1 ≡ 𝑠2 mod 𝑑 then there is no solution, since changing 𝑥, 𝑦 will never change
𝑥𝑐1 + 𝑠1 mod 𝑑 or 𝑦𝑐2 + 𝑠2 mod 𝑑 .

We want to find the number of keys such that if we take 𝑘 modulo 𝑐1 we get 𝑠1,
and modulo 𝑐2 we get 𝑠2.

{𝑘 ≡ 𝑠1 mod 𝑐1
𝑘 ≡ 𝑠2 mod 𝑐2

AACPP 2025 Mateusz Gienieczko

TAB – Totally Aligned Buttons

{𝑘 ≡ 𝑠1 mod 𝑐1
𝑘 ≡ 𝑠2 mod 𝑐2

We know how to solve these, we use EEA to get:

𝑐1𝑥 + 𝑐2𝑦 = 𝑑

and take

𝑘 =
𝑠2𝑥𝑐1 + 𝑠1𝑦𝑐2

𝑑
mod

𝑐1𝑐2
𝑑

AACPP 2025 Mateusz Gienieczko

TAB – Totally Aligned Buttons

This number might be too low. We need it to be at least 𝑛.

One more edge case – it also has to be at least 𝑠1 and 𝑠2.

We can add 𝑐1𝑐2𝑑 however many times are required to get to the requirement.

In total we pay 𝒪(log 𝑐1 + log 𝑐2) for EEA.

AACPP 2025 Mateusz Gienieczko

TAB – Totally Aligned Buttons

(x, y, gcd) = extended_euclid(c1, c2)

lcm = x * y / gcd

if s1 % gcd != s2 % gcd { return "IMPAWSSIBLE" }

k = (s2 * x * c1 + s1 * y * c2) / gcd % lcm

req = max(s1, s2, n)

if k >= req { return k }

else {

 m = div_ceil(req - sol_2, lcm)

 return k + lcm * m

}

AACPP 2025 Mateusz Gienieczko

Recall the plan

• Greedy and dynamic programming (DP)
• Trees
• Graphs
• Ways to turn graphs into trees (DFS, BFS, Dijkstra, MST)
• Ways to run DP on graphs (Toposort)
• Advanced graph algorithms (Matchings, flows)
• Binary Search Trees
• Number theory
• String algorithms (KMP, tries, suffix tables) ← we are here
• Some problems can’t* even be solved efficiently (NP-completeness)

AACPP 2025 Mateusz Gienieczko

Strings

When we talk about strings we usually fix an alphabet Σ, which is a set of
characters that strings contain.

Often we use a binary alphabet, Σ = {0, 1} (equivalently {𝑎, 𝑏}), or the alphabet
of all lowercase English letters, Σ = {𝑎, 𝑏, …, 𝑧}. Usually |Σ| is a small constant.

AACPP 2025 Mateusz Gienieczko

Strings

When we talk about strings we usually fix an alphabet Σ, which is a set of
characters that strings contain.

Often we use a binary alphabet, Σ = {0, 1} (equivalently {𝑎, 𝑏}), or the alphabet
of all lowercase English letters, Σ = {𝑎, 𝑏, …, 𝑧}. Usually |Σ| is a small constant.

• we will usually use 𝑎 for a character and 𝑤, 𝑢 for words;
• length of a word is given by |𝑤 |;
• 𝑎𝑘 is 𝑎 repeated 𝑘 times, and 𝑤𝑘 is 𝑤 repeated 𝑘 times;
• Σ𝑛 is the set of all words of length 𝑛 over Σ;
• string concatenation as multiplication, e.g. 𝑎𝑤 , 𝑤𝑢, or explicitly as 𝑎 ⋅ 𝑤 , 𝑤 ⋅ 𝑢;
• 𝑤[𝑥..𝑦] is the substring of 𝑤 starting at 𝑥-th character up to 𝑦-th (inclusive).
AACPP 2025 Mateusz Gienieczko

Prefixes and suffixes

We say 𝑝 is a prefix of 𝑤 when there exists 𝑘 ≤ |𝑤| such that 𝑝 = 𝑤[0..𝑘]. We
write 𝑝 ⊑ 𝑤 . We say 𝑝 is a proper prefix if 𝑘 < |𝑤| (𝑝 ⊏ 𝑤).

AACPP 2025 Mateusz Gienieczko

Prefixes and suffixes

We say 𝑝 is a prefix of 𝑤 when there exists 𝑘 ≤ |𝑤| such that 𝑝 = 𝑤[0..𝑘]. We
write 𝑝 ⊑ 𝑤 . We say 𝑝 is a proper prefix if 𝑘 < |𝑤| (𝑝 ⊏ 𝑤).

Similarly, 𝑠 is a suffix of 𝑤 if 𝑠 = 𝑤[𝑘..] for some 𝑘 and we write 𝑠 ⊒ 𝑤 (𝑠 ⊐ 𝑤 for
a proper suffix).

AACPP 2025 Mateusz Gienieczko

Prefixes and suffixes

We say 𝑝 is a prefix of 𝑤 when there exists 𝑘 ≤ |𝑤| such that 𝑝 = 𝑤[0..𝑘]. We
write 𝑝 ⊑ 𝑤 . We say 𝑝 is a proper prefix if 𝑘 < |𝑤| (𝑝 ⊏ 𝑤).

Similarly, 𝑠 is a suffix of 𝑤 if 𝑠 = 𝑤[𝑘..] for some 𝑘 and we write 𝑠 ⊒ 𝑤 (𝑠 ⊐ 𝑤 for
a proper suffix).

A word 𝑢 is a prefix-suffix or border of 𝑤 if 𝑢 ⊏ 𝑤 ∧ 𝑢 ⊐ 𝑤 .

For example, in 𝑎𝑏𝑎𝑏𝑎 the word 𝑎𝑏𝑎 is a prefix-suffix.

AACPP 2025 Mateusz Gienieczko

String matching

The fundamental problem is matching, finding a pattern 𝑢 in a word 𝑤 .

Usually the pattern is short and the word is long.

Naively this can be done in 𝒪(|𝑤‖𝑢|) since the occurrence can start at any
position and get mismatched at a very late position.

For example, imagine matching 𝑎𝑘𝑏 in 𝑎𝑛.

AACPP 2025 Mateusz Gienieczko

String matching

The key idea is to not repeat matching that we know must or must not succeed.

Once we compare 𝑎𝑘𝑏 at the first position of 𝑎𝑛 we know 𝑎𝑘−1 was matched, so
we can just move by one and look for 𝑎𝑏.

On the other hand, imagine a repetition of 𝑎𝑘𝑐 as the text 𝑤 . Then once we
compare 𝑎𝑘𝑏 at position 1, we know there’s no way to match the pattern at any
of the first 𝑘 + 1 positions.

AACPP 2025 Mateusz Gienieczko

KMP – Knuth-Morris-Pratt

The main idea is that when we match the first 𝑘 characters of 𝑢 and get a
mismatch on 𝑘 + 1, then the part of the pattern that is already matched and
can be used when restarting is the longest prefix-suffix of 𝑢[..𝑘].

Pattern: 𝑎𝑏𝑎𝑏𝑎𝑏𝑏𝑎𝑏𝑎

𝒊 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
𝒘 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 $
𝒖𝟏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎
𝒖𝟐
𝒖𝟑
𝒖𝟒

AACPP 2025 Mateusz Gienieczko

KMP – Knuth-Morris-Pratt

The main idea is that when we match the first 𝑘 characters of 𝑢 and get a
mismatch on 𝑘 + 1, then the part of the pattern that is already matched and
can be used when restarting is the longest prefix-suffix of 𝑢[..𝑘].

Pattern: 𝑎𝑏𝑎𝑏𝑎𝑏𝑏𝑎𝑏𝑎

𝒊 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
𝒘 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 $
𝒖𝟏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎
𝒖𝟐 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏
𝒖𝟑
𝒖𝟒

AACPP 2025 Mateusz Gienieczko

KMP – Knuth-Morris-Pratt

The main idea is that when we match the first 𝑘 characters of 𝑢 and get a
mismatch on 𝑘 + 1, then the part of the pattern that is already matched and
can be used when restarting is the longest prefix-suffix of 𝑢[..𝑘].

Pattern: 𝑎𝑏𝑎𝑏𝑎𝑏𝑏𝑎𝑏𝑎

𝒊 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
𝒘 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 $
𝒖𝟏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎
𝒖𝟐 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏
𝒖𝟑 𝑎 𝑏 𝑎 𝑏
𝒖𝟒

AACPP 2025 Mateusz Gienieczko

KMP – Knuth-Morris-Pratt

The main idea is that when we match the first 𝑘 characters of 𝑢 and get a
mismatch on 𝑘 + 1, then the part of the pattern that is already matched and
can be used when restarting is the longest prefix-suffix of 𝑢[..𝑘].

Pattern: 𝑎𝑏𝑎𝑏𝑎𝑏𝑏𝑎𝑏𝑎

𝒊 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
𝒘 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 $
𝒖𝟏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎
𝒖𝟐 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏
𝒖𝟑 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎
𝒖𝟒

AACPP 2025 Mateusz Gienieczko

KMP – Knuth-Morris-Pratt

The main idea is that when we match the first 𝑘 characters of 𝑢 and get a
mismatch on 𝑘 + 1, then the part of the pattern that is already matched and
can be used when restarting is the longest prefix-suffix of 𝑢[..𝑘].

Pattern: 𝑎𝑏𝑎𝑏𝑎𝑏𝑏𝑎𝑏𝑎

𝒊 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
𝒘 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 $
𝒖𝟏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎
𝒖𝟐 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏
𝒖𝟑 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎
𝒖𝟒 𝑎 𝑏 𝑎

AACPP 2025 Mateusz Gienieczko

KMP – Knuth-Morris-Pratt

The main idea is that when we match the first 𝑘 characters of 𝑢 and get a
mismatch on 𝑘 + 1, then the part of the pattern that is already matched and
can be used when restarting is the longest prefix-suffix of 𝑢[..𝑘].

Pattern: 𝑎𝑏𝑎𝑏𝑎𝑏𝑏𝑎𝑏𝑎

𝒊 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
𝒘 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 $
𝒖𝟏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎
𝒖𝟐 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏
𝒖𝟑 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎
𝒖𝟒 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎

AACPP 2025 Mateusz Gienieczko

KMP – Knuth-Morris-Pratt

𝒊 0 1 2 3 4 5 6 7 8 9
𝒖 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎
𝝅 0 0 1 2 3 4 0 1 2 3

𝒊 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
𝒘 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 $
𝒖𝟏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎
𝒖𝟐
𝒖𝟑
𝒖𝟒

AACPP 2025 Mateusz Gienieczko

KMP – Knuth-Morris-Pratt

𝒊 0 1 2 3 4 5 6 7 8 9
𝒖 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎
𝝅 0 0 1 2 3 4 0 1 2 3

𝒊 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
𝒘 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 $
𝒖𝟏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎
𝒖𝟐 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏
𝒖𝟑
𝒖𝟒

AACPP 2025 Mateusz Gienieczko

KMP – Knuth-Morris-Pratt

𝒊 0 1 2 3 4 5 6 7 8 9
𝒖 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎
𝝅 0 0 1 2 3 4 0 1 2 3

𝒊 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
𝒘 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 $
𝒖𝟏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎
𝒖𝟐 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏
𝒖𝟑 𝑎 𝑏 𝑎 𝑏
𝒖𝟒

AACPP 2025 Mateusz Gienieczko

KMP – Knuth-Morris-Pratt

𝒊 0 1 2 3 4 5 6 7 8 9
𝒖 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎
𝝅 0 0 1 2 3 4 0 1 2 3

𝒊 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
𝒘 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 $
𝒖𝟏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎
𝒖𝟐 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏
𝒖𝟑 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎
𝒖𝟒

AACPP 2025 Mateusz Gienieczko

KMP – Knuth-Morris-Pratt

𝒊 0 1 2 3 4 5 6 7 8 9
𝒖 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎
𝝅 0 0 1 2 3 4 0 1 2 3

𝒊 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
𝒘 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 $
𝒖𝟏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎
𝒖𝟐 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏
𝒖𝟑 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎
𝒖𝟒 𝑎 𝑏 𝑎

AACPP 2025 Mateusz Gienieczko

KMP – Knuth-Morris-Pratt

𝒊 0 1 2 3 4 5 6 7 8 9
𝒖 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎
𝝅 0 0 1 2 3 4 0 1 2 3

𝒊 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
𝒘 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 $
𝒖𝟏 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎
𝒖𝟐 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏
𝒖𝟑 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 𝑏 𝑎
𝒖𝟒 𝑎 𝑏 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎

AACPP 2025 Mateusz Gienieczko

KMP – Knuth-Morris-Pratt

Fact: A prefix-suffix of a prefix-suffix of 𝑤 is a prefix-suffix of 𝑤 .

This implies that 𝜋[𝑖 + 1] ≤ 𝜋[𝑖] + 1.

Here’s a 𝒪(|𝑢|2) algorithm to compute the 𝜋 function for 𝑢:

pi[0] = 0

for i in 1..n

 j = pi[i - 1]

 while j > 0 && u[i] != u[j]

 j -= 1

 if u[i] == u[j]

 j += 1

 pi[i] = j
AACPP 2025 Mateusz Gienieczko

KMP – Knuth-Morris-Pratt

Fact: A prefix-suffix of a prefix-suffix of 𝑤 is a prefix-suffix of 𝑤 .

One more optimisation stemming from this is that we only need to look at
prefix-suffix of the previous prefix-suffix to possibly extend. We get 𝒪(|𝑢|):

pi[0] = 0

for i in 1..n

 j = pi[i - 1]

 while j > 0 && u[i] != u[j]

 j = pi[j - 1] // <--

 if u[i] == u[j]

 j += 1

 pi[i] = j
AACPP 2025 Mateusz Gienieczko

KMP – Knuth-Morris-Pratt

Having a precomputed 𝜋 we can find all matches of 𝑢 in any 𝑤 in time 𝒪(|𝑤|).

i = 0

j = 0

while i < |w|

 if w[i] == u[j]

 i += 1

 j += 1

 if j == |u|

 report_found(j - |u|)

 j = pi[j]

 else // w[i] != u[j]

 j = pi[j]

 if j == 0

 i += 1

The time analysis is amortised – 𝑗 cannot increase more than |𝑤 | times.
AACPP 2025 Mateusz Gienieczko

Tries

A trie (pronounced either way, you do you), also called a prefix tree, is a specific
tree structure representing a set of strings 𝑆 over a fixed alphabet Σ.

Each node represents a prefix of some string in |𝑆|, and is a leaf or has Σ
children. Going down in the trie, the edge that we choose appends another
letter to the current string.

Nodes that represent strings in 𝑆 are marked.

The depth of the tree is thus the length of the longest string in the set, while
the number of nodes is limited simultaneously by:
• sum of lengths,
• Σ times the length of the longest string.
AACPP 2025 Mateusz Gienieczko

Tries

Tries can be further compressed by representing long paths with no branching
with a single long edge.

When traversing we still look up by the next letter, but then retrieve a
potentially longer substring to compare with our lookup.

This is then called a radix tree.

AACPP 2025 Mateusz Gienieczko

Tries

Tries have predictable speed and no collisions, unlike generic hash tables.

They automatically sort all keys lexicographically.

One can run prefix-based queries, like retrieving all strings with a given prefix.

AACPP 2025 Mateusz Gienieczko

Aho-Corasick

Aho-Corasick is an algorithm that preprocesses 𝑘 different patterns and creates
a deterministic finite automaton which can match all of them simultaneously.

The structure takes 𝒪(Σ𝑚) space, where 𝑚 is the sum of lengths of patterns.
Matching happens in 𝒪(𝑛), where 𝑛 is the length of text.

AACPP 2025 Mateusz Gienieczko

Aho-Corasick – construction

We start by building a trie on all keys.

For a running example we take {𝑎𝑎𝑎, 𝑎𝑎𝑏, 𝑎𝑏, 𝑏𝑏, 𝑏𝑏𝑎} as the dictionary.

AACPP 2025 Mateusz Gienieczko

Aho-Corasick – construction

We now need to add all missing transitions.

We compute suflinks, links to the nodes representing the longest proper suffix
of the string represented by the current node.

AACPP 2025 Mateusz Gienieczko

Aho-Corasick – construction

A suflink of 𝑣 with parent 𝑝 where the 𝑝 → 𝑣 edge is labelled with 𝑥 is now
given by going to the parent, following its suflink, and then transitioning over 𝑥 .

Suflinks always go “up” in the tree, so this can be computed directly with a BFS.

AACPP 2025 Mateusz Gienieczko

Aho-Corasick – construction

Finally, a missing transition over 𝑥 is given: go to the suflink and picking 𝑥 .

This can be computed right after the suflink in BFS order.

AACPP 2025 Mateusz Gienieczko

Aho-Corasick – construction

Matching a text is now just running the DFA: read a letter of the text, transition
through the appropriate edge.

When we visit a marked node, output a match.

AACPP 2025 Mateusz Gienieczko

Aho-Corasick – construction

If we want to output all matches then we also need to compute the next
marked node that can be reached by following suflinks (if any).

E.g. here matching 𝑎𝑎𝑏 also matches 𝑎𝑏.

AACPP 2025 Mateusz Gienieczko

Karp-Miller-Rosenberg (Suffix Array)

A suffix array is a sorted array of all suffixes of a string 𝑤 , |𝑤 | = 𝑛.

It can be constructed in linear time, but the simplest way is KMR in 𝒪(𝑛 log 𝑛).

KMR constructs an array where kmr[𝑖][𝑘] is an identifier of the substring

𝑤[𝑖..𝑖 + 2𝑘]

The identifiers are different for different substrings and equal for equal ones.
Moreover, order on the ids is also the lexicographical order on the substrings.

The final level of this array (𝑘 = log 𝑛) is the suffix array.

AACPP 2025 Mateusz Gienieczko

Karp-Miller-Rosenberg (Suffix Array)

Construction is inductive, starting from level 0 – map each character to its ID
(index in an ordered alphabet). For the next level we combine pairs of identifiers
to construct a twice-longer substring and give unique IDs by sorting.

a b a a b b b a b a a b #…

𝟐𝟎 1 2 1 1 2 2 2 1 2 1 1 2 0...
𝟐𝟏 2 4 1 2 5 5 4 2 4 1 2 3 0...
𝟐𝟐 4 7 2 5 10 9 8 4 7 1 3 6 0...
𝟐𝟑 5 9 2 6 12 11 10 4 8 1 3 7 0...
𝟐𝟒 5 9 2 6 12 11 10 4 8 1 3 7 0...

Highlighted: kmr[4][3] and the IDs from previous level that contribute to it.
AACPP 2025 Mateusz Gienieczko

Suffix Array

The suffix array itself already allows us to do some cool things.

For example, it allows us to look for a pattern of length 𝑚 in the string in 𝑚 log 𝑛
time by binary-searching the sorted suffixes.

Compare this with KMP:
• in KMP the pattern is fixed and preprocessed, then we can search any text for

the pattern;
• with a suffix array the text is fixed, and we can search for any pattern.

AACPP 2025 Mateusz Gienieczko

LCP Array

A suffix array can be augmented further with a Longest Common Prefix array.

lcp[𝑖] is the length of the longest common prefix of the 𝑖-th and 𝑖 − 1-th suffix.

AACPP 2025 Mateusz Gienieczko

LCP Array

0 # lcp
1 𝑎𝑎𝑏#
1 𝑎𝑎𝑏𝑏𝑏𝑎𝑏𝑎𝑎𝑏#
1 𝑎𝑏#
1 𝑎𝑏𝑎𝑎𝑏#
1 𝑎𝑏𝑎𝑎𝑏𝑏𝑏𝑎𝑏𝑎𝑎#
1 𝑎𝑏𝑏𝑏𝑎𝑏𝑎𝑎𝑏#
1 𝑏#
1 𝑏𝑎𝑎𝑏#
1 𝑏𝑎𝑎𝑏𝑏𝑏𝑎𝑏𝑎𝑎𝑏#
1 𝑏𝑎𝑏𝑎𝑎𝑏#
1 𝑏𝑏𝑎𝑏𝑎𝑎𝑏#
1 𝑏𝑏𝑏𝑎𝑏𝑎𝑎𝑏#

AACPP 2025 Mateusz Gienieczko

LCP Array

0 # lcp
1 𝑎𝑎𝑏# 0
1 𝑎𝑎𝑏𝑏𝑏𝑎𝑏𝑎𝑎𝑏# 3
1 𝑎𝑏# 1
1 𝑎𝑏𝑎𝑎𝑏# 2
1 𝑎𝑏𝑎𝑎𝑏𝑏𝑏𝑎𝑏𝑎𝑎# 5
1 𝑎𝑏𝑏𝑏𝑎𝑏𝑎𝑎𝑏# 2
1 𝑏# 0
1 𝑏𝑎𝑎𝑏# 1
1 𝑏𝑎𝑎𝑏𝑏𝑏𝑎𝑏𝑎𝑎𝑏# 4
1 𝑏𝑎𝑏𝑎𝑎𝑏# 2
1 𝑏𝑏𝑎𝑏𝑎𝑎𝑏# 1
1 𝑏𝑏𝑏𝑎𝑏𝑎𝑎𝑏# 2

Using LCP we can solve various problems about
substrings.

For example, finding the longest substring that occurs

at least twice in linear time (exercise 😏).

Using a constant time RMQ structure we can also
perform the arbitrary pattern matching in 𝒪(𝑚 + log 𝑛).

AACPP 2025 Mateusz Gienieczko

Suffix Tree

A suffix tree of 𝑤 is a compressed trie of suffixes of 𝑤 . It has 𝑛 leaves, where leaf
number 𝑖 represents the suffix 𝑤[𝑖..𝑛]. It has 2𝑛 nodes total and can be built in
linear time.

Finding a pattern in the string can now be done in 𝒪(𝑚). It can also be used for
solving a plethora of other problems in linear time:

• Longest common substrings of two strings,
• aforementioned longest repeating substring,
• most frequently occurring substrings (of some length),
• shortest string not occurring in a set of strings,
• matching a pattern with 𝑘 allowed mistakes (in 𝒪(𝑛𝑘)).
AACPP 2025 Mateusz Gienieczko

Suffix Tree – Construction

One can construct the suffix tree from a suffix array and LCP.

The idea is that one can traverse the tree down by going through the suffix
array and then find the branches using LCP.

Instead we’ll present the Ukkonen’s Algorithm that builds a suffix tree without
this intermediate step.

Note that the suffix array can be trivially constructed from a suffix tree (leaves
are already ordered because it’s a trie).

AACPP 2025 Mateusz Gienieczko

Suffix Tree – Ukkonen’s Algorithm

We add suffixes to the trie one by one, starting with just the root.

During construction we ignore terminals.

Naively, we would add the suffix 𝑤[..𝑖] by finding all 𝑤[𝑗..𝑖] in the tree and
making sure the extension 𝑤[𝑗..𝑖]𝑤[𝑖 + 1] is also present in the tree.

• If 𝑤[𝑗..𝑖 + 1] is already present as a node we do nothing.
• If 𝑤[𝑗..𝑖] is a leaf then just extend the label to the leaf by 𝑤[𝑖 + 1].
• If 𝑤[𝑗..𝑖] is in the middle of an edge, the edge has to be split and a new node

inserted.

AACPP 2025 Mateusz Gienieczko

Suffix Tree – Ukkonen’s Algorithm

We add suffixes to the trie one by one, starting with just the root.

During construction we ignore terminals.

Naively, we would add the suffix 𝑤[..𝑖] by finding all 𝑤[𝑗..𝑖] in the tree and
making sure the extension 𝑤[𝑗..𝑖]𝑤[𝑖 + 1] is also present in the tree.

• If 𝑤[𝑗..𝑖 + 1] is already present as a node we do nothing.
• If 𝑤[𝑗..𝑖] is a leaf then just extend the label to the leaf by 𝑤[𝑖 + 1].
• If 𝑤[𝑗..𝑖] is in the middle of an edge, the edge has to be split and a new node

inserted.

A number of speedups is added to make this 𝒪(𝑛). An extensive explanation is
given in Gusfeld, Algorithms on Strings, Trees, and Sequences.
AACPP 2025 Mateusz Gienieczko

https://www.cs.cmu.edu/afs/cs/project/pscico-guyb/realworld/www/slidesF06/cmuonly/gusfield.pdf

Hashing

Hashing is a heuristic method of solving many string problems relying on
comparisons.

The idea is to compute a single integer value as a fingerprint of the string that
allows us to quickly say if two strings are different, but which can have
collisions causing different strings to appear equal.

We will compute the fingerprint in a way that allows for quick recovery of
substring fingerprints.

AACPP 2025 Mateusz Gienieczko

Hashing

We need two parameters: a base 𝑏 and a modulus 𝑚. Best characteristics are
obtained when there are both prime.

We need 𝑏 ≥ |Σ|, and the higher the modulus the lower the chance of collisions.

Good values for base are 𝑏 = 2 for binary alphabets, 𝑝 = 29 for English
lowercase.

Good values for modulus are 𝑚 = 109 + 7, 𝑚 = 109 + 9, 𝑚 = 1018 + 9.

AACPP 2025 Mateusz Gienieczko

Hashing

The hash of a word 𝑤 of length 𝑛 for given 𝑏, 𝑚 is:

𝑤[0]𝑏0 + 𝑤[1]𝑏1 + … + 𝑤[𝑛 − 1]𝑏𝑛−1 mod 𝑚

If we compute the prefix hash of 𝑤 we can then obtain the hash of any
substring via:

ℎ(𝑤[𝑖..𝑗]) = (ℎ(𝑤[..𝑗]) − ℎ(𝑤[..𝑖])) ⋅ 𝑏−𝑖 mod 𝑚

We need the multiplicative inverse of 𝑏 modulo 𝑚, but it is constant for fixed 𝑏
and 𝑚.

AACPP 2025 Mateusz Gienieczko

Hashing

Calculating the chance for collision requires some probability theory.

The strongest result is given if 𝑚 is a randomly chosen prime number, but for
competitive programming it’s enough to “randomly” choose your favourite one.

The chance is roughly 1𝑚 of collision per string pair, which gives about 0.1%
chance of collision under 106 compared pairs.

Tests can be antagonistic for a given modulo choice. A safe bet is using two
different moduli and comparing both hashes. Strings are equal iff they’re equal
under both. This decreases collision chances to 1

𝑚1𝑚2
 per comparison.

AACPP 2025 Mateusz Gienieczko

Hashing – practical notes

When computing hashes it’s important to use modulo everywhere.

The powers 𝑏𝑘 have to be computed modulo 𝑚. Multiplying by the character
code has to be done modulo. Addition has to be done modulo.

Hashing is a quite expensive operation for the CPU, as modulo is expensive.
Hashing solutions are likely to be slower than well-implemented deterministic
algorithms. This is especially visible when using more than one hash.

AACPP 2025 Mateusz Gienieczko

See you next week

PPM: 15.07.2025, 10:00 AM

Good luck!

AACPP 2025 Mateusz Gienieczko

	AACPP 2025
	Week 10: String Algorithms

	Seventh round – survey
	Eighth round
	TAP – Totally Aligned Buttons
	TAB – Totally Aligned Buttons
	TAB – Totally Aligned Buttons
	TAB – Totally Aligned Buttons
	TAB – Totally Aligned Buttons
	Recall the plan
	Strings
	Prefixes and suffixes
	String matching
	String matching
	KMP – Knuth-Morris-Pratt
	KMP – Knuth-Morris-Pratt
	KMP – Knuth-Morris-Pratt
	KMP – Knuth-Morris-Pratt
	KMP – Knuth-Morris-Pratt
	Tries
	Tries
	Tries
	Aho-Corasick
	Aho-Corasick – construction
	Aho-Corasick – construction
	Aho-Corasick – construction
	Aho-Corasick – construction
	Aho-Corasick – construction
	Aho-Corasick – construction
	Karp-Miller-Rosenberg (Suffix Array)
	Karp-Miller-Rosenberg (Suffix Array)
	Suffix Array
	LCP Array
	LCP Array
	LCP Array
	Suffix Tree
	Suffix Tree – Construction
	Suffix Tree – Ukkonen's Algorithm
	Suffix Tree – Ukkonen's Algorithm
	Hashing
	Hashing
	Hashing
	Hashing
	Hashing – practical notes
	See you next week

