
School of Computation, Information and Technology
Technical University of Munich

AACPP 2025
Week 4: Trees

Mateusz Gienieczko, Mykola Morozov

School of Computation, Information and Technology
Technical University of Munich

2025.05.27

AACPP 2025 Mateusz Gienieczko

Second round – survey

AACPP 2025 Mateusz Gienieczko

Third round

Third deadline – 03.06.2025, 10:00 AM.

AACPP 2025 Mateusz Gienieczko

TES – Treat Exchange System

We can compute what the account balances after all exchanges will be.

AACPP 2025 Mateusz Gienieczko

TES – Treat Exchange System

We can compute what the account balances after all exchanges will be.

We have “losers” and “gainers”.

AACPP 2025 Mateusz Gienieczko

TES – Treat Exchange System

We can compute what the account balances after all exchanges will be.

We have “losers” and “gainers”.

Clearly it makes no sense for gainers to ever send treats.

AACPP 2025 Mateusz Gienieczko

TES – Treat Exchange System

We can compute what the account balances after all exchanges will be.

We have “losers” and “gainers”.

Clearly it makes no sense for gainers to ever send treats.

Nor does it make sense for losers to ever receive treats.

AACPP 2025 Mateusz Gienieczko

TES – Treat Exchange System

We can compute what the account balances after all exchanges will be.

We have “losers” and “gainers”.

Clearly it makes no sense for gainers to ever send treats.

Nor does it make sense for losers to ever receive treats.

Transaction always goes gainer → loser.

This is a greedy property, provable by replacement.

AACPP 2025 Mateusz Gienieczko

TES – Treat Exchange System

Sum all losses (or all gains) for 50%.

To decide transactions, note that it also makes no sense to ever overpay.

Each loser will send exactly as many treats as its loss and vice versa for gainers.

AACPP 2025 Mateusz Gienieczko

TES – Treat Exchange System

Just take any loser and send treats to any gainers that are not satisfied yet.

Simplest way: put all gainers in one queue, losers in the other.

while loser = losers.pop

 while loser.loss > 0

 if loser.loss >= gainers.front.gain

 record(loser, gainers.front, gainers.front.gain)

 gainers.pop

 else

 record(loser, gainers.front, loser.loss)

 gainer.front.gain -= loser.loss

𝒪(𝑛) time and memory.
AACPP 2025 Mateusz Gienieczko

SLI – Sliding Cat Puzzle

Obvious brute force in 𝒪(𝑛!), but no points for it this time.

Key observation – since the distance travelled does not matter, the concrete
index of a slot does not matter, only the remaining slots on left and right.

AACPP 2025 Mateusz Gienieczko

SLI – Sliding Cat Puzzle

Obvious brute force in 𝒪(𝑛!), but no points for it this time.

Key observation – since the distance travelled does not matter, the concrete
index of a slot does not matter, only the remaining slots on left and right.

DP[𝑙][𝑟] – optimal cost when there are 𝑙 (𝑟) unvisited slots to the left (right).

We can slide to any 𝑙′, 𝑟 ′ where 𝑙′ + 𝑟 ′ = 𝑙 + 𝑟 − 1. There’s 𝑘 = 𝑙 + 𝑟 such states.

DP[𝑙][𝑟] = min{min0≤𝑖<𝑙 DP[𝑖][𝑘 − 𝑖 − 1] + left[𝑛 − 𝑘]min0≤𝑖<𝑟 DP[𝑘 − 𝑖 − 1][𝑖] + right[𝑛 − 𝑘]

Total time 𝒪(𝑛3), memory 𝒪(𝑛2).
AACPP 2025 Mateusz Gienieczko

SLI – Sliding Cat Puzzle

Optimise the above to fill the entire level for a given 𝑘 in a two 𝒪(𝑘) loops.

For left-slides go 0 ≤ 𝑙 ≤ 𝑘 and accumulate the minimum of DP[𝑖][𝑘 − 𝑖 − 1].

Same for right-slides in the other direction.

Now 𝒪(𝑛2) time and memory.

AACPP 2025 Mateusz Gienieczko

SLI – Sliding Cat Puzzle

The key observation here is that our slides are constrained only by 𝑠.

If we have 𝑘 unvisited slots and they are all to our right (resp. left), then we can
perform any sequence of slides starting from a right-slide (resp. left-slide).

Let’s ignore 𝑠 for now.

AACPP 2025 Mateusz Gienieczko

SLI – Sliding Cat Puzzle

DP[𝑘][𝐿] is the best cost if we have already visited 𝑘 − 1 slots and now slide left.
DP[𝑘][𝑅] analogously to the right.

The formula is very simple:

DP[𝑘][0] = min(DP[𝑘 + 1][0], DP[𝑘 + 1][1]) + left[𝑘 − 1]
DP[𝑘][1] = min(DP[𝑘 + 1][0], DP[𝑘 + 1][1]) + right[𝑘 − 1]

and computable in 𝒪(𝑛).

AACPP 2025 Mateusz Gienieczko

SLI – Sliding Cat Puzzle

The constraint from 𝑠 applies only at the start, restricting the number of initial
left-slides to 𝑠 − 1 and right-slides to 𝑛 − 𝑠.

To get the solution where we initially slide 𝑥 times we take:

DP[𝑥 + 2][𝑅] + ∑
0≤𝑖≤𝑥

left[𝑖]

DP[𝑥 + 2][𝐿] + ∑
0≤𝑖≤𝑥

right[𝑖]

We can find the optimum for all possible 𝑥 values in 𝒪(𝑛).

AACPP 2025 Mateusz Gienieczko

SLI – Sliding Cat Puzzle

From the DP it’s easy to recover the sequence of slides, e.g. 𝑛 = 8, 𝑠 = 5

𝐿𝐿𝑅𝐿𝑅𝑅𝑅

A possible strategy is to group the slides in the same direction and slide to the
outermost slot.

LL, R, L, RRR

5, 2, 1, 8, 3, 4, 6, 7

One can put all slots except 𝑠 onto a double-ended queue and pop accordingly.

AACPP 2025 Mateusz Gienieczko

Recall the plan

• Greedy and dynamic programming (DP)
• Trees ← we are here
• Graphs
• Ways to turn graphs into trees (DFS, BFS, Dijkstra, MST)
• Ways to run DP on graphs (Toposort)
• Advanced graph algorithms (Matchings, flows)
• Binary Search Trees
• Number theory
• String algorithms (KMP, tries, suffix tables)
• Some problems can’t* even be solved efficiently (NP-completeness)

AACPP 2025 Mateusz Gienieczko

Trees

Foundational data structure.

Many equivalent definitions:
• 𝑛 nodes, each except for one has a single parent node;
• connected graph on 𝑛 vertices with 𝑛 − 1 edges;
• recursive: empty tree or a node connected to other trees;
• graph on 𝑛 vertices where there is exactly one path between each pair of

vertices.

AACPP 2025 Mateusz Gienieczko

Trees – Root, Parent, Child, Depth

Mathematically trees don’t have to be rooted, but as a data structure they are.

Root – unique distinguished vertex.

Parent – unique node “up”; root has none.

Child – direct neighbour other than the parent.

Depth – root has depth 0, children of a node with depth 𝑑 have depth 𝑑 + 1.

Leaves – nodes with no children.

AACPP 2025 Mateusz Gienieczko

Trees – Ancestor, Descendant

Transitive closure of the parent relation is called ancestor.

Of the child relation – descendant.

AACPP 2025 Mateusz Gienieczko

Trees – Forests

Many separate trees are called a forest.

AACPP 2025 Mateusz Gienieczko

Trees – Alternative Definition

Some people define these to be trees:

AACPP 2025 Mateusz Gienieczko

Trees – Alternative Definition

Some people define these to be trees:

AACPP 2025 Mateusz Gienieczko

Trees – Alternative Definition

Some people define these to be trees:

They are upside down (leaves at the top) and harder to put into the computer.
AACPP 2025 Mateusz Gienieczko

Trees – input representations

As a graph – list of edges.

5 4

1 2

1 3

2 4

4 5

AACPP 2025 Mateusz Gienieczko

Trees – input representations

As the parent relation.

5

1 1 2 4

AACPP 2025 Mateusz Gienieczko

Trees – input representations

As lists of children.

5

2 2 3

1 4

0

1 5

0

AACPP 2025 Mateusz Gienieczko

Trees – in-memory representations

Parent relation.

One array 𝑃[𝑛] where 𝑃[𝑖] is the number of the parent node of 𝑖.

The value for the root does not matter. Commonly 𝑃[root] = root.

Very memory-efficient.

AACPP 2025 Mateusz Gienieczko

Trees – in-memory representations

Lists of lists.

Same representation as used for general graphs.

C[𝑣] is a list of all children of 𝑣 .

In C++ a vector<vector<int>>.

In Rust a Vec<Vec<u32>>.

More memory, but often much more useful for algorithms.

AACPP 2025 Mateusz Gienieczko

Trees – in-memory representations

Special case – binary trees.

Two arrays, 𝐿[𝑛] and 𝑅[𝑛], giving the number of the left and right child.

If none, some special value like −1.

AACPP 2025 Mateusz Gienieczko

Trees – special tree shapes

Path, star, binary, broom.

AACPP 2025 Mateusz Gienieczko

Trees – DFS

Depth-first search.

Start from the root, process the node, then recurse down to its child.

fn DFS(v)

 pre_process(v)

 for child in C[v]

 DFS(child)

 post_process(v)

AACPP 2025 Mateusz Gienieczko

Trees – DFS

This implicitly uses the thread’s stack to store the DFS state.

On our platform it doesn’t matter (there is no stack limit), but in practice stack
is often limited (e.g. 1MiB) and so using an explicit stack is required for deep
trees.

AACPP 2025 Mateusz Gienieczko

Trees – DFS example

Example usage – depth calculation.

fn calculate_depth(v, depth = 0)

 D[v] = depth

 for child in C[v]

 calculate_depth(child, depth +

1)

AACPP 2025 Mateusz Gienieczko

Trees – DFS example

Example usage – subtree sizes

fn calculate_size(v)

 S[v] = 1

 for child in C[v]

 calculate_size(child)

 S[v] += S[child]

AACPP 2025 Mateusz Gienieczko

Trees – DFS preorder and postorder

Preorder – give a number when
entering.

Postorder – give a number when
exiting.

AACPP 2025 Mateusz Gienieczko

Trees – BFS

Breadth-first search.

Visiting the levels of the tree in order.

All nodes of depth 𝑑 processed before those of 𝑑 + 1.

fn BFS()

 queue = Queue::new()

 queue.push(root)

 while v = queue.pop()

 process(v)

 for child in C[v]

 queue.push(child)

AACPP 2025 Mateusz Gienieczko

Trees – Lowest Common Ancestor

Each two nodes have one path that joins them.

This path always goes through the Lowest Common Ancestor (LCA).

AACPP 2025 Mateusz Gienieczko

Trees – Lowest Common Ancestor

Each two nodes have one path that joins them.

This path always goes through the Lowest Common Ancestor (LCA).

Data structure for LCA: log-jumps.

1. Compute depth.
2. Compute jump[𝑣][𝑘] as the ancestor 2𝑘 higher in the tree. jump[𝑣][0] =
parent[𝑣].

3. LCA of two vertices can be done by iterating largest possible jump until
depth equalises.

AACPP 2025 Mateusz Gienieczko

Trees – Centroid Decomposition

Method for running divide-and-conquer algorithms on trees.

Idea – take a vertex and split the problem across its children.

Subproblems happen entirely in the subtrees, or involve the pivot vertex.

Effective if the pivot splits into “small” subtrees.

AACPP 2025 Mateusz Gienieczko

Trees – Centroid Decomposition

Centroid of a tree on 𝑛 vertices is a vertex whose subtrees rooted at children are
all at most size 𝑛2 .

Provably there is exactly one or two such vertices.

Algorithm to find – root arbitrarily, then compute subtree sizes.

Iteratively move the root to the heaviest subtree until we reach the centroid.

AACPP 2025 Mateusz Gienieczko

Trees – Centroid Decomposition

AACPP 2025 Mateusz Gienieczko

Trees – Centroid Decomposition

AACPP 2025 Mateusz Gienieczko

Trees – Find-Union

Disjoint sets structure.

The universe is numbers, e.g. from 0 to 𝑛 − 1.

We want to be able to merge sets (Union) and ask if two items are in the same
set (Find).

AACPP 2025 Mateusz Gienieczko

Trees – Find-Union

Naive solution – keep all the sets in lists, merge lists on Union.

When Unioning we can update an ID for each element identifying which set
they’re in and answer Find in 𝒪(1).

Better idea – always Union a smaller set to a larger set.

AACPP 2025 Mateusz Gienieczko

Trees – Find-Union

Amortised time – single operation may be costly, but it prevents work being
done later.

Here – each element can only be moved to a different set at most 𝒪(log 𝑛)
times.

So even though a single Union can take 𝒪(𝑛), all Unions together won’t exceed
𝒪(𝑛 log 𝑛).

AACPP 2025 Mateusz Gienieczko

Trees – Find-Union

Better idea – forest of representatives.

Each set is a tree, given by each element holding a parent.

Find(𝑥) – find root of 𝑥 by traversing parents.

Union(𝑥, 𝑦) – find root of 𝑦 , set root of 𝑥 as its parent.

If we keep tree sizes and plug smaller to larger we get amortised 𝒪(log 𝑛) Find.

AACPP 2025 Mateusz Gienieczko

Trees – Find-Union

Final tweak – path compression.

While going through Find(𝑥) reconnect each node on the path directly to the
root.

Instead of keeping tree sizes we keep rank, an upper bound on height.

This gives amortised 𝒪(𝛼(𝑛)) (worst case Θ(log 𝑛)).

AACPP 2025 Mateusz Gienieczko

Trees – Find-Union

AACPP 2025 Mateusz Gienieczko

Trees – Find-Union

AACPP 2025 Mateusz Gienieczko

Trees – Find-Union

AACPP 2025 Mateusz Gienieczko

Trees – Find-Union

AACPP 2025 Mateusz Gienieczko

Trees – Find-Union

AACPP 2025 Mateusz Gienieczko

Trees – Find-Union

AACPP 2025 Mateusz Gienieczko

Trees – Find-Union

AACPP 2025 Mateusz Gienieczko

Trees – Find-Union

AACPP 2025 Mateusz Gienieczko

Trees – Find-Union

fn union(x, y) {

 rx = find(x)

 ry = find(y)

 if rx != ry {

 if W[rx] > W[ry] { P[ry] = rx }

 else if W[ry] > W[rx] { P[rx] = ry }

 else {

 P[rx] = ry

 W[ry] += 1

 }

 }

}

fn find(x) {

 p = P[x]

 if p != x {

 // compress

 P[x] = Find(p)

 }

 return P[x]

}

AACPP 2025 Mateusz Gienieczko

Trees – BSTs

This will be a separate topic in the future.

AACPP 2025 Mateusz Gienieczko

See you next week

FAL and TUV: 03.06.2025,
10:00 AM

Good luck!

AACPP 2025 Mateusz Gienieczko

	AACPP 2025
	Week 4: Trees

	Second round – survey
	Third round
	TES – Treat Exchange System
	TES – Treat Exchange System
	TES – Treat Exchange System
	SLI – Sliding Cat Puzzle
	SLI – Sliding Cat Puzzle
	SLI – Sliding Cat Puzzle
	SLI – Sliding Cat Puzzle
	SLI – Sliding Cat Puzzle
	SLI – Sliding Cat Puzzle
	Recall the plan
	Trees
	Trees – Root, Parent, Child, Depth
	Trees – Ancestor, Descendant
	Trees – Forests
	Trees – Alternative Definition
	Trees – input representations
	Trees – input representations
	Trees – input representations
	Trees – in-memory representations
	Trees – in-memory representations
	Trees – in-memory representations
	Trees – special tree shapes
	Trees – DFS
	Trees – DFS
	Trees – DFS example
	Trees – DFS example
	Trees – DFS preorder and postorder
	Trees – BFS
	Trees – Lowest Common Ancestor
	Trees – Centroid Decomposition
	Trees – Centroid Decomposition
	Trees – Centroid Decomposition
	Trees – Centroid Decomposition
	Trees – Find-Union
	Trees – Find-Union
	Trees – Find-Union
	Trees – Find-Union
	Trees – Find-Union
	Trees – Find-Union
	Trees – Find-Union
	Trees – Find-Union
	Trees – Find-Union
	Trees – Find-Union
	Trees – Find-Union
	Trees – Find-Union
	Trees – Find-Union
	Trees – Find-Union
	Trees – BSTs
	See you next week

