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Miscellaneous Tricks on x86-64

Pointer Tagging on x86-64 (1)

Virtual addresses are translated to physical addresses by the MMU
• Virtual addresses are 64-bit integers on x86-64
• On x86-64, only the lower 48 bit of pointers are actually used
• The upper 16 bit of pointers are usually required to be zero

The upper 16 bit of each pointer can be used to store useful information
• Usually called pointer tagging
• Tagged pointers require careful treatment to avoid memory bugs
• If portability is desired, an implementation that works without pointer

tagging has to be provided (e.g. through preprocessor defines)
• Allows us to modify two values (16 bit tag and 48 bit pointer) with a single

atomic instruction
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Miscellaneous Tricks on x86-64

Pointer Tagging on x86-64 (2)

We can store different things in the upper 16 bit of pointers
• Up to 16 binary flags
• A single 16 bit integer
• …

Guidelines
• Always wrap tagged pointers within a suitable data structure
• Do not expose tagged pointers in raw form
• Store tagged pointers as uintptr_t internally
• Use bit operations to access tag and pointer parts
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Miscellaneous Tricks on x86-64

Pointer Tagging on x86-64 (3)
Using the upper 16 bit to store information

static constexpr uint64_t shift = 48;
static constexpr uintptr_t mask = (1ull << shift) - 1;
//--------------------------------------------------------------------
uintptr_t tagPointer(void* ptr, uint64_t tag)
// Tag a pointer. Discards the upper 48 bit of tag.
{

return (reinterpret_cast<uintptr_t>(ptr) & mask) | (tag << shift);
}
//--------------------------------------------------------------------
uint64_t getTag(uintptr_t taggedPtr)
// Get the tag stored in a tagged pointer
{

return taggedPtr >> shift;
}
//--------------------------------------------------------------------
void* getPointer(uintptr_t taggedPtr)
// Get the pointer stored in a tagged pointer
{

return reinterpret_cast<void*>(taggedPtr & mask);
}
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Miscellaneous Tricks on x86-64

Pointer Tagging on x86-64 (4)
Using the lower 16 bit to store information

static constexpr uint64_t shift = 16;
static constexpr uintptr_t mask = (1ull << shift) - 1;
//--------------------------------------------------------------------
uintptr_t tagPointer(void* ptr, uint64_t tag)
// Tag a pointer. Discards the upper 48 bit of tag.
{

return (reinterpret_cast<uintptr_t>(ptr) << shift) | (tag & mask);
}
//--------------------------------------------------------------------
uint64_t getTag(uintptr_t taggedPtr)
// Get the tag stored in a tagged pointer
{

return taggedPtr & mask;
}
//--------------------------------------------------------------------
void* getPointer(uintptr_t taggedPtr)
// Get the pointer stored in a tagged pointer
{

return reinterpret_cast<void*>(taggedPtr >> shift);
}
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Miscellaneous Vectorization

Vectorization

Most modern CPUs contain vector units that can exploit data-level parallelism
• Apply the same operation (e.g. addition) to multiple data elements in a single

instruction
• Can greatly improve the performance of suitable algorithms (e.g. image

processing)
• Not all algorithms are amenable to vectorization

Overview
• Can be used through extensions to the x86 instruction set architecture
• Commonly referred to as single instruction, multiple data (SIMD) instructions
• Can be used in C/C++ code through intrinsic functions
• The Intel Intrinsics Guide provides an excellent documentation
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Miscellaneous Vectorization

SIMD Extensions

SIMD extensions have evolved substantially over time
• MMX
• SSE, SSE2, SSE3, SSE4
• AVX, FMA, AVX2, AVX-512

Modern CPUs retain backward compatibility with older instruction set extensions
• The CPU flags exposed in /proc/cpuinfo indicate which extensions are

supported
• We will briefly introduce AVX (avx flag in /proc/cpuinfo)
• AVX should be supported on most reasonably modern CPUs
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Miscellaneous Vectorization

AVX Data Types

AVX data types and intrinsics are defined in the <immintrin.h> header
• AVX adds 16 registers which are 256 bits wide each
• Can hold multiple data elements
• Can be used through special opaque data types

AVX data types
• __m256: Can hold eight 32 bit floating point values
• __m256d: Can hold four 64 bit floating point values
• __m256i: Can hold thirty-two 8 bit, sixteen 16 bit, eight 32 bit or four 64 bit

integer values
• Commonly referred to as vectors (not to be confused with std::vector)

Other SIMD extensions follow similar naming conventions for data types
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AVX Intrinsics

Usually, there are separate intrinsics for each data type
• AVX intrinsics usually begin with _mm256
• Next is a name for the instruction (e.g. loadu)
• Finally, the data type is indicated

• ps for __m256
• pd for __m256d
• si256 for __m256i

• Example: _mm256_loadu_ps

We will only show intrinsics for __m256 in the following
• Intrinsics for other data types usually follow similar patterns
• Exception: AVX does not contain many arithmetic operations on integer

types (added in AVX2)
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Constant Values

We cannot directly modify individual data elements in AVX data types
• We have to use intrinsics for that purpose
• Intrinsics usually return the result of a modification

We can create constant vectors
• __m256 _mm256_set1_ps(float a)

• Returns a vector with all elements equal to a
• __m256 _mm256_set_ps(float e7, ..., float e0)

• Returns a vector with the elements e0, ..., e7
• __m256 _mm256_setr_ps(float e0, ..., float e7)

• Returns a vector with the elements e0, ..., e7
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Loading and Storing

Loading data from memory
• __m256 _mm256_load_ps(const float* addr)

• Load eight 32 bit floating point values from memory starting at addr
• addr has to be aligned to a 32 byte boundary

• __m256 _mm256_loadu_ps(const float* addr)
• Load eight 32 bit floating point values from memory starting at addr
• addr does not have to be aligned beyond usual float alignment

Storing data to memory
• void _mm256_store_ps(float* addr, __m256 a)

• Store eight 32 bit floating point values in a to memory starting at addr
• addr has to be aligned to a 32 byte boundary

• void _mm256_storeu_ps(float* addr, __m256 a)
• Store eight 32 bit floating point values in a to memory starting at addr
• addr does not have to be aligned beyond usual float alignment
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Miscellaneous Vectorization

Arithmetic Operations

AVX provides many arithmetic operations on vectors
• All the usual arithmetic operations
• Bitwise operations on integer types
• …

Example: Adding vectors
• __m256 _mm256_add_ps(__m256 a, __m256 b)

• Adds the individual elements of the vectors a and b
• Returns the result of the addition
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Miscellaneous Vectorization

Example
Computing the sum of elements in an std::vector

#include <immintrin.h>
#include <vector>
//--------------------------------------------------------------------
float fastSum(const std::vector<float>& vec) {

__m256 vectorSum = _mm256_set1_ps(0);
uint64_t index;
for (index = 0; (index + 8) <= vec.size(); index += 8) {

__m256 data = _mm256_loadu_ps(&vec[index]);
vectorSum = _mm256_add_ps(vectorSum, data);

}

float sum = 0;
float buffer[8];
_mm256_storeu_ps(buffer, vectorSum);
for (unsigned i = 0; i < 8; ++i)

sum += buffer[i];
for (; index < vec.size(); ++index)

sum += vec[index];

return sum;
}
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Miscellaneous Vectorization

Further Operations

AVX contains many more instructions
• Comparison operations on vectors
• Masked operations

Allows vectorization of many algorithms
• Vectorization is not guaranteed to improve performance
• Generally, compute-heavy algorithms benefit greatly from vectorization
• Algorithms with a lot of fine-grained branching or many loads and stores may

not benefit
• Vectorization is always an optimization that should not be applied

prematurely
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Miscellaneous Template Metaprogramming

Template Metaprogramming

Templates can be used for meta-programming at compile time.
• Template specializations can be used to select different types depending on

template arguments
• Recursive templates can be used for basic “control flow”
• The standard library defines several useful templates in <type_traits>
• All types and values are generated at compile time, so can be used as

constants or template parameters
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Miscellaneous Template Metaprogramming

Type Traits

Type traits can be used to analyze properties of arbitrary types:
constexpr bool a = std::is_arithmetic_v<int>; // true
constexpr bool b = std::is_class_v<int>; // false
constexpr bool c = std::is_class_v<std::vector<int>>; // true
constexpr bool d = std::is_move_assignable_v<std::vector<int>>; // true

They can also be used to generate new types:
using T1 = std::remove_reference_t<int&>; // T1 is int
using T2 = std::add_pointer_t<int>; // T2 is int*
// T3 is const std::vector<int>&
using T3 = std::add_const_t<std::add_lvalue_reference_t<std::vector<int>>>;
// my_uintptr_t is uint64_t on systems where the size of void* is 8 bytes,
// or uint32_t otherwise.
using my_uintptr_t =

std::conditional_t<sizeof(void*) == 8, uint64_t, uint32_t>;
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Miscellaneous Template Metaprogramming

Using Type Traits

Using type traits can prevent code duplication. Common example: const and
non-const versions of an iterator.

template <typename T>
class Container {

private:
template <bool isConst>
class Iterator {

public:
using reference = std::conditional_t<isConst, const T&, T&>;
// [...]

};

public:
using iterator = Iterator<false>;
using const_iterator = Iterator<true>;

};
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Miscellaneous Template Metaprogramming

Implementing Type Traits

Some of the templates from <type_traits> are “magic” and cannot be
implemented in pure C++ without compiler support.

Still, many can be implemented by using template specializations:
// By default, my_remove_pointer just gives back T
template <typename T>
struct my_remove_pointer { using type = T; };
// Use template specialization that is only selected for pointer types
// and declare type to be T without the pointer.
template <typename T>
struct my_remove_pointer<T*> { using type = T; };
template <typename T>
using my_remove_pointer_t = typename my_remove_pointer<T>::type;
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Miscellaneous Template Metaprogramming

Substition Failure Is Not An Error (SFINAE)

• When a template is instantiated, the template arguments are substituted
everywhere the template parameter is used (e.g. T is replaced by int)

• This can lead to invalid code → Substitution Failure
• In some cases, substitution failures do not lead to a compile error!
• This is necessary to enable overloaded template functions
• Can be (ab)used for meta programming (see std::enable_if)

template <typename T>
T::value_type foo(const T& values) { /* ... */ }

int foo(int a) { return a + 1; }

foo(123); // Is this a compile error?
// This is invalid code:
int::value_type foo(const int& values) { /* ... */ }
// Because of SFINAE, only int foo(int) is considered as overload
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Miscellaneous Additional C++20 Features

The C++20 Standard

C++20 is the latest release of the C++ standard
• Adds some very cool features to the C++ standard
• We already covered many of the well-supported new features throughout this

course (e.g. concepts)
• In the following we will give an overview of additional potentially very useful

features

Compiler support for these features is improving although still intermittent
• Some features (e.g. modules) are not yet implemented completely by some

compilers
• Some features (e.g. coroutines) may be implemented but affected by compiler

bugs
• In any case: Use the latest compiler version available to you

783

https://en.cppreference.com/w/cpp/compiler_support


Miscellaneous Additional C++20 Features

Coroutines (1)

Regular function calls are strictly nested
• A function call suspends execution of the calling function, and resumes

execution at the start of the called function
• Eventually, the called function returns and execution of the calling function

resumes after the function call expression

Functions have state that has to be maintained across nested function calls
• Values of any local variables
• The instruction at which to resume execution after a function call
• Strict nesting of function calls allows for highly optimized state maintenance

on the stack
• Strict nesting of function calls makes implementing asynchronous operations

cumbersome
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Miscellaneous Additional C++20 Features

Coroutines (2)

Coroutines are functions that can be suspended and resumed (almost) arbitrarily
• Suspending a coroutine transfers execution back to the caller
• Resuming a suspended coroutine continues execution at the point it was

suspended
• The state of a coroutine remains alive across suspensions (e.g. local variables)

Coroutines in C++ are implemented with the help of three new keywords
• co_await <expr>: Suspends the coroutine and returns control to the caller
• co_yield <expr>: Returns a value to the caller and suspends the coroutine
• co_return <expr>: Returns a value to the caller and finishes the coroutine
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Miscellaneous Additional C++20 Features

Coroutines (3)

Coroutines look like sequential code that is executed asynchronously

ThreadPool pool;

Task<> work(...) {
// Executed on the calling thread
doSomeWork(...);

// Suspend the coroutine and schedule it for resumption
// on the thread pool. Control returns immediately to
// the caller of the coroutine.
co_await pool.schedule();

// Executed on a thread from the thread pool
doSomeMoreWork(...);

}
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Coroutines (4)
Coroutines can be used to implement lazy generators

#include <iostream>

Generator<int> iota(int n = 0) {
while (true)

// Return a value to the caller and suspend the
// iota coroutine
co_yield n++;

}

Task<> work() {
auto generator = iota();
for (size_t i = 0; i < 10; ++i)

// Resume the iota coroutine to retrieve the
// next value from the generator
std::cout << co_await generator << std::endl;

}
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Coroutines (5)

Coroutines can be used to implement asynchronous IO

Task<> work(Socket socket) {
while (true) {

// Suspend the coroutine until data becomes available
auto incoming = co_await socket.receive_async(...);

// Do some work with the received data
auto outgoing = doSomeWork(incoming);

// Suspend the coroutine until data has been sent
co_await socket.send_async(outgoing);

}
}
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Coroutines (6)

Unfortunately, C++ coroutines are currently quite painful to use
• There is not yet any “coroutine standard library”
• In order to actually use any of the coroutine keywords, we have to implement

a lot of (boilerplate) infrastructure ourselves
• The behavior of C++ coroutines is highly configurable through the details of

this infrastructure implementation
• Overall, it is quite difficult to implement working coroutines

Further complications that will (hopefully) improve over time
• Compiler bugs in the implementation of coroutines
• Suboptimal compiler error messages for coroutines
• Suboptimal debugger support for coroutines
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Modules (1)

Modules help structure large amounts of code into logical parts
• A module consists of multiple translation units called module units
• Module units can import other modules
• Module units can export certain declarations

Facilitates encapsulation of logically independent parts
• Exported declarations are visible to name lookup in translation units that

import the module
• Other declarations are not visible to name lookup

Reduces compilation overhead
• Exported definitions are compiled into easy-to-parse binary format
• No need to recursively parse transitive includes
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Modules (2)

Example
greeting.cpp

export module greeting;

import <string>;

export std::string getGreeting() {
return "Hello world!";

}

main.cpp
import greeting;
import <iostream>;

int main() {
std::cout << getGreeting() << std::endl;

}
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Designated Initializers

C++20 introduces designated initializers
• Allows explicit initialization of class members by name
• This was already possible in C and supported by many compilers
• C++20 now supports a subset of what is allowed in C

struct Foo {
int a;
int b;

};
Foo f{ .a = 1, .b = 2 };
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Bit Manipulation

The <bit> header introduces several functions for bit inspection and
manipulation.
• std::bit_cast: Inspect the object representation (instead of using
reinterpret_cast with potential undefined behavior)

• std::endian: Check the endianness of the system
• std::has_single_bit: Check if number is power of two
• std::bit_ceil, std::bit_floor: Find the next/previous power of two
• std::rotl, std::rotr: Rotate bits
• std::countl_zero: Count the number of consecutive zero bits starting

from the most significant bit
• std::popcount: Count the number of one bits
• ...
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Additional atomic types

C++20 introduces an atomic specialization of std::shared_ptr
#include <atomic>
#include <memory>

struct LargeObject {
char data[1000];

};
std::atomic<std::shared_ptr<LargeObject>> object;

void readThreadSafe() {
auto objectPtr = object.load();
if (objectPtr)

objectPtr->data; /* do something with objectPtr->data */
}

void replaceThreadSafe(std::shared_ptr<LargeObject> newObject) {
object.store(std::move(newObject));

}
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More Features

C++20 introduces further small and large features, such as:
• std::source_location: Stores a location in the source code.
std::source_location::current() can be used to get the location of
the current line

• <numbers> header: Contains mathematical constants like
std::numbers::pi and std::numbers::e

• consteval and constinit: Behave like a “mandatory” constexpr
• More functions and classes in the standard library are constexpr
• Some restrictions of lambdas were removed, e.g. you can capture structural

bindings
• Non-type-template arguments can have a user-defined type
• ...
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