
School of Computation, Information and Technology
Technical University of Munich

AACPP 2025
Week 2: Tackling a Problem

Mateusz Gienieczko, Mykola Morozov

School of Computation, Information and Technology
Technical University of Munich

2025.05.06

AACPP 2025 Mateusz Gienieczko

First two problems

First deadline – 13.05.2025, 10:00 AM.

Try to get non-zero number of points :)

AACPP 2025 Mateusz Gienieczko

Mattermost reminder

Official Mattermost

AACPP 2025 Mateusz Gienieczko

https://mattermost.db.in.tum.de/signup_user_complete/?id=mgqbodh5riyhtpku5in4tfeswe&md=link&sbr=su

Theses! B.Sc.! M.Sc.!

We do databases and data processing.

Fast.

C++ or Rust.

https://db.in.tum.de/research

https://db.in.tum.de/people/sites/gienieczko/

https://db.in.tum.de/people/sites/morozov/

AACPP 2025 Mateusz Gienieczko

https://db.in.tum.de/research
https://db.in.tum.de/people/sites/gienieczko/
https://db.in.tum.de/people/sites/morozov/

The Hard Part

• Greedy and dynamic programming (DP)
• Trees
• Graphs
• Ways to turn graphs into trees (DFS, BFS, Dijkstra, MST)
• Ways to run DP on graphs (Toposort)
• Advanced graph algorithms (Matchings, flows)
• Binary Search Trees
• Number theory
• String algorithms (KMP, tries, suffix tables)

Some problems can’t even be solved efficiently (NP-completeness)
AACPP 2025 Mateusz Gienieczko

The Hard Part

How to decide what tools to use?

AACPP 2025 Mateusz Gienieczko

Example: XAP

AACPP 2025 Mateusz Gienieczko

Example: XAP

AACPP 2025 Mateusz Gienieczko

Example: XAP

AACPP 2025 Mateusz Gienieczko

Example: XAP

AACPP 2025 Mateusz Gienieczko

Example: XAP

AACPP 2025 Mateusz Gienieczko

Example: XAP

AACPP 2025 Mateusz Gienieczko

Simplify

What if radars are only on one side?

AACPP 2025 Mateusz Gienieczko

Simplify

What if radars are only on one side?

When are they on both sides but answer is 0?

AACPP 2025 Mateusz Gienieczko

Simplify

What if radars are only on one side?

When are they on both sides but answer is 0?

Simplest case where answer is 1?

AACPP 2025 Mateusz Gienieczko

Formal characterisation

AACPP 2025 Mateusz Gienieczko

Formal characterisation

Remove minimal number of vertices to remove all edges.

Minimal Vertex Cover in a bipartite graph.

AACPP 2025 Mateusz Gienieczko

Oh no it doesn’t work

If it doesn’t work on example or your manual tests – good!

What if we don’t have a counterexample?

AACPP 2025 Mateusz Gienieczko

Proving correctness

Sometimes solution doesn’t work fundamentally.

Sometimes it’s a coding bug.

Hard to find a bug if you’re not sure that your solution is supposed to work.

AACPP 2025 Mateusz Gienieczko

Usual approach – vibes well means it works

Quite useful for competitive programming where time is limited.

Dangerous, greedy solutions often vibe well but might not work.

AACPP 2025 Mateusz Gienieczko

At least try to prove it to yourself

Often you’ll talk yourself into a counterexample.

… or maybe it actually works conceptually and then you need to debug.

AACPP 2025 Mateusz Gienieczko

Generating tests

Random tests are usually poor quality.

AACPP 2025 Mateusz Gienieczko

Generating tests

Random tests are usually poor quality.

BUT

We can generate a lot of them.

AACPP 2025 Mateusz Gienieczko

Output?

Sometimes it’s possible to generate a test for a given output, but not always.

Brute-force solutions to compare against.

AACPP 2025 Mateusz Gienieczko

XAP brute force

Just select a subset to circles to remove and check if it works.

Go over all subsets.

𝒪(2𝑛𝑛2), but it works for subtask 1.

Generate tests with 𝑛 ≤ 20.

AACPP 2025 Mateusz Gienieczko

Debugging

USE A DEBUGGER.

If you’re already using one, good, keep doing so.

AACPP 2025 Mateusz Gienieczko

Debugging

USE A DEBUGGER.

If you’re already using one, good, keep doing so.

If not and you like vim you will also like gdb.

AACPP 2025 Mateusz Gienieczko

Debugging

USE A DEBUGGER.

If you’re already using one, good, keep doing so.

If not and you like vim you will also like gdb.

Otherwise, use an IDE. CLion is really good.

AACPP 2025 Mateusz Gienieczko

Printf debugging

Slapping some print statements to print variables and overall flow of the
program.

Actually pretty effective in competitive programming.

AACPP 2025 Mateusz Gienieczko

Real Life

Coding solutions for competitive programming is different than actual coding.

AACPP 2025 Mateusz Gienieczko

Real Life

Coding solutions for competitive programming is different than actual coding.

BUT

it is very educational!

AACPP 2025 Mateusz Gienieczko

Testing

Random tests are generally bad, but fuzzing is an important technique.

Widely used in production software.

AACPP 2025 Mateusz Gienieczko

Debugging

Duh.

AACPP 2025 Mateusz Gienieczko

Debugging

Duh.

Print debugging as well, we just call it “structured logging” to sound
professional.

AACPP 2025 Mateusz Gienieczko

Complexity

No one will ask you to prove complexity at a Real Job™…

AACPP 2025 Mateusz Gienieczko

Complexity

No one will ask you to prove complexity at a Real Job™…

BUT

they will ask “will this work if we have a million entries”.

a treat tastier than the previous one

AACPP 2025 Mateusz Gienieczko

Problem solving

We have a giant toolbox at our disposal and a problem to solve.

Usually not as well defined, but translating requirements to something sensible
is similar.

The main difference is there is no judging system.

AACPP 2025 Mateusz Gienieczko

Problem solving

We have a giant toolbox at our disposal and a problem to solve.

Usually not as well defined, but translating requirements to something sensible
is similar.

The main difference is there is no judging system.

Try not to solve tasks by a thousand resubmissions, for your own sake.

AACPP 2025 Mateusz Gienieczko

Various tips and tricks

C++: Don’t use <iostream>, or at least sync_with_stdio(false).

AACPP 2025 Mateusz Gienieczko

Various tips and tricks

When reading to a Vec or std::vector, reserve the capacity first.

Rust:

let v = Vec::with_capacity(n);

C++:

std::vector<SomeType> v{};

v.reserve(n);

AACPP 2025 Mateusz Gienieczko

Various tips and tricks

Remember the relative performance of operations.

AACPP 2025 Mateusz Gienieczko

Various tips and tricks

Remember the relative performance of operations.

On our 32-bit judging platforms int32 ops are faster than int64.

Floating-point operations are slow, usually can be avoided.

Ops on double are much slower than on float.

Division and modulus is slower than multiplication, which is slower than
addition.

AACPP 2025 Mateusz Gienieczko

Various tips and tricks

Standard library functions are usually much faster than your own
implementations.

As true here as it is in Real Life™.

Also less buggy :)

AACPP 2025 Mateusz Gienieczko

Basic algorithms and data structures

Sorting.

Stacks, queues, deques.

Heaps (priority queues).

Divide and conquer.

“Two pointers” or “the caterpillar”.

AACPP 2025 Mateusz Gienieczko

Divide and conquer general scheme

Divide a big instance into smaller subproblems.

Solve subproblems independently.

Combine the results.

E.g. merge sort.

AACPP 2025 Mateusz Gienieczko

Divide and conquer example

Task
Dexter received a new treat in form of a stick divided into 𝑛 segments. Some parts
are tastier than others and some are not tasty at all. Dexter wants to eat the tastiest
bits first, but he can only eat segments adjacent to each other. Help him decide
which segments to eat to maximise tastiness.

Example
7

5 -7 2 4 -1 6 -3

11

AACPP 2025 Mateusz Gienieczko

Divide and conquer example

Divide the array in “half”.

The optimal result is either
• fully in the left part,
• fully in the right part,
• between the parts.

We obtain the first two via recursion, and the other can be computed in 𝒪(𝑛).

Base case of 𝑛 = 1 is trivial.

AACPP 2025 Mateusz Gienieczko

Divide and conquer example

left = [5, -7, 2], right = [4, -1, 6, -3]

Optimal in left is 5, optimal in right is 9.

Compute prefix sums in right and suffix sums in left:

lefts = [0, -5, 2], rights = [4, 3, 9, 6]

Best choice for in-between solution is 11.

AACPP 2025 Mateusz Gienieczko

Time complexity

At every level we do 𝒪(𝑛) work.

Every recursion divides the size in half.

𝑛 + 𝑛2 +
𝑛
2 +

𝑛
4 +

𝑛
4 +

𝑛
4 +

𝑛
4 +

𝑛
8… = Θ(𝑛 log 𝑛)

AACPP 2025 Mateusz Gienieczko

Common D&C: binary search

Basic case: we have a sorted array and want to find an element 𝑥 .

[3, 7, 7, 9, 11, 23, 100]

Check the middle element – if greater than 𝑥 then 𝑥 can only be in the left half.
Otherwise, in the right.

Standard libraries have implementations already, slice::binary_search in Rust
and std::lower_bound/std::upper_bound in C++.

AACPP 2025 Mateusz Gienieczko

Generic binary-search

Binary search finds the critical point of any binary monotonic function.

The general property of: If element at index 𝑖 satisfies the condition, then the one
at 𝑖 + 1 also does.

AACPP 2025 Mateusz Gienieczko

Binary-search example

Dexter found a cat lottery! There are 𝑛 prizes, where 𝑖-th prize is a batch of 𝑖 treats.
To enrol Dexter needs to buy (with his own treats) 1 lot for the first prize, 2 lots for
the second price, etc., up to 𝑛 lots for the 𝑛-th prize. Each lot has equal probability
of winning, but to get treat 𝑖 you need all 𝑖 lots to win. Given value 𝑎𝑖 of each of the
treats and the number 𝑏 of treats Dexter has, help him decide what is the minimum
probability (with 10−6 accuracy) of a lot winning that makes entering worth it.

3 3

1 5 10

0.5

AACPP 2025 Mateusz Gienieczko

Binary-search example

For a given probability 𝑝 the expected payoff 𝐸(𝑝) is:

∑
1≤𝑖≤𝑛

𝑎𝑖𝑥 𝑖

This has to be at most 𝑏.

This condition is monotonic: 𝐸(𝑝) > 𝑏 ⇒ 𝐸(𝑝 + 𝜀) > 𝑏.

Binary-search for the probability after adjusting to integers.

AACPP 2025 Mateusz Gienieczko

Two pointers / Caterpillar

Go through a sequence 𝑆 keeping two pointers 𝑖, 𝑗, 𝑗 ≥ 𝑖.

The currently considered subsequence is 𝑆[𝑖..𝑗].

Both pointers advance forward.

Common pattern in solutions.

AACPP 2025 Mateusz Gienieczko

Two pointers example

Dexter the Cat wants to open an account at Fressnapf to order his own treats on
Mat’s credit card he found on the table. While he is very smart, his little paws are
made to maximise cuteness, not to use a keyboard. To create a password he
stomped around and got a long and strong password but, of course, the site has
some silly requirements on “complexity”. They require that each prefix of the
password has at most 𝑘 more capital letters than small letters. Dexter can now
remove some letters from the beginning and the end, but not the middle. Help
Dexter obtain the longest valid password and get his treats!

2

BBcDEXlolDEX

9
AACPP 2025 Mateusz Gienieczko

Two pointers example

We maintain a subsequence that is valid, starting with 𝑖 = 𝑗 = 0.

Try to extend by moving 𝑗 forward.

If condition is violated, move 𝑖 forward until it’s not.

Maintaining the count difference is easy.

Since both pointers move at most 𝑛 times we have 𝒪(𝑛).

AACPP 2025 Mateusz Gienieczko

See you next week

ZOO and TOY: 13.05.2025,
10:00 AM

Good luck!

AACPP 2025 Mateusz Gienieczko

	AACPP 2025
	Week 2: Tackling a Problem

	First two problems
	Mattermost reminder
	Theses! B.Sc.! M.Sc.!
	The Hard Part
	The Hard Part
	Example: XAP
	Example: XAP
	Example: XAP
	Example: XAP
	Example: XAP
	Example: XAP
	Simplify
	Formal characterisation
	Formal characterisation
	Oh no it doesn't work
	Proving correctness
	Usual approach – vibes well means it works
	At least try to prove it to yourself
	Generating tests
	Output?
	XAP brute force
	Debugging
	Printf debugging
	Real Life
	Testing
	Debugging
	Complexity
	Problem solving
	Various tips and tricks
	Various tips and tricks
	Various tips and tricks
	Various tips and tricks
	Basic algorithms and data structures
	Divide and conquer general scheme
	Divide and conquer example
	Task
	Example

	Divide and conquer example
	Divide and conquer example
	Time complexity
	Common D&C: binary search
	Generic binary-search
	Binary-search example
	Binary-search example
	Two pointers / Caterpillar
	Two pointers example
	Two pointers example
	See you next week

