
Inheritance

Inheritance

368

Inheritance

Object-Oriented Programming

Object-oriented programming is based on three fundamental concepts

• Data abstraction
• Implemented by classes in C++
• Covered previously

• Inheritance
• Implemented by class derivation in C++
• Derived Classes inherit the members of its base class(es)
• Covered in this lecture

• Dynamic Binding (Polymorphism)
• Implemented by virtual functions in C++
• Programs need not care about the specific types of objects in an inheritance

hierarchy
• Covered in this lecture

369

Inheritance Basic Non-Polymorphic Inheritance

Derived Classes (1)

Any class type may be derived from one or more base classes
• Possible for both class and struct
• Base classes may in turn be derived from their own base classes
• Classes form an inheritance hierarchy

High-level Syntax

class class-name : base-specifier-list {
member-specification

};

struct class-name : base-specifier-list {
member-specification

};

370

https://en.cppreference.com/w/cpp/language/derived_class

Inheritance Basic Non-Polymorphic Inheritance

Derived Classes (2)

The base-specifier-list contains a comma-separated list of one or more
base-specifiers with the following syntax

access-specifier virtual-specifier base-class-name

Explanation
• access-specifier controls the inheritance mode (more details soon)
• access-specifier is optional; if present it can be one of the keywords
private, protected or public

• base-class-name is mandatory, it specifies the name of the class from
which to derive

• virtual-specifier is optional; if present it must be the keyword
virtual (only used for multiple inheritance)

371

Inheritance Basic Non-Polymorphic Inheritance

Derived Classes (3)

Examples

class Base {
int a;

};

class Derived0 : Base {
int b;

};

class Derived1 : private Base {
int c;

};

class Derived2 : public virtual Base, private Derived1 {
int d;

};

372

Inheritance Basic Non-Polymorphic Inheritance

Constructors and Initialization (1)

Constructors of derived classes account for the inheritance
1. The direct non-virtual base classes are initialized in left-to-right order as they

appear in the base-specifier-list
2. The non-static data members are initialized in the order of declaration in the

class definition
3. The body of the constructor is executed

The initialization order is independent of any order in the member initializer list

Base classes are default-initialized unless specified otherwise
• Another constructor can explicitly be invoked using the delegating

constructor syntax

373

https://en.cppreference.com/w/cpp/language/initializer_list

Inheritance Basic Non-Polymorphic Inheritance

Constructors and Initialization (2)
Consider the class definitions

foo.hpp
struct Base {

int a;

Base();
explicit Base(int a);

};

struct Derived : Base {
int b;

Derived();
Derived(int a, int b);

};

foo.cpp
#include "foo.hpp"
#include <iostream>

using namespace std;

Base::Base()
: a(42) {
cout << "Base::Base()" << endl;

}

Base::Base(int a)
: a(a) {
cout << "Base::Base(int)" << endl;

}

Derived::Derived() {
: b(42) {
cout << "Derived::Derived()" << endl;

}

Derived::Derived(int a, int b)
: Base(a), b(b) {
cout << "Derived::Derived(int, int)" << endl;

}

374

Inheritance Basic Non-Polymorphic Inheritance

Constructors and Initialization (3)

Using the above class definitions, consider the following program
main.cpp

#include "foo.hpp"

int main() {
Derived derived0;
Derived derived1(123, 456);

}

Then the output of this program would be

$./foo
Base::Base()
Derived::Derived()
Base::Base(int)
Derived::Derived(int, int)

375

Inheritance Basic Non-Polymorphic Inheritance

Destructors (1)

Similarly to constructors, destructors of derived classes account for the inheritance
1. The body of the destructor is executed
2. The destructors of all non-static members are called in reverse order of

declaration
3. The destructors of all direct non-virtual base classes are called in reverse

order of construction

The order in which the base class destructors are called is deterministic
• It depends on the order of construction, which in turn only depends on the

order of base classes in the base-specifier-list

376

https://en.cppreference.com/w/cpp/language/destructor#Destruction_sequence

Inheritance Basic Non-Polymorphic Inheritance

Destructors (2)

Consider the class definitions
foo.hpp

struct Base0 {
~Base0();

};

struct Base1 {
~Base1();

};

struct Derived : Base0, Base1 {
~Derived();

};

foo.cpp
#include "foo.hpp"
#include <iostream>

using namespace std;

Base0::~Base0() {
cout << "Base0::~Base0()" << endl;

}

Base1::~Base1() {
cout << "Base1::~Base1()" << endl;

}

Derived::~Derived() {
cout << "Derived::~Derived()" << endl;

}

377

Inheritance Basic Non-Polymorphic Inheritance

Destructors (3)

Using the above class definitions, consider the program
main.cpp

#include "foo.hpp"

int main() {
Derived derived;

}

Then the output of this program would be

$./foo
Derived::~Derived()
Base1::~Base1()
Base0::~Base0()

378

Inheritance Basic Non-Polymorphic Inheritance

Unqualified Name Lookup (1)

It is allowed (although discouraged) to use a name multiple times in an
inheritance hierarchy
• Affects unqualified name lookups (lookups without the use of the scope

resolution operator ::)
• A deterministic algorithm decides which alternative matches an unqualified

name lookup
• Rule of thumb: Declarations in the derived classes “hide” declarations in the

base classes

Multiple inheritance can lead to additional problems even without reusing a name
• In a diamond-shaped inheritance hierarchy, members of the root class appear

twice in the most derived class
• Can be solved with virtual inheritance
• Should still be avoided whenever possible

379

https://en.cppreference.com/w/cpp/language/unqualified_lookup

Inheritance Basic Non-Polymorphic Inheritance

Unqualified Name Lookup (2)

Single inheritance example

struct A {
void a();

};

struct B : A {
void a();
void b() {

a(); // calls B::a()
}

};

struct C : B {
void c() {

a(); // calls B::a()
}

};

380

Inheritance Basic Non-Polymorphic Inheritance

Unqualified Name Lookup (3)

Diamond inheritance example

struct X {
void x();

};

struct B1 : X { };
struct B2 : X { };

struct D : B1, B2 {
void d() {

x(); // ERROR: x is present in B1 and B2
}

};

381

Inheritance Basic Non-Polymorphic Inheritance

Qualified Name Lookup

Qualified name lookup can be used to explicitly resolve ambiguities
• Similar to qualified namespace lookups, a class name can appear to the left

of the scope resolution operator ::

struct A {
void a();

};

struct B : A {
void a();

};

int main() {
B b;
b.a(); // calls B::a()
b.A::a(); // calls A::a()

}

382

https://en.cppreference.com/w/cpp/language/qualified_lookup

Inheritance Basic Non-Polymorphic Inheritance

Object Representation

The object representation of derived class objects accounts for inheritance
• The base class object is stored as a subobject in the derived class object
• Thus, derived classes may still be trivially constructible, copyable, or

destructible

foo.cpp
struct A {

int a = 42;
int b = 123;

};

struct B : A {
int c = 456;

};

int main() {
B b;

}

foo.o
main:

pushq %rbp
movq %rsp, %rbp
movl $42, -12(%rbp)
movl $123, -8(%rbp)
movl $456, -4(%rbp)
movl $0, %eax
popq %rbp
ret

383

https://en.cppreference.com/w/cpp/language/object#Subobjects

Inheritance Polymorphic Inheritance

Polymorphic Inheritance

By default, inheritance in C++ is non-polymorphic
• Member definitions in a derived class can hide definitions in the base class
• For example, it matters if we call a function through a pointer to a base

object or a pointer to a derived object

#include <iostream>

struct Base {
void foo() { std::cout << "Base::foo()" << std::endl; }

};

struct Derived : Base {
void foo() { std::cout << "Derived::foo()" << std::endl; }

};

int main() {
Derived d;
Base& b = d;

d.foo(); // prints Derived::foo()
b.foo(); // prints Base::foo()

}

384

Inheritance Polymorphic Inheritance

The virtual Function Specifier (1)

Used to mark a non-static member function as virtual
• Enables dynamic dispatch for this function
• Allows the function to be overriden in derived classes
• A class with at least one virtual function is polymorphic

The overridden behavior of the function is preserved even when no compile-time
type information is available
• A call to an overridden virtual function through a pointer or reference to a

base object will invoke the behavior defined in the derived class
• This behavior is suppressed when qualified name lookup is used for the

function call

385

https://en.cppreference.com/w/cpp/language/virtual

Inheritance Polymorphic Inheritance

The virtual Function Specifier (2)
Example
#include <iostream>

struct Base {
virtual void foo() { std::cout << "Base::foo()" << std::endl; }

};
struct Derived : Base {

void foo() { std::cout << "Derived::foo()" << std::endl; }
};
int main() {

Base b;
Derived d;
Base& br = b;
Base& dr = d;

d.foo(); // prints Derived::foo()
dr.foo(); // prints Derived::foo()
d.Base::foo(); // prints Base::foo()
dr.Base::foo(); // prints Base::foo()

br.foo(); // prints Base::foo()
}

386

Inheritance Polymorphic Inheritance

Conditions for Overriding Functions (1)

A function overrides a virtual base class function if
• The function name is the same
• The parameter type list (but not the return type) is the same
• The cv-qualifiers of the function are the same
• The ref-qualifiers of the function are the same

If these conditions are met, the function overrides the virtual base class function
• The derived function is also virtual and can be overridden by further-derived

classes
• The base class function does not need to be visible
• The return type must be the same or covariant

If these conditions are not met, the function may hide the virtual base class
function

387

https://en.cppreference.com/w/cpp/language/virtual#In_detail

Inheritance Polymorphic Inheritance

Conditions for Overriding Functions (2)
Example

struct Base {
private:
virtual void bar();

public:
virtual void foo();

};

struct Derived : Base {
void bar(); // Overrides Base::bar()
void foo(int baz); // Hides Base::foo()

};

int main() {
Derived d;
Base& b = d;

d.foo(); // ERROR: lookup finds only Derived::foo(int)
b.foo(); // invokes Base::foo();

}

388

Inheritance Polymorphic Inheritance

The Final Overrider (1)

Every virtual function has a final overrider
• The final overrider is executed when a virtual function call is made
• A virtual member function is the final overrider unless a derived class declares

a function that overrides it

A derived class can also inherit a function that overrides a virtual base class
function through multiple inheritance
• There must only be one final overrider at all times
• Multiple inheritance should be avoided anyway

389

https://en.cppreference.com/w/cpp/language/virtual#In_detail

Inheritance Polymorphic Inheritance

The Final Overrider (2)
Example

struct A {
virtual void foo();
virtual void bar();
virtual void baz();

};
struct B : A {

void foo();
void bar();

};
struct C : B {

void foo();
};
int main() {

C c;
A& cr = c;

cr.foo(); // invokes C::foo()
cr.bar(); // invokes B::bar()
cr.baz(); // invokes A::baz()

}

390

Inheritance Polymorphic Inheritance

The Final Overrider (3)
The final overrider depends on the actual type of an object

struct A {
virtual void foo();
virtual void bar();
virtual void baz();

};
struct B : A {

void foo();
void bar();

};
struct C : B {

void foo();
};
int main() {

B b;
A& br = b;

br.foo(); // invokes B::foo()
br.bar(); // invokes B::bar()
br.baz(); // invokes A::baz()

}

391

Inheritance Polymorphic Inheritance

Covariant Return Types (1)

The overriding and base class functions can have covariant return types
• Both types must be single-level pointers or references to classes
• The referenced/pointed-to class in the base class function must be a direct or

indirect base class of the referenced/pointed-to class in the derived class
function

• The return type in the derived class function must be at most as cv-qualified
as the return type in the base class function

• Most of the time, the referenced/pointed-to class in the derived class
function is the derived class itself

392

https://en.cppreference.com/w/cpp/language/virtual#Covariant_return_types

Inheritance Polymorphic Inheritance

Covariant Return Types (2)

Example

struct Base {
virtual Base* foo();
virtual Base* bar();

};

struct Derived : Base {
Derived* foo(); // Overrides Base::foo()
int bar(); // ERROR: Overrides Base::bar() but has

// non-covariant return type
};

393

Inheritance Polymorphic Inheritance

Construction and Destruction

Virtual functions have to be used carefully during construction and destruction
• During construction and destruction, a class behaves as if no more-derived

classes exist
• I.e., virtual function calls during construction and destruction call the final

overrider in the constructor’s or destructor’s class

struct Base {
Base() { foo(); }
virtual void foo();

};

struct Derived : Base {
void foo();

};

int main() {
Derived d; // On construction, Base::foo() is called

}

394

https://en.cppreference.com/w/cpp/language/virtual#During_construction_and_destruction

Inheritance Polymorphic Inheritance

Virtual Destructors

Derived objects can be deleted through a pointer to the base class
• Undefined behavior unless the destructor in the base class is virtual
• The destructor in a base class should either be protected and non-virtual or

public and virtual

#include <memory>

struct Base {
virtual ~Base() { };

};

struct Derived : Base { };

int main() {
Base* b = new Derived();
delete b; // OK

}

395

https://en.cppreference.com/w/cpp/language/destructor#Virtual_destructors

Inheritance Polymorphic Inheritance

The override Specifier

The override specifier should be used to prevent bugs
• The override specifier can appear directly after the declarator in a member

function declaration or inline member function definition
• Ensures that the member function is virtual and overrides a base class method
• Useful to avoid bugs where a function in a derived class actually hides a base

class function instead of overriding it

struct Base {
virtual void foo(int i);
virtual void bar();

};

struct Derived : Base {
void foo(float i) override; // ERROR
void bar() const override; // ERROR

};

396

https://en.cppreference.com/w/cpp/language/override

Inheritance Polymorphic Inheritance

The final Specifier (1)

The final specifier can be used to prevent overriding a function
• The final specifier can appear directly after the declarator in a member

function declaration or inline member function definition

struct Base {
virtual void foo() final;

};

struct Derived : Base {
void foo() override; // ERROR

};

397

https://en.cppreference.com/w/cpp/language/final

Inheritance Polymorphic Inheritance

The final Specifier (2)

The final specifier can be used to prevent inheritance from a class
• The final specifier can appear in a class definition, immediately after the

class name

struct Base final {
virtual void foo();

};

struct Derived : Base { // ERROR
void foo() override;

};

398

Inheritance Polymorphic Inheritance

Abstract Classes (1)

C++ allows abstract classes which cannot be instantiated, but used as a base class
• Any class which declares or inherits at least one pure virtual function is an

abstract class
• A pure virtual member function declaration contains the sequence = 0 after

the declarator and override/final specifiers
• Pointers and references to an abstract class can be declared

A definition can still be provided for a pure virtual function
• Derived classes can call this function using qualified name lookup
• The pure specifier = 0 cannot appear in a member function definition (i.e.

the definition can not be provided inline)

Making a virtual function call to a pure virtual function in the constructor or
destructor of an abstract class is undefined behavior

399

https://en.cppreference.com/w/cpp/language/abstract_class

Inheritance Polymorphic Inheritance

Abstract Classes (2)

Example

struct Base {
virtual void foo() = 0;

};

struct Derived : Base {
void foo() override;

};

int main() {
Base b; // ERROR
Derived d;
Base& dr = d;
dr.foo(); // calls Derived::foo()

}

400

Inheritance Polymorphic Inheritance

Abstract Classes (3)

A definition may be provided for a pure virtual function

struct Base {
virtual void foo() = 0;

};

void Base::foo() { /* do something */ }

struct Derived : Base {
void foo() override { Base::foo(); }

};

401

Inheritance Polymorphic Inheritance

Abstract Classes (4)

The destructor may also be marked as pure virtual
• Useful when a class needs to be abstract, but has no suitable functions that

could be declared pure virtual
• In this case a definition must be provided

struct Base {
virtual ~Base() = 0;

};

Base::~Base() { }

int main() {
Base b; // ERROR

}

402

https://en.cppreference.com/w/cpp/language/destructor#Pure_virtual_destructors

Inheritance Polymorphic Inheritance

Abstract Classes (5)
Abstract classes cannot be instantiated
• Programs have to refer to abstract classes through pointers or references
• Smart pointers (owning), references (non-owning), or raw pointers (if
nullptr is possible)

#include <memory>

struct Base {
virtual ~Base();
virtual void foo() = 0;

};

struct Derived : Base { void foo() override; };

void bar(const Base& b) { b.foo(); }

int main() {
std::unique_ptr<Base> b = std::make_unique<Derived>();
b->foo(); // calls Derived::foo()

bar(*b); // calls Derived::foo() within bar
} // destroys b, undefined behavior unless ~Base() is virtual

403

Inheritance Conversions

dynamic_cast (1)

Converts pointers and references to classes in an inheritance hierarchy
• Syntax: dynamic_cast < new_type > (expression)
• new_type may be a pointer or reference to a class type
• expression must be an lvalue expression of reference type if new_type is a

reference type, and an rvalue expression of pointer type otherwise

Most common use case: Safe downcasts in an inheritance hierarchy
• Involves a runtime check whether new_type is a base of the actual

polymorphic type of expression
• If the check fails, returns nullptr for pointer types, and throws an

exception for reference types
• Requires runtime type information which incurs some overhead

For other use cases: See the reference documentation

404

https://en.cppreference.com/w/cpp/language/dynamic_cast

Inheritance Conversions

dynamic_cast (2)

Example

struct A {
virtual ~A() = default;

};

struct B : A {
void foo() const;

};

struct C : A {
void bar() const;

};

void baz(const A* aptr) {
if (const B* bptr = dynamic_cast<const B*>(aptr)) {

bptr->foo();
} else if (const C* cptr = dynamic_cast<const C*>(aptr)) {

cptr->bar();
}

}

405

Inheritance Conversions

dynamic_cast (3)
dynamic_cast has a non-trivial performance overhead
• Notable impact if many casts have to be performed
• Alternative: Use a type enum in conjunction with static_cast

struct Base {
enum class Type {

Base,
Derived

};

Type type;

Base() : type(Type::Base) { }
Base(Type type) : type(type) { }

virtual ~Base();
};

struct Derived : Base {
Derived() : Base(Type::Derived) { }

};

406

Inheritance Conversions

dynamic_cast (4)

Example (continued)

void bar(const Base* basePtr) {
switch (basePtr->type) {
case Base::Type::Base:

/* do something with Base */
break;

case Base::Type::Derived:
const Derived* derivedPtr

= static_cast<const Derived*>(basePtr);

/* do something with Derived */

break;
}

}

407

Inheritance Implementation of Polymorphic Inheritance

Vtables (1)

Polymorphism does not come for free
• Dynamic dispatch has to be implemented somehow
• The C++ standard does not prescribe a specific implementation
• Compilers typically use vtables to resolve virtual function calls

Vtables setup and use
• One vtable is constructed per class with virtual functions
• The vtable contains the addresses of the virtual functions of that class
• Objects of classes with virtual functions contain an additional pointer to the

base of the vtable
• When a virtual function is invoked, the pointer to the vtable is followed and

the function that should be executed is resolved

408

Inheritance Implementation of Polymorphic Inheritance

Vtables (2)

Example
struct Base {

virtual void foo();
virtual void bar();

};

struct Derived : Base {
void foo() override;

};

int main() {
Base b;
Derived d;

Base& br = b;
Base& dr = d;

br.foo();
dr.foo();

}

Stack

Base b:
vtable pointer

Derived d:
vtable pointer

Code Segment
vtable for Base:

vtable for Derived:

Base::foo():

Base::bar():

Derived::foo():
Instructions...

Instructions...

Instructions... Base::foo()
Base::bar()

Derived::foo()
Base::bar()

409

Inheritance Implementation of Polymorphic Inheritance

Performance Implications

Virtual function calls incur an additional indirection
• The pointer to the vtable is followed
• The pointer to the actual function is followed
• Each step may incur a cache miss
• Can be very notable when invoking a virtual function millions of times

Polymorphic objects have larger size
• Each object of a polymorphic class needs to store a pointer to the vtable
• In our example, both Base and Derived occupy 8 bytes of memory despite

having no data members

410

Inheritance Inheritance Modes

Inheritance Modes

Recall the definition of a base-specifier

access-specifier virtual-specifier base-class-name

The access-specifier specifies the inheritance mode
• The inheritance mode controls the access mode of base class members in the

derived class
• If no access-specifier is given, derived classes defined with struct have
public inheritance mode by default

• If no access-specifier is given, derived classes defined with class have
private inheritance mode by default

411

https://en.cppreference.com/w/cpp/language/derived_class

Inheritance Inheritance Modes

Public Inheritance (1)

Semantics
• Public base class members are usable as public members of the derived class
• Protected base class members are usable as protected members of the

derived class

Models the subtyping (IS-A) relationship of object-oriented programming
• Pointers and references to a derived object should be usable wherever a

pointer to the a base object is expected
• A derived class must maintain the class invariants of its base classes
• A derived class must not strengthen the preconditions of any member

function it overrides
• A derived class must not weaken the postconditions of any member function

it overrides

412

https://en.cppreference.com/w/cpp/language/derived_class#Public_inheritance

Inheritance Inheritance Modes

Public Inheritance (2)
Example

class A {
protected:
int a;

public:
int b;

};

class B : public A {
public:
void foo() {

return a + 42; // OK: a is usable as protected member of B
}

};

int main() {
B b;
b.b = 42; // OK: b is usable as public member of B
b.a = 42; // ERROR: a is not visible

}

413

Inheritance Inheritance Modes

Private Inheritance (1)

Semantics
• Public base class members are usable as private members of the derived class
• Protected base class members are usable as private members of the derived

class

Some specialized use cases
• Policy-based design using templates (more details later)
• Mixins
• Model composition if some requirements are met

• The base object needs to be constructed or destructed before or after some
object in the derived object

• The derived class needs access to protected members of the base class
• The derived class needs to override virtual methods in the base class

414

https://en.cppreference.com/w/cpp/language/derived_class#Private_inheritance

Inheritance Inheritance Modes

Private Inheritance (2)

Example

class A {
protected:
A(int); // Constructor is protected for some reason

};

class C : private A {
public:
C() : A(42) { }

const A& getA() { // Act as if we have a member of type A
return *this;

}
};

415

Inheritance Inheritance Modes

Protected Inheritance (1)

Semantics
• Public base class members are usable as protected members of the derived

class
• Protected base class members are usable as protected members of the

derived class
• Within the derived class and all further-derived classes, pointers and

references to a derived object may be used where a pointer or reference to
the base object is expected

Models “controlled polymorphism”
• Mainly used for the same purposes as private inheritance, where inheritance

should be shared with subclasses
• Rarely seen in practice

416

https://en.cppreference.com/w/cpp/language/derived_class#Protected_inheritance

Inheritance Inheritance Modes

Protected Inheritance (2)
Example

class A {
protected:
int a;

public:
int b;

};

class B : protected A {
public:
void foo() {

return a + 42; // OK: a is usable as protected member of B
}

};

int main() {
B b;
b.b = 42; // ERROR: b is not visible
b.a = 42; // ERROR: a is not visible

}

417

Inheritance Multiple Inheritance

Multiple Inheritance

C++ supports multiple inheritance
• Rarely required
• Easy to produce convoluted code
• Leads to implementation issues (e.g. diamond-inheritance)

There are C++ language features to address such issues
• You will likely never need multiple inheritance during this lecture
• For details: Check the reference documentation
• Multiple inheritance should be avoided whenever possible

418

https://en.cppreference.com/w/cpp/language/derived_class

Inheritance Exceptions

Exceptions in C++

C++ supports exceptions with similar semantics as other languages
• Exceptions transfer control and information up the call stack
• Can be thrown by throw-expressions, dynamic_cast, new-expressions and

some standard library functions

While transferring control up the call stack, C++ performs stack unwinding
• Properly cleans up all objects with automatic storage duration
• Ensures correct behavior e.g. of RAII classes

Exceptions do not have to be handled
• Can be handled in try-catch blocks
• Unhandled exceptions lead to termination of the program though
• Errors during exception handling also lead to termination of the program

419

https://en.cppreference.com/w/cpp/language/exceptions

Inheritance Exceptions

Throwing Exceptions

Objects of any complete type may be thrown as exception objects
• Usually exception objects should derive directly or indirectly from
std::exception, and contain information about the error condition

• Syntax: throw expression
• Copy-initializes the exception object from expression and throws it

#include <exception>

void foo(unsigned i) {
if (i == 42)

throw 42;

throw std::exception();
}

420

https://en.cppreference.com/w/cpp/language/throw

Inheritance Exceptions

Handling Exceptions

Exceptions are handled in try-catch blocks
• Exceptions that occur while executing the try-block can be handled in the
catch-blocks

• The parameter type of the catch-block determines which type of exception
causes the block to be entered

#include <exception>

void bar() {
try {

foo(42);
} catch (int i) {

/* handle exception */
} catch (const std::exception& e) {

/* handle exception */
}

}

421

https://en.cppreference.com/w/cpp/language/try_catch

Inheritance Exceptions

Usage Guidelines

Exceptions should only be used in rare cases
• Main legitimate use case: Failure to (re)establish a class invariant (e.g.

failure to acquire a resource in an RAII constructor)
• Functions should not throw exceptions when preconditions are not met – use

assertions instead
• Exceptions should not be used for control flow

Some functions must not throw exceptions
• Destructors
• Move constructors and assignment operators
• See reference documentation for details

Generally, exceptions should be avoided where possible

422

https://en.cppreference.com/w/cpp/language/exceptions

	Inheritance
	Basic Non-Polymorphic Inheritance
	Polymorphic Inheritance
	Conversions
	Implementation of Polymorphic Inheritance
	Inheritance Modes
	Multiple Inheritance
	Exceptions

