
School of Computation, Information and Technology
Technical University of Munich

AACPP 2025
Week 9: Number Theory

Mateusz Gienieczko, Mykola Morozov

School of Computation, Information and Technology
Technical University of Munich

2025.07.19

AACPP 2025 Mateusz Gienieczko

Sixth round – survey

AACPP 2025 Mateusz Gienieczko

Seventh round

Deadline – 08.07.2025, 10:00 AM.

Only one task this time!

AACPP 2025 Mateusz Gienieczko

PSS – Purrfect Scent Schedule

Given a sequence of 𝑛 keys and their values find a consecutive subsequence
maximising the sum of values of unique keys.

Obvious brute force in 𝒪(𝑛3) (check every subsequence in linear time).

AACPP 2025 Mateusz Gienieczko

PSS – Purrfect Scent Schedule

How do we calculate a value of a subsequence?

Sum goes up by 𝑣(𝑎) on the first occurrence of 𝑎 and goes down by 𝑣(𝑎) on the
second occurrence of 𝑎. Other occurrences contribute 0. We are interested in the
prefix sum.

𝑘𝑖 5 6 2 5 2 8 5 5 4 4 2
𝑣(𝑘𝑖) 8 5 3 8 3 6 8 8 7 7 3
𝑐𝑖 +8 +5 +3 −8 −3 +6 0 0 +7 −7 0
𝑠𝑖 8 13 16 8 5 11 11 11 18 11 11

Easy change to get 𝒪(𝑛2) – for each 0 ≤ 𝑖 < 𝑛 start at 𝑖, go left to right
calculating the current sum, return the maximum.
AACPP 2025 Mateusz Gienieczko

PSS – Purrfect Scent Schedule

Model solution uses a segment tree to maintain these sums.

For each key precompute a queue of the indices at which it occurs.

Initialise with the full sequence.

For 0 ≤ 𝑖 < 𝑛:
• find two next occurrences of 𝑎𝑖, 𝑘 > 𝑗 > 𝑖 (if none one can set 𝑛 + 1);
• set 𝑐𝑖 to 0, 𝑐𝑗 to +𝑣(𝑎), 𝑐𝑘 to −𝑣(𝑎);
• query the sum on the entire tree.

𝒪(𝑛 log 𝑛).

AACPP 2025 Mateusz Gienieczko

BUR – Cat Burglars

Read the statement carefully because it is rather complicated.

Key observation is that we should consider what the optimal proposals are for
cats in reverse order, since the decision of 𝑖 depends on the decision of 𝑖 + 1.

We will denote by 𝑓𝑖(𝑗) (defined for 𝑗 ≥ 𝑖) the number of bundles 𝑗-th cat
receives assuming cats 𝑘 < 𝑖 were cast away. If 𝑗 is cast away then 𝑓𝑖(𝑗) = −1.

Clearly 𝑓𝑛(𝑛) = 𝑚.

AACPP 2025 Mateusz Gienieczko

BUR – Cat Burglars

Let’s design a slow solution to better understand the task.

Assume we know 𝑓𝑖+1 and want to compute 𝑓𝑖.

Cats for whom 𝑓𝑖+1 equals −1 are freebies, we pay them 0 and get their votes.

The rest we can order by 𝑓𝑖+1(𝑗) + 𝑎𝑗 in order to pay the least possible. Ties are
broken by 𝑗, i.e. higher indices get paid first.

Once we no longer need the votes everyone else gets 0.

If we run out of money then 𝑓𝑖(𝑖) = −1 and for all 𝑗 ≠ 𝑖 𝑓𝑖(𝑗) = 𝑓𝑖+1(𝑗).

AACPP 2025 Mateusz Gienieczko

BUR – Cat Burglars

previous.push((m, n))

for i in [n - 1, 1]

 current.clear()

 sort previous by cost,idx

 votes = (n - i) / 2

 money = m

 for cost,j in previous

 if votes == 0 { curr.push((a[j], j)) }

 else if money >= cost

 money -= cost

 votes -= 1

 current.push((cost + a[j], j))

 else { break }

 if votes == 0

 first_to_win = i

 current.push(

 (money + a[j], i))

 swap(previous, current)

 else

 previous.push((0, i))

// end for

for cost,j in previous

 if j < first_to_win

 result[j] = -1

 else

 result[j] = cost - a[j]
AACPP 2025 Mateusz Gienieczko

BUR – Cat Burglars

This gives 𝒪(𝑛2 log 𝑛) with the sort.

One can “optimise” to 𝒪(𝑛2) by noticing we don’t actually need a sort, we need
to find the 𝑘-th element for 𝑘 = ⌊𝑛2⌋ + 1 and then to split previous by that pivot.

AACPP 2025 Mateusz Gienieczko

BUR – Cat Burglars

What happens to 𝑗 in the 𝑖-th iteration is entirely defined by the pair
(𝑓𝑖+1(𝑗), 𝑎𝑗).

Cats with the same pair behave the same with the exception of index-based
tiebreaking.

We will design a solution that works if the number of unique pairs is low and at
the end argue that it’s indeed the case.

AACPP 2025 Mateusz Gienieczko

BUR – Cat Burglars

Assume we grouped all cats by (𝑓𝑖+1(𝑗), 𝑎𝑗).

Notice that when 𝑖 votes through its proposal there is always some 𝑘 such that:
(1) every cat where 𝑓𝑖+1(𝑗) < 𝑘 gets paid exactly 𝑓𝑖+1(𝑗);
(2) every cat where 𝑓𝑖+1(𝑗) > 𝑘 gets paid 0;
(3) some cats (with highest indices) where 𝑓𝑖+1(𝑗) = 𝑘 get paid 𝑘, others 0.

Cats in (1) transition from (𝑐, 𝑎) to (𝑐 + 𝑎, 𝑎).

Cats in (2) transition from (𝑐, 𝑎) to (𝑎, 𝑎).

Highest-indexed cats in (3) transition to (𝑐 + 𝑎, 𝑎), others to (𝑎, 𝑎).

AACPP 2025 Mateusz Gienieczko

BUR – Cat Burglars

If we keep the sets of cats in each group as a BST that allows splitting and
merging, then we can keep a BST for each group in some standard map and
perform all operations.

• Iterate by the first element of the pair and find out if we have enough cheap
votes.

• If yes, handle (1) and (2) directly; then
• for (3) find the index that separates the paid from non-paid cats, split the tree

on that index, and then merge them into different new groups.

For the last one we need to binary-search for the index and then query each
BST in (𝑘, _) to count the number of cats in the appropriate suffix.
AACPP 2025 Mateusz Gienieczko

BUR – Cat Burglars

Assume there are 𝐺 unique groups.

We iterate over 𝑖 and then look at each group.

The split requires an outer binary search and then at most 𝒪(log 𝑛) in queries.
There can be only as many splits as groups in (3), and each split will create at
most 𝒪(log 𝑛) “holes”.

We need to merge some groups together, and merging is expensive, but its
overall complexity depends on the number of holes we create during splits. So
this amortises – each merge is “paid for” during splits.

In total we have 𝒪(𝑛𝐺 log2 𝑛).
AACPP 2025 Mateusz Gienieczko

BUR – Cat Burglars

Lemma 1: For 𝑗 ≠ 𝑖, 𝑓𝑖(𝑗) ≤ 𝐴.

Proof: Inductively, cat 𝑖 assigns a non-zero number of bundles to at most ⌊𝑛−𝑖2 ⌋
other cats. Cat 𝑖 − 1 could assign any bundles only to cats that receive 0 from 𝑖,
since 𝑛 − (𝑖 − 1) − (⌊𝑛−12 ⌋ + 1) is enough votes; thus, a cat’s optimal proposal
does not assign more than 𝐴 to any cat other than themselves.

AACPP 2025 Mateusz Gienieczko

BUR – Cat Burglars

Lemma 1: For 𝑗 ≠ 𝑖, 𝑓𝑖(𝑗) ≤ 𝐴.

Proof: Inductively, cat 𝑖 assigns a non-zero number of bundles to at most ⌊𝑛−𝑖2 ⌋
other cats. Cat 𝑖 − 1 could assign any bundles only to cats that receive 0 from 𝑖,
since 𝑛 − (𝑖 − 1) − (⌊𝑛−12 ⌋ + 1) is enough votes; thus, a cat’s optimal proposal
does not assign more than 𝐴 to any cat other than themselves.

Lemma 2: For any 𝑖, there are at most 𝐴 cats 𝑗 such that 𝑎𝑗 | 𝑓𝑖(𝑗). In other words,
the second element of (𝑓𝑖(𝑗), 𝑎𝑗) divides the first for all cats except of at most 𝐴.

Proof: Once for some cat 𝑗 𝑓𝑖(𝑗) = 0, their cost for all 𝑓<𝑖 will always be a
multiple of its greed. There is at most 𝐴 cats that have not yet been zeroed,
since every payment increases the cost and Lemma 1 limits it by 𝐴.
AACPP 2025 Mateusz Gienieczko

BUR – Cat Burglars

Lemma 3: 𝐺 = 𝒪(𝐴 log𝐴).

Proof: Recall each group is identified by (𝑓 (𝑗), 𝑎𝑗). From Lemma 2 we know that
they can be represented as (𝑘𝑎𝑗 , 𝑎𝑗) except for at most 𝐴 groups. Thus we have

𝐺 ≤ 𝐴 +∑
𝑎𝑗
∑
𝑎𝑗

𝑘=1
(⌊
𝑎𝑗
𝑘
⌋ + 1) ≤ 2𝐴 + 𝐴∑

𝐴

𝑘=1
(⌊1
𝑘
⌋) = 𝒪(𝐴 log𝐴)

AACPP 2025 Mateusz Gienieczko

BUR – Cat Burglars

One cat get 𝒪(𝑛𝐺 log 𝑛) by using a different data structure.

We can keep dynamic segment trees that keep which consecutive subsequences
of [1, 𝑛] are in the tree. With that, the binary search can be performed on all
trees in (𝑘, _) “in lockstep”, always going everywhere left or right depending on
the sum of counts of cats to the left.

This is significantly faster, but was not required to get 10 points.

There’s a slightly better analysis as well.

AACPP 2025 Mateusz Gienieczko

BUR – Cat Burglars

Let 𝑑(𝑥) be the number of divisors of 𝑥 and :

𝐷(𝑥) = max
1≤𝑖≤𝑥

𝑑(𝑖)

𝐷(64) = 𝑑(60) = 12. Then we maintain 𝒪(𝐴 log𝐴) groups, but whenever doing
splits for a fixed 𝑘 we can look through the 𝐴 special cats first and then only
process 𝐷(𝑘) subtrees in log 𝑛, giving 𝒪(𝑛(𝐴 log𝐴 + 𝐷(𝐴) log 𝑛)).

The function 𝑑(𝑥) is strictly sublinear, so this is markedly faster.

AACPP 2025 Mateusz Gienieczko

Recall the plan

• Greedy and dynamic programming (DP)
• Trees
• Graphs
• Ways to turn graphs into trees (DFS, BFS, Dijkstra, MST)
• Ways to run DP on graphs (Toposort)
• Advanced graph algorithms (Matchings, flows)
• Binary Search Trees
• Number theory ← we are here
• String algorithms (KMP, tries, suffix tables)
• Some problems can’t* even be solved efficiently (NP-completeness)

AACPP 2025 Mateusz Gienieczko

Fast Exponentiation

How quickly can we compute 𝑥𝑛 (usually modulo some 𝑚)?

Naively in 𝒪(𝑛).

AACPP 2025 Mateusz Gienieczko

Fast Exponentiation

How quickly can we compute 𝑥𝑛 (usually modulo some 𝑚)?

Naively in 𝒪(𝑛).

𝒪(log 𝑛) using 𝑛’s binary representation.

fn fastpow(x, n)

 res = 1

 while n > 0

 if x & 1

 res *= x

 x *= x

 n /= 2

 return res

 fn fastmodpow(x, n, m)

 res = 1

 while n > 0

 if x & 1

 res = (res * x) % m

 x = (x % m)

 n /= 2

 return res
AACPP 2025 Mateusz Gienieczko

Fast Matrix Exponentiation

This can be used to exponentiate matrices as well, e.g. 𝑀13 = 𝑀1 ⋅ 𝑀4 ⋅ 𝑀8.

AACPP 2025 Mateusz Gienieczko

Fibonacci

How to compute the 𝑛-th Fibonacci number quickly?

𝐹𝑛 = 𝐹𝑛−1𝐹𝑛−2

Take a matrix FM = (11
1
0). Note that (11

1
0) = (

𝐹2
𝐹1

𝐹1
𝐹0
).

Then

(𝐹𝑛𝐹𝑛−1
𝐹𝑛−1
𝐹𝑛−2

) ⋅ (11
1
0) = (

𝐹𝑛 + 𝐹𝑛−1
𝐹𝑛−1 + 𝐹𝑛−2

𝐹𝑛
𝐹𝑛−1

) = (𝐹𝑛+1𝐹𝑛
𝐹𝑛
𝐹𝑛−1

)

So we can compute FM𝑛 and take the top-left element.

AACPP 2025 Mateusz Gienieczko

DP as Matrix Multiplication

If we have dynamic programming where DP[𝑛] is a linear combination of
DP[𝑛 − 1], DP[𝑛 − 2], …, DP[𝑛 − 𝑘] then we can construct a 𝑘 × 𝑘 matrix that will
compute DP[𝑛] similarly to the Fibonacci example.

AACPP 2025 Mateusz Gienieczko

Extended Euclidean Algorithm

Solve the congruence

𝑎𝑥 − 𝑏𝑦 ≡ gcd(𝑎, 𝑏)

fn eea(a, b)

 old_r, r = a, b // old_r is the gcd(a,b) at the end

 old_x, x = 1, 0 // old_x is the solution's x at the end

 old_y, y = 0, 1 // old_y is the solution's y at the end

 while r != 0

 q = old_r / r

 old_r, r = r, old_r - q * r

 old_x, x = x, old_x - q * x

 old_y, y = y, old_y - q * y
AACPP 2025 Mateusz Gienieczko

Extended Euclidean Algorithm – example

Dexter has 𝑛 snacks arranged in a line. Starting from 𝑎-th snack, up until 𝑐-th,
every 𝑘-th snack is exceptionally tasty. Moreover, starting from 𝑏-th, up until 𝑑-th,
every 𝑙-th snack is exceptionally pretty. Dexter wants to eat only the exceptionally
tasty and pretty snack. Tell him at which snack to start and what are the gaps
between each snack he should eat.

5 1024 7

3 911 10

33 911 70

AACPP 2025 Mateusz Gienieczko

Extended Euclidean Algorithm – example

Find the intersection of [𝑎 : 𝑐 : 𝑘] and [𝑏 : 𝑑 : 𝑙] expressed as [𝑥 : 𝑦 : 𝑧].

We can ignore the ends (𝑦 = min(𝑐, 𝑑)).

The step is naturally the lowest common multiple of 𝑘 and 𝑙, which we compute
by 𝑘𝑙

gcd(𝑘,𝑙) .

The issue is in finding the first element.

We could advance two iterators from 𝑎 and 𝑏 until they meet, but if the
numbers are large (e.g. 1018) with a relatively small 𝑘, 𝑙 then this takes forever.

AACPP 2025 Mateusz Gienieczko

Extended Euclidean Algorithm – example

W.l.o.g. assume 𝑎 ≤ 𝑏. The difference of the first element of [𝑎 :: 𝑘] greater than
𝑏 and 𝑏 is:

Δ ≡ 𝑘 − (𝑏 − 𝑎) mod 𝑘

To overcome this delta we need to jump some number of times – 𝑥 – by 𝑙, so
that we will still fall into [𝑎 :: 𝑘] again. In other words:

Δ + 𝑙𝑥 ≡ 0 mod 𝑘 or,

𝑙𝑥 ≡ −Δ mod 𝑘

This is a linear congruence that can be solved with EEA.
AACPP 2025 Mateusz Gienieczko

Extended Euclidean Algorithm – example

Solve 𝑎𝑥 ≡ 𝑏 mod 𝑚. If gcd(𝑎, 𝑚) does not divide 𝑏 mod 𝑚 then no solutions.

Otherwise, find 𝑥, 𝑦 s.t. 𝑎𝑥 − 𝑚𝑦 = gcd(𝑎, 𝑚) and as the result take

𝑥 𝑏
gcd(𝑎, 𝑚)

mod
𝑚

gcd(𝑎, 𝑚)

There may be multiple solutions if gcd(𝑎, 𝑚) > 1, but this gives the smallest one.

AACPP 2025 Mateusz Gienieczko

Fundamental Theorem of Arithmetic

Theorem (Fundamental Theorem of Arithmetic): any integer larger than 1
can be uniquely factored into a product of powers of prime numbers

𝑞 = 𝑝𝑛11 𝑝
𝑛2
2 𝑝

𝑛3
3 …𝑝

𝑛𝑘
𝑘

AACPP 2025 Mateusz Gienieczko

Divisors

As mentioned, 𝑑(𝑛) (number of divisors of 𝑛) satisfies 𝑜(𝑛𝜀) for any 𝜀 > 0.

More precisely, log 𝑑(𝑛) = 𝑂(log 𝑛
log log 𝑛).

AACPP 2025 Mateusz Gienieczko

Prime Number Theorem

The number of primes lower or equal to 𝑛 is denoted by 𝜋(𝑛).

Theorem (Prime Number Theorem):

𝜋(𝑛) = Θ(𝑛
log 𝑛

)

The 𝑛-th prime is denoted by 𝑝𝑛.

Dusart’s Inequality:

𝑝(𝑛) < 𝑛 ln 𝑛 + 𝑛 ln ln 𝑛 (for 𝑛 ≥ 6).

AACPP 2025 Mateusz Gienieczko

Finding primes – Sieve of Eratosthenes

is_prime = array initially set to true

is_prime[1] = false

for i in [2..sqrt(n)]

 if is_prime[i]

 j = 2 * i

 while j <= n

 is_prime[j] = false

 j += i

AACPP 2025 Mateusz Gienieczko

Sieve of Eratosthenes – complexity

Complexity: 𝒪(𝑛 log log 𝑛).

We perform 𝑛2 +
𝑛
3 +

𝑛
5 +

𝑛
7 +

𝑛
11… operations.

The sequence ∑𝑛=1
1
𝑝𝑛

 diverges to Θ(log log 𝑛).¹

The Sieve can be easily modified to store all prime divisors as well.

¹The proof is tedious, but in https://math.stackexchange.com/questions/4362120 there is a
rather fundamental proof just using a bunch of inequalities and algebra.
AACPP 2025 Mateusz Gienieczko

https://math.stackexchange.com/questions/4362120

Primality Tests

How to test if a number is prime?

Naively: check all divisors in 𝒪(√𝑛).

We have deterministic algorithms in various polylogarithmic complexities, most
notably AKS in ̃𝒪(log(𝑛)6)².

In practice, there are probabilistic tests that are much faster.

²“Soft-O” notation that hides logarithmic factors, e.g. 𝒪(𝑓 (𝑛) + log 𝑓 (𝑛)) = ̃𝒪(𝑓 (𝑛)).
AACPP 2025 Mateusz Gienieczko

Fermat’s Little Theorem

Theorem (Fermat’s little theorem): If 𝑎, 𝑝 ∈ ℕ and 𝑝 is prime then

𝑎𝑝 ≡ 𝑎 mod 𝑝

Equivalently:

𝑎𝑝−1 ≡ 1 mod 𝑝

AACPP 2025 Mateusz Gienieczko

Fermat’s Little Theorem

Theorem (Fermat’s little theorem): If 𝑎, 𝑝 ∈ ℕ and 𝑝 is prime then

𝑎𝑝 ≡ 𝑎 mod 𝑝

Equivalently:

𝑎𝑝−1 ≡ 1 mod 𝑝

Proof (sketch): 𝐺 = {1, 2, …, 𝑝 − 1} is a group with multiplication modulo 𝑝. If 𝑘
is the order of 𝑎 in 𝐺 (smallest integer such that 𝑎𝑘 ≡ 1 mod 𝑝) then {𝑘 ∈
ℕ, 𝑎𝑘 mod 𝑝} is a subgroup of order 𝑘. Therefore 𝑘 | 𝑝 − 1 and thus

𝑎𝑝−1 ≡ 𝑎𝑘𝑥 ≡ (𝑎𝑘)
𝑥
≡ 1𝑥 ≡ 1 mod 𝑝

AACPP 2025 Mateusz Gienieczko

Primality Test – Rabin-Miller

The idea is to check a certain property that:
1. Definitely holds for all prime numbers; and
2. doesn’t hold for a lot of composite numbers.

One check of the property will have a high probability of a miss, but running
multiple rounds will exponentially decrease the risk.

AACPP 2025 Mateusz Gienieczko

Primality Test – Rabin-Miller

A simple idea is to check Fermat’s little theorem – if 𝑛 is prime then for any
number 𝑎 we have 𝑎𝑛−1 ≡ 1 mod 𝑛.

However, there are composite numbers that satisfy Fermat’s little theorem
(called Carmichael numbers).

Let us take 𝑛 − 1 as 2𝑠𝑑 where 𝑠 > 0 and 𝑑 is an odd integer.³ Let’s take some 𝑎.
If 𝑛 is prime then:

1. 𝑎𝑑 ≡ 1 mod 𝑛; or
2. 𝑎2

𝑟𝑑 ≡ −1 mod 𝑛 for some 0 ≤ 𝑟 < 𝑠.

³If 𝑛 is even and not equal to 2 then it’s obviously not prime. So 𝑛 is odd and 𝑛 − 1 is even.
AACPP 2025 Mateusz Gienieczko

Primality Test – Rabin-Miller

fn mr_test(n, a, d, s)

 x = fastmodpow(a, d, n)

 if x == 1 || x == n - 1

 return true

 for [0..s]

 x = (x * x) % n

 if x == n - 1

 return true

 return false

fn miller_rabin(n, k)

 if n < 4 { return n == 2 or n == 3 }

 (s, d) = factor(n - 1) // n - 1 = 2^s * d

 for [0..k]

 a = select_base(n)

 if !miller_rabin_round(n, a, d, s)

 return false

 return true

And select_base should select a random number in [2, 𝑛 − 2].

AACPP 2025 Mateusz Gienieczko

Primality Test – Rabin-Miller

It can be proven that if 𝑛 is not prime then for at most 14 bases in [2, 𝑛 − 2] a
single round of Miller-Rabin passes.

Thus, if we select 𝑎 randomly, we get an error rate of (14)
𝑘
 for 𝑘 rounds.

For 5 rounds that’s 0.001% chance.

For 15 rounds that’s less than 10−9.

For 30 rounds – less than 10−18.

Complexity is 𝒪(𝑘 log 𝑛).

AACPP 2025 Mateusz Gienieczko

Primality Test – Rabin-Miller practical opts

A common optimisation is to precompute some primes and test if any of them
divide 𝑛 before running Rabin-Miller. This gives massive improvements in
practice.

Moreover, for numbers below 232 it’s enough to check 2, 3, 5, 7 as bases.

For 264 it’s the first 12 prime numbers.

AACPP 2025 Mateusz Gienieczko

Euler’s 𝜑 function

Euler’s 𝜑 function, called Euler’s totient function, counts the number of relatively
prime numbers, i.e.

𝜑(𝑛) ≔ |{𝑥 ∈ ℕ | gcd(𝑛, 𝑥) = 1}|

For example, 𝜑(12) = 7.

Some properties:
• 𝜑(1) = 1;
• for prime 𝑝 𝜑(𝑝) = 𝑝 − 1;
• for coprime 𝑛, 𝑚 𝜑(𝑛𝑚) = 𝜑(𝑛)𝜑(𝑚) (proof by CRT, see later).

AACPP 2025 Mateusz Gienieczko

Euler’s 𝜑 function

To calculate 𝑛 we need to know the prime numbers below 𝑛. Then:

𝜑(𝑛) = 𝑛∏
𝑝 | 𝑛

(1 − 1
𝑝
)

Equivalently and algorithmically more usefully:

𝜑(𝑛) = 𝑝𝑛1−11 (𝑝1 − 1)𝑝
𝑛2−1
2 (𝑝2 − 1)…𝑝

𝑛𝑘−1
𝑘 (𝑝𝑘 − 1)

The proofs are too time-consuming for inclusion in this course.

AACPP 2025 Mateusz Gienieczko

Modular inverse

Modular arithmetic is simple for addition and multiplication – just do % m
everywhere.

For subtraction the sign is important. For 𝑎 − 𝑏 mod 𝑚 we write (a - b + m) % m.

For division it gets much more complicated.

AACPP 2025 Mateusz Gienieczko

Modular inverse

Modular arithmetic is simple for addition and multiplication – just do % m
everywhere.

For subtraction the sign is important. For 𝑎 − 𝑏 mod 𝑚 we write (a - b + m) % m.

For division it gets much more complicated.

Division is multiplication by the inverse.

AACPP 2025 Mateusz Gienieczko

Modular multiplicative inverse

The modular multiplicative inverse of 𝑎 is an 𝑥 such that

𝑎𝑥 ≡ 1 mod 𝑚

Modular multiplicative inverse exists if and only if 𝑎 and 𝑚 are coprime.

One way to compute this is the Extended Euclidean Algorithm. We’re solving

𝑎𝑥 + 𝑚𝑦 = 1

since we can rewrite that to

𝑎𝑥 − 1 = (−𝑦)𝑚

and thus 𝑎𝑥 ≡ 1 mod 𝑚.
AACPP 2025 Mateusz Gienieczko

Euler’s theorem

Theorem (Euler’s): For coprime 𝑎, 𝑚:

𝑎𝜑(𝑚) ≡ 1 mod 𝑚

This is a generalisation of Fermat’s little theorem.

The algebraic proof is actually identical.

This can also be used for computing the multiplicative inverse – it’s equal to
𝑎𝜑(𝑚)−1 mod 𝑚.

AACPP 2025 Mateusz Gienieczko

Linear congruence

A linear congruence is an equation in the shape:

𝑎 ⋅ 𝑥 ≡ 𝑏 mod 𝑚

which we want to solve for 𝑥 .

AACPP 2025 Mateusz Gienieczko

Linear congruence

A linear congruence is an equation in the shape:

𝑎 ⋅ 𝑥 ≡ 𝑏 mod 𝑚

which we want to solve for 𝑥 .

If 𝑎 and 𝑚 are coprime then we can find the inverse of 𝑎 and multiply both
sides:

𝑥 ≡ 𝑏 ⋅ 𝑎−1 mod 𝑚

AACPP 2025 Mateusz Gienieczko

Linear congruence

A linear congruence is an equation in the shape:

𝑎 ⋅ 𝑥 ≡ 𝑏 mod 𝑚

which we want to solve for 𝑥 .

If 𝑎 and 𝑚 are coprime then we can find the inverse of 𝑎 and multiply both
sides:

𝑥 ≡ 𝑏 ⋅ 𝑎−1 mod 𝑚

Otherwise, if 𝑏 is not divisible by gcd(𝑎, 𝑚) then there is no solution.

AACPP 2025 Mateusz Gienieczko

Linear congruence

𝑎 ⋅ 𝑥 ≡ 𝑏 mod 𝑛

If 𝑏 is divisible by 𝑑 = gcd(𝑎, 𝑚) then we can instead solve the equation:

𝑎
𝑑
⋅ 𝑥 ≡ 𝑏

𝑑
mod

𝑚
𝑑

This is the smallest solution, but there are 𝑑 solutions in total: for each 𝑖 ∈
[0..𝑔 − 1]

𝑥𝑖 ≡ (𝑥0 + 𝑖 ⋅
𝑚
𝑑
) mod 𝑚

AACPP 2025 Mateusz Gienieczko

Linear congruence

𝑎 ⋅ 𝑥 ≡ 𝑏 mod 𝑛

This can be also solved with EEA, since we can write:

𝑎𝑥 + 𝑚𝑘 = 𝑏

and solve for 𝑥 .

AACPP 2025 Mateusz Gienieczko

Sun Zi’s Theorem

Sun Zi’s Theorem (commonly called the Chinese Remainder Theorem
(CRT)⁴), says how to solve specific systems of congruences.

{
{{
{{
𝑥 ≡ 𝑎1 mod 𝑚1
𝑥 ≡ 𝑎2 mod 𝑚2

⋮
𝑥 ≡ 𝑎𝑘 mod 𝑚𝑘

Where 𝑚1, …, 𝑚𝑘 are pairwise coprime. Sun Zi’s theorem states that such a
system has exactly one solution modulo 𝑚 and how to find them.

⁴It’s a much more common name, but I don’t like it and I make the slides, so… Also come
on, “Master Sun’s Theorem” sounds so much cooler.
AACPP 2025 Mateusz Gienieczko

Sun Zi’s Theorem

Let’s tackle a system of two congruences first.

{𝑥 ≡ 𝑎1 mod 𝑚1𝑥 ≡ 𝑎2 mod 𝑚2

Remember the EEA example? The idea here is similar, find the solution to

𝑚1𝑥 + 𝑚2𝑦 = 1

Then if we take

𝑥 = 𝑎1𝑦𝑚2 + 𝑎2𝑥𝑚1

We can verify this 𝑥 satisfies both congruences.
AACPP 2025 Mateusz Gienieczko

Sun Zi’s Theorem

We can solve the entire problem by induction now.

{
{{
{{
𝑥 ≡ 𝑎1 mod 𝑚1
𝑥 ≡ 𝑎2 mod 𝑚2

⋮
𝑥 ≡ 𝑎𝑘 mod 𝑚𝑘

solve the first two obtaining a candidate 𝑥0 and replace them with

{
𝑥 ≡ 𝑥0 mod 𝑚1𝑚2

⋮
𝑥 ≡ 𝑎𝑘 mod 𝑚𝑘

AACPP 2025 Mateusz Gienieczko

Sun Zi’s Theorem

The only important thing to show is that 𝑚1𝑚2 is coprime with all other 𝑚𝑖, but
that’s trivial.

Assuming all results fit in registers this will work in 𝒪(𝑘 log𝑀) where 𝑀 =
𝑚1𝑚2…𝑚𝑛.

If working with big numbers, it pays off to solve congruences in pairs, i.e. first
and second, third and fourth, etc., keeping the products of moduli small.

At the end we get a system with 𝑘2 equations and reapply the algorithm.

AACPP 2025 Mateusz Gienieczko

Sun Zi’s Theorem

CRT can be generalised to non-coprime moduli.

Assume we have

{𝑥 ≡ 𝑎 mod 𝑚𝑥 ≡ 𝑏 mod 𝑛

If 𝑎 ≡ 𝑏 mod gcd(𝑛, 𝑚) then there is a unique solution, otherwise there are none.

If we solve (with EEA)

𝑚𝑥 + 𝑛𝑦 = gcd(𝑛, 𝑚)

then the solution is 𝑥 = 𝑎𝑦𝑛+𝑏𝑥𝑚
gcd(𝑛,𝑚) .

AACPP 2025 Mateusz Gienieczko

Discrete logarithm

Solution for

𝑎𝑥 ≡ 𝑏 mod 𝑚

Solution doesn’t always exist, e.g. 2𝑥 ≡ 3 mod 7 has no solutions.

There is no easy-to-check condition for existence.

This is one of those important hard problems, where we don’t know a relatively
fast solution, and thus it’s useful for cryptography.

Best algorithm runs in 𝒪(√𝑚).

AACPP 2025 Mateusz Gienieczko

Discrete logarithm – baby-step giant-step

First let’s assume 𝑎 and 𝑚 are coprime, we will lift this restriction at the end.

The idea is to select a candidate 𝑥 and split 𝑥 = 𝑛𝑝 − 𝑞 (we will explain the best
choice for 𝑛 later).

𝑎𝑛𝑝−𝑞 ≡ 𝑏 mod 𝑚

Because 𝑎 and 𝑚 are relatively prime we can do this:

𝑎𝑛𝑝 ≡ 𝑏𝑎𝑞 mod 𝑚

We will now directly compute left-hand-side values for all 𝑝 and right-hand-
side values for all 𝑞. Once we do that we can find the values at which they two
match (e.g. by sorting one array and binary-searching or with a hashmap).
AACPP 2025 Mateusz Gienieczko

Discrete logarithm – baby-step giant-step

The important thing here is that any number 𝑥 ∈ [0, 𝑚 − 1] can be represented
with 𝑝, 𝑞 and 𝑝 ∈ [1, ⌈𝑚𝑛 ⌉] while 𝑞 ∈ [0, 𝑛].

The name of the algorithm comes from the fact that increasing 𝑝 by one
increases 𝑥 drastically (by 𝑛) – giant step – while increasing 𝑞 by one decreases
it by just 1 – baby step.

AACPP 2025 Mateusz Gienieczko

Discrete logarithm – complexity

For fixed 𝑝, 𝑞 𝑎𝑛𝑝 can be calculated in 𝒪(log𝑚), as well as 𝑏𝑎𝑞 .

To compute the left-hand-side for all 𝑝 we use 𝒪(𝑚𝑛 log𝑚) time.

For the right-hand-side we use 𝒪(𝑛 log𝑚).

The sort+binsearch or lookups are negligible.

Together we get 𝒪(𝑚𝑛 log𝑚 + 𝑛 log𝑚) = 𝒪((
𝑚
𝑛 + 𝑛)) log𝑚).

If we select 𝑛 = √𝑚 we get the best complexity – 𝒪(√𝑚 log 𝑛).

Note that with some tricks we can get rid of exponentiation directly – when
computing all LHS/RHS values in a loop we can just keep a variable for the
current power of 𝑎, getting rid of the log factor for 𝒪(√𝑚).
AACPP 2025 Mateusz Gienieczko

Discrete logarithm – generalisation

When 𝑎 and 𝑚 are not coprime then 𝑏 has to be divisible by 𝑑 = gcd(𝑎, 𝑚),
otherwise there are no solutions.

Otherwise, factor all variables by 𝑑 . Say 𝑎 = 𝑑𝑎′, 𝑏 = 𝑑𝑏′, 𝑚 = 𝑑𝑚′.

𝑎𝑥 ≡ 𝑏 mod 𝑚
(𝑑𝑎′)𝑎𝑥−1 ≡ 𝑑𝑏′ mod 𝑑𝑚′

𝑎′𝑎𝑥−1 ≡ 𝑏′ mod 𝑚′

and 𝑎′𝑎 is coprime with 𝑚′. We can extend our algorithm to work for arbitrary
equations of the form

𝑘𝑎𝑥 ≡ mod 𝑚
AACPP 2025 Mateusz Gienieczko

Discrete root – generators

Find 𝑥 such that

𝑥𝑘 ≡ 𝑎 mod 𝑚

The key concept here is a generator in the group of multiplication modulo 𝑚.

A number 𝑔 is a generator in (ℤ/𝑚ℤ)× if and only if for any integer 𝑎 coprime
with 𝑚 there exists a power 𝑘 such that

𝑔𝑘 ≡ 𝑎 mod 𝑚

Intuitively, a generator can be used to “generate” any number coprime with 𝑚
by successive multiplication. In a sense, all such numbers are represented by 𝑔.
AACPP 2025 Mateusz Gienieczko

Discrete root – using generators

Assume for a second we have found a generator modulo 𝑚. Then the discrete
root problem can be restated as:

(𝑔𝑦)𝑘 ≡ 𝑎 mod 𝑛

and we’re looking for 𝑥 ≡ 𝑔𝑦 mod 𝑛. But this is the same as:

(𝑔𝑘)
𝑦
≡ 𝑎 mod 𝑛

… which is a discrete log problem!

AACPP 2025 Mateusz Gienieczko

Discrete root – all solutions

That gives us one solution, but there might be more.

If we have solved 𝑥0 ≡ 𝑔𝑦0 mod 𝑛 then for any 𝑙 ∈ ℤ

𝑥𝑘 ≡ 𝑔𝑦0𝑘+𝑙𝜑(𝑛) ≡ 𝑎 mod 𝑛

𝑥 ≡ 𝑔𝑦0+
𝑙𝜑(𝑛)
𝑘 mod 𝑛

For this to make sense the fraction must be integral, so the numerator 𝑙𝜑(𝑛) has
to be divisible by lcm(𝑘, 𝜑(𝑛)). This gives us all results by the formula (for 𝑖 ∈ ℤ)

𝑥 = 𝑔
𝑦0+𝑖(

𝜑(𝑛)
gcd(𝑘,𝜑(𝑛)))

AACPP 2025 Mateusz Gienieczko

Discrete root – finding generators

A naive solution of course is to check all numbers in [1, 𝑛 − 1] and see if they’re
the generator by checking all its powers (they have to be different).

We need a few results to get a better solution.

AACPP 2025 Mateusz Gienieczko

Discrete root – finding generators

A generator in (ℤ/𝑚ℤ)× exists if and only if:

• 𝑚 ∈ {1, 2, 4},
• 𝑚 = 𝑝𝑘 for an odd prime 𝑝 and 𝑘 ∈ ℕ+,
• 𝑚 = 2𝑝𝑘 for an odd prime 𝑝 and 𝑘 ∈ ℕ+.

This is a fundamental result in algebra proven by Gauss.

AACPP 2025 Mateusz Gienieczko

Discrete root – Euler strikes back

It can also be proven that iff 𝑔 is a generator modulo 𝑚 then the smallest 𝑘 for
which

𝑔𝑘 ≡ 1 mod 𝑚

is equal to 𝜑(𝑚).

AACPP 2025 Mateusz Gienieczko

Discrete root – finding generators

Lemma: it is enough to check 𝜑(𝑚)𝑝𝑖
 for all prime divisors 𝑝𝑖 of 𝜑(𝑚).

Using this lemma we get an algorithm:
• find 𝜑(𝑚) and prime factors,
• iterate through [1, 𝑛 − 1] and:

‣ for each 𝑝𝑖 compute 𝑔
𝜑(𝑚)
𝑝𝑖

‣ if all values are different from 1, 𝑔 is a generator.

If we precompute prime factors this takes 𝒪(Ans ⋅ log 𝜑(𝑚) ⋅ log𝑚).

The answer is small in practice.⁵

⁵It’s proven to be 𝒪(log6 𝑚) under the generalised Riemann hypothesis.
AACPP 2025 Mateusz Gienieczko

Discrete root – finding generators

Lemma: it is enough to check 𝜑(𝑚)𝑝𝑖
 for all prime divisors 𝑝𝑖 of 𝜑(𝑚).

Proof: Because of group properties, we definitely only need to check all divisors
of 𝜑(𝑚).

Let 𝑑 be any divisor of 𝜑(𝑚). Then there exists some 𝑗 such that there exists a 𝑘:
𝑑𝑘 = 𝜑(𝑚)

𝑝𝑗
. If 𝑔 is a generator then:

𝑔
𝜑(𝑚)
𝑝𝑗 ≡ 𝑔𝑑𝑘 ≡ (𝑔𝑑)

𝑘
≡ 1𝑘 ≡ 1 mod 𝑚

So checking each 𝜑(𝑚)𝑝𝑗
 checks all divisors indirectly.

AACPP 2025 Mateusz Gienieczko

Discrete Fourier Transform

The Fourier Transform is a scary thing that does stuff to continuous functions
using integration and expresses it in terms of sinuses or something, I don’t
know, I’m not a mathematician.

Anyway, the Discrete Fourier Transform makes sense.

Given a polynomial 𝑝(𝑥) = 𝑎0𝑥0 + 𝑎1𝑥1 + … + 𝑎𝑛−1𝑥𝑛−1 it gives its values at
some magical 𝑛 values such that there exists an inverse function of DFT
recovering the polynomial.

DFT−1(DFT(𝑝)) = 𝑝

AACPP 2025 Mateusz Gienieczko

Discrete Fourier Transform – applications

If we can compute DFT and DFT−1 efficiently, then this is great – performing
operations on values is much easier than on polynomials.

For example, multiplying polynomials can just be done on values. If we have
polynomials 𝑝, 𝑞 we can do:

DFT(𝑝) = (𝑦0, 𝑦1, …, 𝑦𝑛−1), DFT(𝑞) = (𝑧0, 𝑧1, …, 𝑧𝑛−1)

and compute

𝑝 ⋅ 𝑞 = DFT−1((𝑦0 ⋅ 𝑧0, 𝑦1 ⋅ 𝑧1, …, 𝑦𝑛−1 ⋅ 𝑧𝑛−1))

AACPP 2025 Mateusz Gienieczko

Discrete Fourier Transform – applications

Big numbers (i.e. outside of the range of CPU registers, well above 264) can be
interpreted as the value of a polynomial 𝑝 at 10 where the coefficients are
subsequent digits of the number.

FFT can be used to implement fast multiplication of bignums.

After multiplication a rather straightforward normalisation (carry-propagation)
is needed.

AACPP 2025 Mateusz Gienieczko

Discrete Fourier Transform – details

To understand the algorithm we need a few more details on DFT.

The magical points at which we compute the polynomial are 𝑛-th roots of unity,
denoted by 𝑤𝑘𝑛 for 𝑘 ∈ [0..𝑛 − 1].

These are complex numbers so I’m not even going to try to explain what this
means mathematically. For us it suffices to treat this algebraically - we have a
polynomial and some value 𝑤𝑛, and by applying DFT we obtain

𝑝(𝑤𝑛) = (𝑝(𝑤0𝑛), 𝑝(𝑤1𝑛), …, 𝑝(𝑤𝑛−1𝑛)) = (𝑦0, 𝑦1, …, 𝑦𝑛−1)

and there are two more identities: 𝑤𝑛𝑛 = 1 and 𝑤
𝑛
2𝑛 = −1.

AACPP 2025 Mateusz Gienieczko

Fast Fourier Transform

The core idea is to apply divide-and-conquer. We first extend the polynomial
with zero coefficients such that 𝑛 is a power of two. Then, divide the polynomial
coefficients into two vectors of size 𝑛2 , compute DFT recursively, and combine
the results.

More specifically, we divide 𝑝(𝑥) into even and odd coefficients

{𝑝0(𝑥) = 𝑎0𝑥
0 + 𝑎2𝑥1 + … + 𝑎𝑛−2𝑥

𝑛
2−1

𝑝1 = 𝑎1𝑥1 + 𝑎3𝑥1 + … + 𝑎𝑛−1𝑥
𝑛
2−1

Then 𝑝(𝑥) = 𝑝0(𝑥2) + 𝑥𝑝1(𝑥2).

If we can combine the results in linear time we get 𝒪(𝑛 log 𝑛).
AACPP 2025 Mateusz Gienieczko

Fast Fourier Transform

From recursion we get two vectors of length 𝑛2 − 1.

{
{{
{{DFT(𝑝0) = (𝑦0,0, 𝑦0,1, …, 𝑦0,𝑛2−1

)

DFT(𝑝1) = (𝑦1,0, 𝑦1,1, …, 𝑦1,𝑛2−1
)

The first 𝑛2 values in the combined result can be computed directly:

𝑦𝑘 = 𝑦0,𝑘 + 𝑤𝑘𝑛 𝑦1,𝑘

AACPP 2025 Mateusz Gienieczko

Fast Fourier Transform

The second half of values needs a different equation:

𝑦𝑘+𝑛2
= 𝑝(𝑤

𝑘+𝑛2𝑛)

= 𝑝0(𝑤2𝑘+𝑛𝑛) + 𝑤
𝑘+𝑛2𝑛 𝑝1(𝑤2𝑘+𝑛𝑛)

= 𝑝0(𝑤2𝑘𝑛 𝑤𝑛𝑛) + 𝑤𝑘𝑛𝑤
𝑛
2𝑛 𝑝1(𝑤2𝑘𝑛 𝑤𝑛𝑛)

= 𝑝0(𝑤2𝑘𝑛 − 𝑤𝑘𝑛 𝑝1(𝑤2𝑘𝑛))

= 𝑦0,𝑘 − 𝑤𝑘𝑛 𝑦1,𝑘
AACPP 2025 Mateusz Gienieczko

Fast Fourier Transform

In total we get:

{
{

{𝑦𝑘 = 𝑦0,𝑘 + 𝑤𝑘𝑛 𝑦1,𝑘 for 𝑘 ∈ [0..𝑛2 − 1]

𝑦𝑘 = 𝑦0,𝑘−𝑛2
− 𝑤

𝑘−𝑛2𝑛 𝑦1,𝑘−𝑛2
for 𝑘 ∈ [𝑛2 ..𝑛]

AACPP 2025 Mateusz Gienieczko

Fast Fourier Transform – implementation

We’re using magical complex numbers in equations.

FFT is unfortunately a numerical algorithm. In C++ it’s easiest to use the
standard std::complex<double> type. Rust has no standard complex type.

The root of unity 𝑤𝑛 is given by the complex number cos(𝛼) + sin(𝛼)𝑖 for 𝛼 = 2𝜋
𝑛 .

AACPP 2025 Mateusz Gienieczko

Fast Fourier Transform – inverse

To invert DFT we need to interpolate the polynomial along the 𝑛 points.

The DFT can be written in matrix form as a Voldemort Vandermonde matrix
with 𝑤 𝑖𝑛 as the entries. Inverting DFT is then multiplying by the inverse of this
matrix.

From the properties of a Vandermonde matrix and roots of unity we get a
formula:

𝑎𝑘 =
1
𝑛
∑
𝑛−1

𝑗=0
𝑦𝑗𝑤

−𝑘𝑗
𝑛

But this is the same formula as for DFT, only 𝑘 is negated and we divide by 𝑛.
AACPP 2025 Mateusz Gienieczko

See you next week

TAB: 08.07.2025, 10:00 AM

Good luck!

AACPP 2025 Mateusz Gienieczko

See you next week

TAB: 08.07.2025, 10:00 AM

Good luck!

AACPP 2025 Mateusz Gienieczko

See you next week

TAB: 08.07.2025, 10:00 AM

Good luck!

AACPP 2025 Mateusz Gienieczko

See you next week

TAB: 08.07.2025, 10:00 AM

Good luck!

AACPP 2025 Mateusz Gienieczko

	AACPP 2025
	Week 9: Number Theory

	Sixth round – survey
	Seventh round
	PSS – Purrfect Scent Schedule
	PSS – Purrfect Scent Schedule
	PSS – Purrfect Scent Schedule
	BUR – Cat Burglars
	BUR – Cat Burglars
	BUR – Cat Burglars
	BUR – Cat Burglars
	BUR – Cat Burglars
	BUR – Cat Burglars
	BUR – Cat Burglars
	BUR – Cat Burglars
	BUR – Cat Burglars
	BUR – Cat Burglars
	BUR – Cat Burglars
	BUR – Cat Burglars
	Recall the plan
	Fast Exponentiation
	Fast Matrix Exponentiation
	Fibonacci
	DP as Matrix Multiplication
	Extended Euclidean Algorithm
	Extended Euclidean Algorithm – example
	Extended Euclidean Algorithm – example
	Extended Euclidean Algorithm – example
	Extended Euclidean Algorithm – example
	Fundamental Theorem of Arithmetic
	Divisors
	Prime Number Theorem
	Finding primes – Sieve of Eratosthenes
	Sieve of Eratosthenes – complexity
	Primality Tests
	Fermat's Little Theorem
	Primality Test – Rabin-Miller
	Primality Test – Rabin-Miller
	Primality Test – Rabin-Miller
	Primality Test – Rabin-Miller
	Primality Test – Rabin-Miller practical opts
	Euler's φ function
	Euler's φ function
	Modular inverse
	Modular multiplicative inverse
	Euler's theorem
	Linear congruence
	Linear congruence
	Linear congruence
	Sun Zi's Theorem
	Sun Zi's Theorem
	Sun Zi's Theorem
	Sun Zi's Theorem
	Sun Zi's Theorem
	Discrete logarithm
	Discrete logarithm – baby-step giant-step
	Discrete logarithm – baby-step giant-step
	Discrete logarithm – complexity
	Discrete logarithm – generalisation
	Discrete root – generators
	Discrete root – using generators
	Discrete root – all solutions
	Discrete root – finding generators
	Discrete root – finding generators
	Discrete root – Euler strikes back
	Discrete root – finding generators
	Discrete root – finding generators
	Discrete Fourier Transform
	Discrete Fourier Transform – applications
	Discrete Fourier Transform – applications
	Discrete Fourier Transform – details
	Fast Fourier Transform
	Fast Fourier Transform
	Fast Fourier Transform
	Fast Fourier Transform
	Fast Fourier Transform – implementation
	Fast Fourier Transform – inverse
	See you next week
	See you next week
	See you next week
	See you next week

