
Miscellaneous

Miscellaneous

764



Miscellaneous Tricks on x86-64

Pointer Tagging on x86-64 (1)

Virtual addresses are translated to physical addresses by the MMU
• Virtual addresses are 64-bit integers on x86-64
• On x86-64, only the lower 48 bit of pointers are actually used
• The upper 16 bit of pointers are usually required to be zero

The upper 16 bit of each pointer can be used to store useful information
• Usually called pointer tagging
• Tagged pointers require careful treatment to avoid memory bugs
• If portability is desired, an implementation that works without pointer

tagging has to be provided (e.g. through preprocessor defines)
• Allows us to modify two values (16 bit tag and 48 bit pointer) with a single

atomic instruction

765



Miscellaneous Tricks on x86-64

Pointer Tagging on x86-64 (2)

We can store different things in the upper 16 bit of pointers
• Up to 16 binary flags
• A single 16 bit integer
• …

Guidelines
• Always wrap tagged pointers within a suitable data structure
• Do not expose tagged pointers in raw form
• Store tagged pointers as uintptr_t internally
• Use bit operations to access tag and pointer parts

766



Miscellaneous Tricks on x86-64

Pointer Tagging on x86-64 (3)
Using the upper 16 bit to store information

static constexpr uint64_t shift = 48;
static constexpr uintptr_t mask = (1ull << shift) - 1;
//--------------------------------------------------------------------
uintptr_t tagPointer(void* ptr, uint64_t tag)
// Tag a pointer. Discards the upper 48 bit of tag.
{

return (reinterpret_cast<uintptr_t>(ptr) & mask) | (tag << shift);
}
//--------------------------------------------------------------------
uint64_t getTag(uintptr_t taggedPtr)
// Get the tag stored in a tagged pointer
{

return taggedPtr >> shift;
}
//--------------------------------------------------------------------
void* getPointer(uintptr_t taggedPtr)
// Get the pointer stored in a tagged pointer
{

return reinterpret_cast<void*>(taggedPtr & mask);
}

767



Miscellaneous Tricks on x86-64

Pointer Tagging on x86-64 (4)
Using the lower 16 bit to store information

static constexpr uint64_t shift = 16;
static constexpr uintptr_t mask = (1ull << shift) - 1;
//--------------------------------------------------------------------
uintptr_t tagPointer(void* ptr, uint64_t tag)
// Tag a pointer. Discards the upper 48 bit of tag.
{

return (reinterpret_cast<uintptr_t>(ptr) << shift) | (tag & mask);
}
//--------------------------------------------------------------------
uint64_t getTag(uintptr_t taggedPtr)
// Get the tag stored in a tagged pointer
{

return taggedPtr & mask;
}
//--------------------------------------------------------------------
void* getPointer(uintptr_t taggedPtr)
// Get the pointer stored in a tagged pointer
{

return reinterpret_cast<void*>(taggedPtr >> shift);
}

768



Miscellaneous Vectorization

Vectorization

Most modern CPUs contain vector units that can exploit data-level parallelism
• Apply the same operation (e.g. addition) to multiple data elements in a single

instruction
• Can greatly improve the performance of suitable algorithms (e.g. image

processing)
• Not all algorithms are amenable to vectorization

Overview
• Can be used through extensions to the x86 instruction set architecture
• Commonly referred to as single instruction, multiple data (SIMD) instructions
• Can be used in C/C++ code through intrinsic functions
• The Intel Intrinsics Guide provides an excellent documentation

769

https://software.intel.com/sites/landingpage/IntrinsicsGuide/


Miscellaneous Vectorization

SIMD Extensions

SIMD extensions have evolved substantially over time
• MMX
• SSE, SSE2, SSE3, SSE4
• AVX, FMA, AVX2, AVX-512

Modern CPUs retain backward compatibility with older instruction set extensions
• The CPU flags exposed in /proc/cpuinfo indicate which extensions are

supported
• We will briefly introduce AVX (avx flag in /proc/cpuinfo)
• AVX should be supported on most reasonably modern CPUs

770



Miscellaneous Vectorization

AVX Data Types

AVX data types and intrinsics are defined in the <immintrin.h> header
• AVX adds 16 registers which are 256 bits wide each
• Can hold multiple data elements
• Can be used through special opaque data types

AVX data types
• __m256: Can hold eight 32 bit floating point values
• __m256d: Can hold four 64 bit floating point values
• __m256i: Can hold thirty-two 8 bit, sixteen 16 bit, eight 32 bit or four 64 bit

integer values
• Commonly referred to as vectors (not to be confused with std::vector)

Other SIMD extensions follow similar naming conventions for data types

771



Miscellaneous Vectorization

AVX Intrinsics

Usually, there are separate intrinsics for each data type
• AVX intrinsics usually begin with _mm256
• Next is a name for the instruction (e.g. loadu)
• Finally, the data type is indicated

• ps for __m256
• pd for __m256d
• si256 for __m256i

• Example: _mm256_loadu_ps

We will only show intrinsics for __m256 in the following
• Intrinsics for other data types usually follow similar patterns
• Exception: AVX does not contain many arithmetic operations on integer

types (added in AVX2)

772



Miscellaneous Vectorization

Constant Values

We cannot directly modify individual data elements in AVX data types
• We have to use intrinsics for that purpose
• Intrinsics usually return the result of a modification

We can create constant vectors
• __m256 _mm256_set1_ps(float a)

• Returns a vector with all elements equal to a
• __m256 _mm256_set_ps(float e7, ..., float e0)

• Returns a vector with the elements e0, ..., e7
• __m256 _mm256_setr_ps(float e0, ..., float e7)

• Returns a vector with the elements e0, ..., e7

773



Miscellaneous Vectorization

Loading and Storing

Loading data from memory
• __m256 _mm256_load_ps(const float* addr)

• Load eight 32 bit floating point values from memory starting at addr
• addr has to be aligned to a 32 byte boundary

• __m256 _mm256_loadu_ps(const float* addr)
• Load eight 32 bit floating point values from memory starting at addr
• addr does not have to be aligned beyond usual float alignment

Storing data to memory
• void _mm256_store_ps(float* addr, __m256 a)

• Store eight 32 bit floating point values in a to memory starting at addr
• addr has to be aligned to a 32 byte boundary

• void _mm256_storeu_ps(float* addr, __m256 a)
• Store eight 32 bit floating point values in a to memory starting at addr
• addr does not have to be aligned beyond usual float alignment

774



Miscellaneous Vectorization

Arithmetic Operations

AVX provides many arithmetic operations on vectors
• All the usual arithmetic operations
• Bitwise operations on integer types
• …

Example: Adding vectors
• __m256 _mm256_add_ps(__m256 a, __m256 b)

• Adds the individual elements of the vectors a and b
• Returns the result of the addition

775



Miscellaneous Vectorization

Example
Computing the sum of elements in an std::vector

#include <immintrin.h>
#include <vector>
//--------------------------------------------------------------------
float fastSum(const std::vector<float>& vec) {

__m256 vectorSum = _mm256_set1_ps(0);
uint64_t index;
for (index = 0; (index + 8) <= vec.size(); index += 8) {

__m256 data = _mm256_loadu_ps(&vec[index]);
vectorSum = _mm256_add_ps(vectorSum, data);

}

float sum = 0;
float buffer[8];
_mm256_storeu_ps(buffer, vectorSum);
for (unsigned i = 0; i < 8; ++i)

sum += buffer[i];
for (; index < vec.size(); ++index)

sum += vec[index];

return sum;
}

776



Miscellaneous Vectorization

Further Operations

AVX contains many more instructions
• Comparison operations on vectors
• Masked operations

Allows vectorization of many algorithms
• Vectorization is not guaranteed to improve performance
• Generally, compute-heavy algorithms benefit greatly from vectorization
• Algorithms with a lot of fine-grained branching or many loads and stores may

not benefit
• Vectorization is always an optimization that should not be applied

prematurely

777



Miscellaneous Template Metaprogramming

Template Metaprogramming

Templates can be used for meta-programming at compile time.
• Template specializations can be used to select different types depending on

template arguments
• Recursive templates can be used for basic “control flow”
• The standard library defines several useful templates in <type_traits>
• All types and values are generated at compile time, so can be used as

constants or template parameters

778



Miscellaneous Template Metaprogramming

Type Traits

Type traits can be used to analyze properties of arbitrary types:
constexpr bool a = std::is_arithmetic_v<int>; // true
constexpr bool b = std::is_class_v<int>; // false
constexpr bool c = std::is_class_v<std::vector<int>>; // true
constexpr bool d = std::is_move_assignable_v<std::vector<int>>; // true

They can also be used to generate new types:
using T1 = std::remove_reference_t<int&>; // T1 is int
using T2 = std::add_pointer_t<int>; // T2 is int*
// T3 is const std::vector<int>&
using T3 = std::add_const_t<std::add_lvalue_reference_t<std::vector<int>>>;
// my_uintptr_t is uint64_t on systems where the size of void* is 8 bytes,
// or uint32_t otherwise.
using my_uintptr_t =

std::conditional_t<sizeof(void*) == 8, uint64_t, uint32_t>;

779



Miscellaneous Template Metaprogramming

Using Type Traits

Using type traits can prevent code duplication. Common example: const and
non-const versions of an iterator.

template <typename T>
class Container {

private:
template <bool isConst>
class Iterator {

public:
using reference = std::conditional_t<isConst, const T&, T&>;
// [...]

};

public:
using iterator = Iterator<false>;
using const_iterator = Iterator<true>;

};

780



Miscellaneous Template Metaprogramming

Implementing Type Traits

Some of the templates from <type_traits> are “magic” and cannot be
implemented in pure C++ without compiler support.

Still, many can be implemented by using template specializations:
// By default, my_remove_pointer just gives back T
template <typename T>
struct my_remove_pointer { using type = T; };
// Use template specialization that is only selected for pointer types
// and declare type to be T without the pointer.
template <typename T>
struct my_remove_pointer<T*> { using type = T; };
template <typename T>
using my_remove_pointer_t = typename my_remove_pointer<T>::type;

781



Miscellaneous Template Metaprogramming

Substition Failure Is Not An Error (SFINAE)

• When a template is instantiated, the template arguments are substituted
everywhere the template parameter is used (e.g. T is replaced by int)

• This can lead to invalid code → Substitution Failure
• In some cases, substitution failures do not lead to a compile error!
• This is necessary to enable overloaded template functions
• Can be (ab)used for meta programming (see std::enable_if)

template <typename T>
T::value_type foo(const T& values) { /* ... */ }

int foo(int a) { return a + 1; }

foo(123); // Is this a compile error?
// This is invalid code:
int::value_type foo(const int& values) { /* ... */ }
// Because of SFINAE, only int foo(int) is considered as overload

782

https://en.cppreference.com/w/cpp/language/sfinae


Miscellaneous Additional C++20 Features

The C++20 Standard

C++20 is the latest release of the C++ standard
• Adds some very cool features to the C++ standard
• We already covered many of the well-supported new features throughout this

course (e.g. concepts)
• In the following we will give an overview of additional potentially very useful

features

Compiler support for these features is improving although still intermittent
• Some features (e.g. modules) are not yet implemented completely by some

compilers
• Some features (e.g. coroutines) may be implemented but affected by compiler

bugs
• In any case: Use the latest compiler version available to you

783

https://en.cppreference.com/w/cpp/compiler_support


Miscellaneous Additional C++20 Features

Coroutines (1)

Regular function calls are strictly nested
• A function call suspends execution of the calling function, and resumes

execution at the start of the called function
• Eventually, the called function returns and execution of the calling function

resumes after the function call expression

Functions have state that has to be maintained across nested function calls
• Values of any local variables
• The instruction at which to resume execution after a function call
• Strict nesting of function calls allows for highly optimized state maintenance

on the stack
• Strict nesting of function calls makes implementing asynchronous operations

cumbersome

784



Miscellaneous Additional C++20 Features

Coroutines (2)

Coroutines are functions that can be suspended and resumed (almost) arbitrarily
• Suspending a coroutine transfers execution back to the caller
• Resuming a suspended coroutine continues execution at the point it was

suspended
• The state of a coroutine remains alive across suspensions (e.g. local variables)

Coroutines in C++ are implemented with the help of three new keywords
• co_await <expr>: Suspends the coroutine and returns control to the caller
• co_yield <expr>: Returns a value to the caller and suspends the coroutine
• co_return <expr>: Returns a value to the caller and finishes the coroutine

785

https://en.cppreference.com/w/cpp/language/coroutines


Miscellaneous Additional C++20 Features

Coroutines (3)

Coroutines look like sequential code that is executed asynchronously

ThreadPool pool;

Task<> work(...) {
// Executed on the calling thread
doSomeWork(...);

// Suspend the coroutine and schedule it for resumption
// on the thread pool. Control returns immediately to
// the caller of the coroutine.
co_await pool.schedule();

// Executed on a thread from the thread pool
doSomeMoreWork(...);

}

786



Miscellaneous Additional C++20 Features

Coroutines (4)
Coroutines can be used to implement lazy generators

#include <iostream>

Generator<int> iota(int n = 0) {
while (true)

// Return a value to the caller and suspend the
// iota coroutine
co_yield n++;

}

Task<> work() {
auto generator = iota();
for (size_t i = 0; i < 10; ++i)

// Resume the iota coroutine to retrieve the
// next value from the generator
std::cout << co_await generator << std::endl;

}

787



Miscellaneous Additional C++20 Features

Coroutines (5)

Coroutines can be used to implement asynchronous IO

Task<> work(Socket socket) {
while (true) {

// Suspend the coroutine until data becomes available
auto incoming = co_await socket.receive_async(...);

// Do some work with the received data
auto outgoing = doSomeWork(incoming);

// Suspend the coroutine until data has been sent
co_await socket.send_async(outgoing);

}
}

788



Miscellaneous Additional C++20 Features

Coroutines (6)

Unfortunately, C++ coroutines are currently quite painful to use
• There is not yet any “coroutine standard library”
• In order to actually use any of the coroutine keywords, we have to implement

a lot of (boilerplate) infrastructure ourselves
• The behavior of C++ coroutines is highly configurable through the details of

this infrastructure implementation
• Overall, it is quite difficult to implement working coroutines

Further complications that will (hopefully) improve over time
• Compiler bugs in the implementation of coroutines
• Suboptimal compiler error messages for coroutines
• Suboptimal debugger support for coroutines

789

https://en.cppreference.com/w/cpp/language/coroutines


Miscellaneous Additional C++20 Features

Modules (1)

Modules help structure large amounts of code into logical parts
• A module consists of multiple translation units called module units
• Module units can import other modules
• Module units can export certain declarations

Facilitates encapsulation of logically independent parts
• Exported declarations are visible to name lookup in translation units that

import the module
• Other declarations are not visible to name lookup

Reduces compilation overhead
• Exported definitions are compiled into easy-to-parse binary format
• No need to recursively parse transitive includes

790

https://en.cppreference.com/w/cpp/language/modules


Miscellaneous Additional C++20 Features

Modules (2)

Example
greeting.cpp

export module greeting;

import <string>;

export std::string getGreeting() {
return "Hello world!";

}

main.cpp
import greeting;
import <iostream>;

int main() {
std::cout << getGreeting() << std::endl;

}

791



Miscellaneous Additional C++20 Features

Designated Initializers

C++20 introduces designated initializers
• Allows explicit initialization of class members by name
• This was already possible in C and supported by many compilers
• C++20 now supports a subset of what is allowed in C

struct Foo {
int a;
int b;

};
Foo f{ .a = 1, .b = 2 };

792

https://en.cppreference.com/w/cpp/language/aggregate_initialization#Designated_initializers


Miscellaneous Additional C++20 Features

Bit Manipulation

The <bit> header introduces several functions for bit inspection and
manipulation.
• std::bit_cast: Inspect the object representation (instead of using
reinterpret_cast with potential undefined behavior)

• std::endian: Check the endianness of the system
• std::has_single_bit: Check if number is power of two
• std::bit_ceil, std::bit_floor: Find the next/previous power of two
• std::rotl, std::rotr: Rotate bits
• std::countl_zero: Count the number of consecutive zero bits starting

from the most significant bit
• std::popcount: Count the number of one bits
• ...

793

https://en.cppreference.com/w/cpp/header/bit


Miscellaneous Additional C++20 Features

Additional atomic types

C++20 introduces an atomic specialization of std::shared_ptr
#include <atomic>
#include <memory>

struct LargeObject {
char data[1000];

};
std::atomic<std::shared_ptr<LargeObject>> object;

void readThreadSafe() {
auto objectPtr = object.load();
if (objectPtr)

objectPtr->data; /* do something with objectPtr->data */
}

void replaceThreadSafe(std::shared_ptr<LargeObject> newObject) {
object.store(std::move(newObject));

}

794

https://en.cppreference.com/w/cpp/atomic/atomic


Miscellaneous Additional C++20 Features

More Features

C++20 introduces further small and large features, such as:
• std::source_location: Stores a location in the source code.
std::source_location::current() can be used to get the location of
the current line

• <numbers> header: Contains mathematical constants like
std::numbers::pi and std::numbers::e

• consteval and constinit: Behave like a “mandatory” constexpr
• More functions and classes in the standard library are constexpr
• Some restrictions of lambdas were removed, e.g. you can capture structural

bindings
• Non-type-template arguments can have a user-defined type
• ...

795


	Miscellaneous
	Tricks on x86-64
	Vectorization
	Template Metaprogramming
	Additional C++20 Features


