Multi-Threading in C++

Multi-Threading in C++

Multi-Threading in C++

In C++ it is allowed to run multiple threads simultaneously that use the same
memory.

® Multiple threads may read from the same memory location

® All other accesses (i.e. read-write, write-read, write-write) are called conflicts
® Conflicting operations are only allowed when threads are synchronized
[]

This can be done with mutexes or atomic operations

® Unsynchronized accesses (also called data races), deadlocks, and other
potential issues when using threads are undefined behavior!

All conflicting operations must be synchronized in some way!

izt ey
Threads Library (1)

The header <thread> defines the class std: :thread
® Using this class is the best way to use threads platform-independently

® May require additional compiler flags depending on the actual underlying
implementation

® Use CMake to determine these flags in a platform-independent way

® For gcc and clang on Linux this will usually be -pthread

cmake_minimum_required(VERSION 3.21)
project(sample)

find_package(Threads REQUIRED)
add_executable(sample main.cpp)
target_link_libraries(sample PUBLIC Threads::Threads)

https://en.cppreference.com/w/cpp/thread/thread

izt ey
Threads Library (2)

The constructor of std: :thread can be used to start a new thread
® Syntax: thread(Function&& f, Args&&... args)
® The function f will be invoked in a new thread with the arguments args
® The thread will terminate once f returns

® The default constructor can be used to create an empty thread object

The member function join() must be used to wait for a thread to finish
® join() must be called exactly once for each thread
® join() must be called before an std: :thread object is destroyed

® When the destructor of an std: :thread is called, the program is
terminated if the associated thread was not joined

https://en.cppreference.com/w/cpp/thread/thread

Multi-Threading in C++ [ERETEERENRGTELY

Threads Library (3)

Example

#include <thread>
void foo(int a, int b);

int main() {
// Pass a function and args
std::thread ti1(foo, 1, 2);
// Pass a lambda
std::thread t2([]1() {
foo (3, 4);
s

foo(5, 6);

t2.join();
tl.join();

main() t2 t1

tl constructed

h
o
,_,, o
g w
9 S
a S
g
)
o
t2 joined V
tl joined

(T ‘1)007F

izt ey
Threads Library (4)

Example

#include <iostream>
#include <string_view>
#include <thread>

void safe_print(std::string_view s);

int main() {

{
std::thread t1([]() { safe_print("Hi\n"); });
tl.join();

}

// Everything is fine, we called tl.join()

{
std::thread t2([]1() {});

}

// Program terminated because t2.join() was not called

https://en.cppreference.com/w/cpp/thread/thread/join

Threads Library
Threads Library (5)

std: :thread is movable but not copyable
® Moving transfers all resources associated with the running thread
® Only the moved-to thread can be joined

® The moved-from thread object is empty (not associated with any thread)

Example

#include <iostream>
#include <string_view>
#include <thread>

void safe_print(std::string_view s);

int main() {
std::thread t1([]() { safe_print("Hi\n"); });
std::thread t2 = std::move(tl); // tl is now empty
t2.join(); // OK, thread originally started in tl1 1is joined

Multi-Threading in C++ [ERETEERENRGTELY

Threads Library (6)

std: :thread can be used in standard library containers

#include <thread>
#include <vector>

void safe_print(int 1);

int main() {

std::vector<std::thread> threadPool;

for (int i = 1; i <= 9; ++1i) {
threadPool.emplace_back([i]() { safe_print(i); });

}

// Digits 1 to 9 are printed (unordered)

for (auto& t : threadPool) {
t.join();

}

Threads Library
Other Functions of the Thread Library G

The thread library also contains other useful functions that are closely related to
starting and stopping threads:
® std::this_thread::sleep_for(): Stop the current thread for a given
amount of time
® std::this_thread::sleep_until(): Stop the current thread until a
given point in time
® std::this_thread::yield(): Let the operating system schedule another
thread
® std::this_thread::get_id(): Get the (operating-system-specific) id of
the current thread

https://en.cppreference.com/w/cpp/thread

Multi-Threading in C++ Mutual Exclusion

Mutual Exclusion (1)

Mutual exclusion is a straightforward way to synchronize multiple threads
® Threads acquire a lock on a mutex object before entering a critical section

® Threads release their lock on the mutex when leaving a critical section

High-level programming model

® The resource (usually a class) that requires protection from data races owns a
mutex object of the appropriate type

® Threads that intend to access the resource acquire a suitable lock on the
mutex before performing the actual access

® Threads release their lock on the mutex after completing the access

® Usually locks are simply acquired and released in the member functions of the
class

Multi-Threading in C++ Mutual Exclusion

Mutual Exclusion (2)

The standard library defines several useful classes that implement mutexes in the
<mutex> and <shared_mutex> headers

® std::mutex — regular mutual exclusion
® std::recursive_mutex — recursive mutual exclusion

® std::shared_mutex — mutual exclusion with shared locks

The standard library provides RAIl wrappers for locking and unlocking mutexes
® std::unique_lock — RAIl wrapper for exclusive locking
® std::shared_lock — RAIl wrapper for shared locking

The RAIl wrappers should always be preferred for locking and unlocking mutexes
® Makes bugs due to inconsistent locking/unlocking much more unlikely
® Manual locking and unlocking may be required in some rare cases

® Should still be performed through the corresponding functions of the RAII
wrappers

Multi-Threading in C++ Mutual Exclusion

std: :unique_lock (1)

std: :unique_lock can be used to lock a mutex in exclusive mode
® The constructor acquires an exclusive lock on the mutex
® Constructor syntax: unique_lock(mutex_type& m)

® Blocks the calling thread until the mutex becomes available

The destructor releases the lock automatically

Can be used with any mutex type from the standard library

#include <mutex>
#include <iostream>

std::mutex printMutex;

void safe_print(int i) {
std::unique_lock lock(printMutex); // lock is acquired
std::cout << 1;

} // lock 1is released

https://en.cppreference.com/w/cpp/thread/unique_lock

Multi-Threading in C++ Mutual Exclusion

std: :unique_lock (2) @

std: :unique_lock provides additional constructors

® unique_lock(mutex_type& m, std::defer_lock_t t) — Do not
immediately lock the mutex

® unique_lock(mutex_type& m, std::try_to_lock_t t) — Do not
block when the mutex cannot be locked

std: :unique_lock provides additional member functions
® lock() — Manually lock the mutex
® try_lock() — Try to lock the mutex, return true if successful

® operator bool() — Check if the std: :unique_lock holds a lock on the
mutex

https://en.cppreference.com/w/cpp/thread/unique_lock

Multi-Threading in C++ Mutual Exclusion
std: :unique_lock (3)

Example

#include <mutex>
std::mutex mutex;

void foo() {
std: :unique_lock lock(mutex, std::try_to_lock);
if (!lock) {
doUnsynchronizedwWork() ;

// block until we can get the lock
Tlock.lock();
}

doSynchronizedWork() ;

// release the lock early
lock.unlock();

doUnsynchronizedWork() ;

Multi-Threading in C++ Mutual Exclusion
std: :unique_lock (4)

std: :unique_lock is movable to transfer ownership of a lock on a mutex

#include <mutex>
class MyContainer {
private:

std::mutex mutex;

public:
class 1dterator { /* ... */ };

iterator begin() {
std::unique_lock lock(mutex);

// compute the begin qditerator constructor args

// keep the lock for -dteration
return iterator(std::move(lock), ...);

3

Multi-Threading in C++ Mutual Exclusion

Recursive Mutexes (1)

The following code will deadlock since std: :mutex can be locked at most once

#include <mutex>
std::mutex mutex;

void bar() {
std::unique_lock lock(mutex);

// do some work...

}

void foo() {
std::unique_lock lock(mutex);

// do some work...

bar(); // INTENTIONALLY BUGGY, will deadlock

Multi-Threading in C++ Mutual Exclusion

Recursive Mutexes (2) C;

std: :recursive_mutex implements recursive ownership semantics

® The same thread can lock an std: :recursive_mutex multiple times
without blocking

® QOther threads will still block if an std::recursive_mutex is currently
locked

® Can be used with std: :unique_Tlock just like a regular std: :mutex

® Useful for functions that call each other and use the same mutex

#include <mutex>

std::recursive_mutex mutex;

void bar() {
std: :unique_lock lock(mutex);

}

void foo() {
std: :unique_lock lock(mutex);
bar(); // OK, will not deadlock

https://en.cppreference.com/w/cpp/thread/recursive_mutex

Multi-Threading in C++ Mutual Exclusion

std: :shared_lock (1)

std: :shared_lock can be used to lock a mutex in shared mode
® Constructors and member functions analogous to std: :unique_lock
® Multiple threads can acquire a shared lock on the same mutex
® Shared locking attempts block if the mutex is locked in exclusive mode

® Only usable in conjunction with std: :shared_mutex

We have to adhere to some contract to write well-behaved programs
® Shared mutexes are mostly used to implement read/write-locks
® Only read accesses are allowed when holding a shared lock
® Write accesses are only allowed when holding an exclusive lock

https://en.cppreference.com/w/cpp/thread/shared_lock

Multi-Threading in C++ Mutual Exclusion

std: :shared_lock (2)

Example

3

#include <shared_mutex>

class SafeCounter {

private:
mutable std::shared_mutex mutex;
size_t value = 0;

public:

size_t getValue() const {
std::shared_lock lock(mutex);
return value; // read access

void dncrementValue() {
std::unique_lock lock(mutex);
++value; // write access

Multi-Threading in C++ Mutual Exclusion

Working with Mutexes

We usually have to make mutexes mutable within our data structures
® The RAIl wrappers require mutable references to the mutex

® const member functions of our data structure usually also need to use the
mutex

Using mutexes without care can easily lead to deadlocks within the system

® Usually occurs when a thread tries to lock another mutex when it already
holds a lock on some mutex

® Can in some cases be avoided by using std: :recursive_mutex (if we are
locking the same mutex multiple times)

® Requires dedicated programming techniques when multiple mutexes are
involved

Multi-Threading in C++ Mutual Exclusion

Avoiding Deadlocks (1)

The following example will lead to deadlocks

std::mutex ml, m2, m3;
void threadA() {

// INTENTIONALLY BUGGY

std::unique_lock 11{ml1}, 12{m2}, 13{m3};
}
void threadB() {

// INTENTIONALLY BUGGY

std::unique_lock 13{m3}, 12{m2}, 11{ml};

Possible deadlock scenario
® threadA() acquires locks on m1 and m2
® threadB() acquires lock on m3
® threadA() waits for threadB() to release m3
® threadB () waits for threadA() to release m2

Multi-Threading in C++ Mutual Exclusion

Avoiding Deadlocks (2)

Deadlocks can be avoided by always locking mutexes in a globally consistent order
® Ensures that one thread always “wins”

® Maintaining a globally consistent locking order requires considerable
developer discipline

® Maintaining a globally consistent locking order may not be possible at all

std::mutex ml, m2, m3;
void threadA() {
// OK, will not deadlock
std::unique_lock 11{m1}, 12{m2}, 13{m3};
}
void threadB() {
// OK, will not deadlock
std::unique_lock 11{m1}, 12{m2}, 13{m3};

Multi-Threading in C++ Mutual Exclusion

Avoiding Deadlocks (3)

Sometimes it is not possible to guarantee a globally consistent order

® The std: :scoped_lock RAIl wrapper can be used to safely lock any
number of mutexes

® Employs a deadlock-avoidance algorithm if required
® Generally quite inefficient in comparison to std: :unique_lock
® Should only be used as a last resort!

std::mutex ml1, m2, m3;
void threadA() {
// OK, will not deadlock
std::scoped_lock 1{ml, m2, m3};
}
void threadB() {
// OK, will not deadlock
std::scoped_lock 1{m3, m2, ml};

https://en.cppreference.com/w/cpp/thread/scoped_lock

Multi-Threading in C++ Mutual Exclusion

Condition Variables (1)

A condition variable is a synchronization primitive that allows multiple threads to
wait until an (arbitrary) condition becomes true.

® A condition variable uses a mutex to synchronize threads

® Threads can wait on or notify the condition variable

® When a thread waits on the condition variable, it blocks until another thread
notifies it

® |f a thread waited on the condition variable and is notified, it holds the mutex

[]

A notified thread must check the condition explicitly because spurious
wake-ups can occur

Multi-Threading in C++ Mutual Exclusion

Condition Variables (2) @

The standard library defines the class std: :condition_variable in the header
<condition_variable> which has the following member functions:

® wait(): Takes a reference to a std: :unique_lock that must be locked by

the caller as an argument, unlocks the mutex and waits for the condition
variable

® notify_one(): Notify a single waiting thread, mutex does not need to be
held by the caller

® notify_all(): Notify all waiting threads, mutex does not need to be held
by the caller

https://en.cppreference.com/w/cpp/thread/condition_variable

Multi-Threading in C++ Mutual Exclusion

Condition Variables Example

One use case for condition variables are worker queues: Tasks are inserted into a
queue and then worker threads are notified to do the task.

std::mutex m; void workerThread() {
std::condition_variable cv; std::unique_lock 1{m};
std::vector<int> taskQueue; while (true) {
while (!taskQueue.empty()) {
void pushWork(int task) { int task = taskQueue.back();
{ taskQueue.pop_back();
std::unique_lock 1{m}; T.unlock()};
taskQueue.push_back(task); // [...] do actual work here
} 1.lock();
cv.notify_one(); }
} cv.wait(l);
}
}

Multi-Threading in C++ [EENSTNOLISANS

Atomic Operations

Mutual exclusion may be inefficient for synchronization
® \ery coarse-grained synchronization

® May require communication with the operating system

Modern hardware also supports atomic operations for synchronization.

® The memory order of a CPU determines how non-atomic memory operations
are allowed to be reordered

® |n C++ all non-atomic conflicting operations have undefined behavior even if
the memory order of the CPU would allow it!

® There is one exception: Special atomic functions are allowed to have conflicts

® The compiler usually knows your CPU and generates “real” atomic
instructions only if necessary

BtomiclOpesations
Atomic Operations Library (1) G

C++ provides atomic operations in the atomic operations library
® Implemented in the <atomic> header
® std::atomic<T> is a class that represents an atomic version of the type T

Can be used (almost) interchangeably with the original type T

Has the same size and alignment as the original type T

Conflicting operations are only allowed on std: :atomic<T> objects

std::atomic on its own does not provide any synchronization at all
® Simply makes conflicting operations possible and defined behavior
® Exposes the guarantees of specific memory models to the programmer

® Suitable programming models must be used to achieve proper synchronization

https://en.cppreference.com/w/cpp/atomic/atomic

AcomiclOpelations
Atomic Operations Library (2)

C

std: :atomic has several member functions that implement atomic operations

T

load(): Loads the value

void store(T desired): Stores desired in the object

T exchange(T desired): Stores desired in the object and returns the
old value

If T is a integral type, the following operations also exist:

T

:
;
;
:

fetch_add(T arg): Adds arg to the value and returns the old value
fetch_sub (T arg): Same for subtraction

fetch_and(T arg): Same for bitwise and

fetch_or (T arg): Same for bitwise or

fetch_xor (T arg): Same for bitwise xor

https://en.cppreference.com/w/cpp/atomic/atomic

Atomic Operations
Atomic Operations Library (3)

Example (without atomics)

#include <thread>

int main() {
unsigned value = 0;
std::thread t([&]() {
for (size_t i = 0; i < 10; ++1)
++value; // UNDEFINED BEHAVIOR, data race
1)

for (size_t i = 0; i < 10; ++1)
++value; // UNDEFINED BEHAVIOR, data race

t.join();

// value will contain garbage

Asomic Operations
Atomic Operations Library (4)

Example (with atomics)

#include <atomic>
#include <thread>

int main() {
std::atomic<unsigned> value = 0;
std::thread t([&]() {
for (size_t i = 0; i < 10; ++1)
value.fetch_add(1); // OK, atomic increment
s

for (size_t i = 0; i < 10; ++i)
value.fetch_add(1l); // OK, atomic increment

t.join();

// value will contain 20

BtomiclOpesations
Semantics of Atomic Operations

C++ may support atomic operations that are not supported by the CPU
® std::atomic<T> can be used with any trivially copyable type
® |n particular also for types that are much larger than one cache line

® To guarantee atomicity, compilers are allowed to fall back to mutexes

The C++ standard defines precise semantics for atomic operations
® Every atomic object has a totally ordered modification order
® There are several memory orders that define how operations on different
atomic objects may be reordered
® The C++ memory orders do not necessarily map precisely to memory orders
defined by a CPU

AcomiclOpelations
Modification Order (1)

All modifications of a single atomic object are totally ordered
® This is called the modification order of the object
® All threads are guaranteed to observe modifications of the object in this order

Modifications of different atomic objects may be unordered
® Different threads may observe modifications of multiple atomic objects in a
different order
® The details depend on the memory order that is used for the atomic
operations

Multi-Threading in C++ [EENSTNOLISANS

Modification Order (2)

Example

std::atomic<int> i = 0, j = 03
void workerThread() {
i.fetch_add(1); // (A)
i.fetch_sub(1); // (B)
j.fetch_add(1); // (C)
}
void readerThread() {
int iLocal = i.load(), jLocal = j.load();
assert(iLocal != -1); // always true

Observations
® Reader threads will never see a modification order with (B) before (A)

® Depending on the memory order, multiple reader threads may see any of

(A), (B), (C), or (A),(C),(B), or (C),(A),(B)

Multi-Threading in C++ [EENSTNOLISANS

Memory Order (1) @

The atomics library defines several memory orders
® All atomic functions take a memory order as their last parameter

® The two most important memory orders are std: :memory_order_relaxed
and std: :memory_order_seq_cst

® std::memory_order_seq_cst is used by default if no memory order is
explicitly supplied

® You should stick to this default unless you identified the atomic operation to
be a performance bottleneck

std::atomic<int> i = 0;

i.fetch_add(1l); // uses std::memory_order_seq_cst
i.fetch_add(1, std::memory_order_seq_cst);
i.fetch_add(1, std::memory_order_relaxed);

https://en.cppreference.com/w/cpp/atomic/memory_order

AT QpaEiion:
Memory Order (2)

std: :memory_order_relaxed
® Roughly maps to a CPU with weak memory order
® Only consistent modification order is guaranteed

® Atomic operations of different objects may be reordered arbitrarily

std::atomic<int> i = 0, j = 0;
void threadA() {
while (true) {
i.fetch_add(1, std::memory_order_relaxed); // (A)
i.fetch_sub(1, std::memory_order_relaxed); // (B)
j.fetch_add(1, std::memory_order_relaxed); // (C)

}
}
void threadB() { /*x ... x/ }
void threadC() { /* ... x/ }

Observations
® threadB() may observe (A), (B), (C)
® threadC() may observe (C), (A), (B)

https://en.cppreference.com/w/cpp/atomic/memory_order

Asomic Operations
Memory Order (3)

std: :memory_order_seq_cst
® Roughly maps to a CPU with strong memory order

® Guarantees that all threads see all atomic operations in one globally
consistent order

std::atomic<int> i = 0, j = 0;
void threadA() {
while (true) {
i.fetch_add(1, std::memory_order_seq_cst); // (A)
i.fetch_sub(1, std::memory_order_seq_cst); // (B)
j.fetch_add(1, std::memory_order_seq_cst); // (C)

}
}
void threadB() { /* ... x/ }
void threadC() { /*x ... x/ }

Observations
® threadB() may observe (C), (A), (B)
® threadC() will then also observe (C), (A), (B)

https://en.cppreference.com/w/cpp/atomic/memory_order

Multi-Threading in C++ [EENSTNOLISANS

Compare-And-Swap Operations (1) C;

Compare-and-swap operations are one of the most useful operations on atomics
® Signature: bool compare_exchange_weak(T& expected, T desired)
® Compares the current value of the atomic to expected

® Replaces the current value by desired if the atomic contained the expected
value and returns true

® Updates expected to contain the current value of the atomic object and
returns false otherwise

Often the main building block to synchronize data structures without mutexes

® Allows us to check that no modifications occurred to an atomic over some
time period

® Can be used to implement “implicit” mutual exclusion

® Can suffer from subtle problems such as the A-B-A problem

https://en.cppreference.com/w/cpp/atomic/atomic/compare_exchange

AcomiclOpelations
Compare-And-Swap Operations (2)

Example: Insert into a lock-free singly linked list

#include <atomic>

class Safelist {
private:
struct Entry {
T value;
Entryx next;

1
std::atomic<Entry*> head;
Entryx allocateEntry(const T& value);

public:
void insert(const T& value) {
autox entry = allocateEntry(value);
autox currentHead = head.load();
do {
entry->next = currentHead;
} while (!head.compare_exchange_weak(currentHead, entry));

s

Gtomiclopsiations
Compare-And-Swap Operations (3)

std::atomic actually provides two CAS versions with the same signature
® compare_exchange_weak — weak CAS

® compare_exchange_strong — strong CAS

Semantics

® The weak version is allowed to return false, even when no other thread
modified the value

® This is called “spurious failure”
® The strong version may use a loop internally to avoid this

® General rule: If you use a CAS operation in a loop, always use the weak
version

Asomic Operations
std::atomic_ref (1)

std::atomic can be unwieldy
® std::atomic is neither movable nor copyable

® As a consequence it cannot easily be used in standard library containers

std::atomic_ref allows us to apply atomic operations to non-atomic objects
® The constructor takes a reference to an arbitrary object of type T

® The referenced object is treated as an atomic object during the lifetime of
the std::atomic_ref

® std::atomic_ref defines similar member functions to std: :atomic

Data races between accesses through std::atomic_ref and non-atomic
accesses are still undefined behavior!

Asomic Operations
std::atomic_ref (2)

Example

#include <atomic>
#include <thread>
#include <vector>

int main() {
std::vector<int> localCounters(4);
std::vector<std::thread> threads;

for (size_t i = 0; i < 165 ++i) {
threads.emplace_back([&] () {
for (size_t j = 0; j < 100; ++j) {
std::atomic_ref ref(localCounters[i % 4]);
ref.fetch_add(1);
}
b
}

for (auto& thread : threads) {
thread.join();
}

	Multi-Threading in C++
	Threads Library
	Mutual Exclusion
	Atomic Operations

