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First two problems

First deadline – 13.05.2025, 10:00 AM.

Try to get non-zero number of points :)
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Mattermost reminder

Official Mattermost
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https://mattermost.db.in.tum.de/signup_user_complete/?id=mgqbodh5riyhtpku5in4tfeswe&md=link&sbr=su


Theses! B.Sc.! M.Sc.!

We do databases and data processing.

Fast.

C++ or Rust.

https://db.in.tum.de/research

https://db.in.tum.de/people/sites/gienieczko/

https://db.in.tum.de/people/sites/morozov/
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The Hard Part

• Greedy and dynamic programming (DP)
• Trees
• Graphs
• Ways to turn graphs into trees (DFS, BFS, Dijkstra, MST)
• Ways to run DP on graphs (Toposort)
• Advanced graph algorithms (Matchings, flows)
• Binary Search Trees
• Number theory
• String algorithms (KMP, tries, suffix tables)

Some problems can’t even be solved efficiently (NP-completeness)
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The Hard Part

How to decide what tools to use?
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Example: XAP
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Example: XAP

AACPP 2025 Mateusz Gienieczko



Example: XAP
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Example: XAP
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Example: XAP
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Example: XAP
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Simplify

What if radars are only on one side?
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Simplify

What if radars are only on one side?

When are they on both sides but answer is 0?
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Simplify

What if radars are only on one side?

When are they on both sides but answer is 0?

Simplest case where answer is 1?
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Formal characterisation
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Formal characterisation

Remove minimal number of vertices to remove all edges.

Minimal Vertex Cover in a bipartite graph.
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Oh no it doesn’t work

If it doesn’t work on example or your manual tests – good!

What if we don’t have a counterexample?
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Proving correctness

Sometimes solution doesn’t work fundamentally.

Sometimes it’s a coding bug.

Hard to find a bug if you’re not sure that your solution is supposed to work.
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Usual approach – vibes well means it works

Quite useful for competitive programming where time is limited.

Dangerous, greedy solutions often vibe well but might not work.
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At least try to prove it to yourself

Often you’ll talk yourself into a counterexample.

… or maybe it actually works conceptually and then you need to debug.
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Generating tests

Random tests are usually poor quality.
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Generating tests

Random tests are usually poor quality.

BUT

We can generate a lot of them.
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Output?

Sometimes it’s possible to generate a test for a given output, but not always.

Brute-force solutions to compare against.
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XAP brute force

Just select a subset to circles to remove and check if it works.

Go over all subsets.

𝒪(2𝑛𝑛2), but it works for subtask 1.

Generate tests with 𝑛 ≤ 20.
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Debugging

USE A DEBUGGER.

If you’re already using one, good, keep doing so.
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Debugging

USE A DEBUGGER.

If you’re already using one, good, keep doing so.

If not and you like vim you will also like gdb.
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Debugging

USE A DEBUGGER.

If you’re already using one, good, keep doing so.

If not and you like vim you will also like gdb.

Otherwise, use an IDE. CLion is really good.
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Printf debugging

Slapping some print statements to print variables and overall flow of the
program.

Actually pretty effective in competitive programming.
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Real Life

Coding solutions for competitive programming is different than actual coding.
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Real Life

Coding solutions for competitive programming is different than actual coding.

BUT

it is very educational!
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Testing

Random tests are generally bad, but fuzzing is an important technique.

Widely used in production software.
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Debugging

Duh.
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Debugging

Duh.

Print debugging as well, we just call it “structured logging” to sound
professional.
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Complexity

No one will ask you to prove complexity at a Real Job™…
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Complexity

No one will ask you to prove complexity at a Real Job™…

BUT

they will ask “will this work if we have a million entries”.

a treat tastier than the previous one
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Problem solving

We have a giant toolbox at our disposal and a problem to solve.

Usually not as well defined, but translating requirements to something sensible
is similar.

The main difference is there is no judging system.
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Problem solving

We have a giant toolbox at our disposal and a problem to solve.

Usually not as well defined, but translating requirements to something sensible
is similar.

The main difference is there is no judging system.

Try not to solve tasks by a thousand resubmissions, for your own sake.
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Various tips and tricks

C++: Don’t use <iostream>, or at least sync_with_stdio(false).
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Various tips and tricks

When reading to a Vec or std::vector, reserve the capacity first.

Rust:

let v = Vec::with_capacity(n);

C++:

std::vector<SomeType> v{};

v.reserve(n);
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Various tips and tricks

Remember the relative performance of operations.
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Various tips and tricks

Remember the relative performance of operations.

On our 32-bit judging platforms int32 ops are faster than int64.

Floating-point operations are slow, usually can be avoided.

Ops on double are much slower than on float.

Division and modulus is slower than multiplication, which is slower than
addition.
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Various tips and tricks

Standard library functions are usually much faster than your own
implementations.

As true here as it is in Real Life™.

Also less buggy :)
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Basic algorithms and data structures

Sorting.

Stacks, queues, deques.

Heaps (priority queues).

Divide and conquer.

“Two pointers” or “the caterpillar”.

AACPP 2025 Mateusz Gienieczko



Divide and conquer general scheme

Divide a big instance into smaller subproblems.

Solve subproblems independently.

Combine the results.

E.g. merge sort.
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Divide and conquer example

Task
Dexter received a new treat in form of a stick divided into 𝑛 segments. Some parts
are tastier than others and some are not tasty at all. Dexter wants to eat the tastiest
bits first, but he can only eat segments adjacent to each other. Help him decide
which segments to eat to maximise tastiness.

Example
7

5 -7 2 4 -1 6 -3

11
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Divide and conquer example

Divide the array in “half”.

The optimal result is either
• fully in the left part,
• fully in the right part,
• between the parts.

We obtain the first two via recursion, and the other can be computed in 𝒪(𝑛).

Base case of 𝑛 = 1 is trivial.
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Divide and conquer example

left = [5, -7, 2], right = [4, -1, 6, -3]

Optimal in left is 5, optimal in right is 9.

Compute prefix sums in right and suffix sums in left:

lefts = [0, -5, 2], rights = [4, 3, 9, 6]

Best choice for in-between solution is 11.
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Time complexity

At every level we do 𝒪(𝑛) work.

Every recursion divides the size in half.

𝑛 + 𝑛2 +
𝑛
2 +

𝑛
4 +

𝑛
4 +

𝑛
4 +

𝑛
4 +

𝑛
8… = Θ(𝑛 log 𝑛)
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Common D&C: binary search

Basic case: we have a sorted array and want to find an element 𝑥 .

[3, 7, 7, 9, 11, 23, 100]

Check the middle element – if greater than 𝑥  then 𝑥  can only be in the left half.
Otherwise, in the right.

Standard libraries have implementations already, slice::binary_search in Rust
and std::lower_bound/std::upper_bound in C++.
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Generic binary-search

Binary search finds the critical point of any binary monotonic function.

The general property of: If element at index 𝑖 satisfies the condition, then the one
at 𝑖 + 1 also does.
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Binary-search example

Dexter found a cat lottery! There are 𝑛 prizes, where 𝑖-th prize is a batch of 𝑖 treats.
To enrol Dexter needs to buy (with his own treats) 1 lot for the first prize, 2 lots for
the second price, etc., up to 𝑛 lots for the 𝑛-th prize. Each lot has equal probability
of winning, but to get treat 𝑖 you need all 𝑖 lots to win. Given value 𝑎𝑖 of each of the
treats and the number 𝑏 of treats Dexter has, help him decide what is the minimum
probability (with 10−6 accuracy) of a lot winning that makes entering worth it.

3 3

1 5 10

0.5

AACPP 2025 Mateusz Gienieczko



Binary-search example

For a given probability 𝑝 the expected payoff 𝐸(𝑝) is:

∑
1≤𝑖≤𝑛

𝑎𝑖𝑥 𝑖

This has to be at most 𝑏.

This condition is monotonic: 𝐸(𝑝) > 𝑏 ⇒ 𝐸(𝑝 + 𝜀) > 𝑏.

Binary-search for the probability after adjusting to integers.
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Two pointers / Caterpillar

Go through a sequence 𝑆 keeping two pointers 𝑖, 𝑗, 𝑗 ≥ 𝑖.

The currently considered subsequence is 𝑆[𝑖..𝑗].

Both pointers advance forward.

Common pattern in solutions.

AACPP 2025 Mateusz Gienieczko



Two pointers example

Dexter the Cat wants to open an account at Fressnapf to order his own treats on
Mat’s credit card he found on the table. While he is very smart, his little paws are
made to maximise cuteness, not to use a keyboard. To create a password he
stomped around and got a long and strong password but, of course, the site has
some silly requirements on “complexity”. They require that each prefix of the
password has at most 𝑘 more capital letters than small letters. Dexter can now
remove some letters from the beginning and the end, but not the middle. Help
Dexter obtain the longest valid password and get his treats!

2

BBcDEXlolDEX

9
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Two pointers example

We maintain a subsequence that is valid, starting with 𝑖 = 𝑗 = 0.

Try to extend by moving 𝑗 forward.

If condition is violated, move 𝑖 forward until it’s not.

Maintaining the count difference is easy.

Since both pointers move at most 𝑛 times we have 𝒪(𝑛).
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See you next week

ZOO and TOY: 13.05.2025,
10:00 AM

Good luck!
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