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Abstract

Recent developments in novel application areas like e-science, e-health, and e-business demon-
strate the increasing importance of processing data streams on-the-fly instead of storing the ever
increasing amount of, e. g., sensor generated data prior to processing. Efficient processing of data
streams can be achieved by employing optimization techniques like in-network query processing and
multi-subscription optimization, thus enabling data stream sharing in data stream management sys-
tems (DSMSs). On the basis of existing infrastructures for distributed computing like peer-to-peer
(P2P) networks and grid computing standards (OGSA), we present a novel approach for optimizing
the integration, distribution, and execution of newly registered continuous queries over data streams
in grid-based P2P networks. We introduce Windowed XQuery (WXQuery), our XQuery-based sub-
scription language for continuous queries over XML data streams supporting window-based operators.
Concentrating on filtering and window-based aggregation, we present our stream sharing algorithms,
describe our grid-based P2P implementation in the StreamGlobe project, and show experimental
evaluation results from the astrophysics application domain to assess our approach.

1 Introduction

Data stream processing is currently gaining importance due to the developments in novel application areas
like e-science, e-health, and e-business, e. g., considering RFID [BLHS05]. In e-science for example, it can
be observed that scientific experiments and observations in many fields, e. g., in physics and astronomy,
create huge volumes of data which have to be interchanged and processed. With experimental and
observational data coming in particular from sensors, online simulations, etc., the data has an inherently
streaming nature. The aim in e-science is to enable various researchers and research institutes to share
their research data, e. g., sensor measurements of complex experiments in physics or telescope observation
data in astronomy. This allows for resource sharing as well as multiple evaluation and analysis of data.
Furthermore, continuing advances will result in even higher data volumes, rendering storing all of the
delivered data prior to processing increasingly impractical. Also, transmitting all the data over physically
limited and therefore eventually congested network connections is a problem. This is especially true if
only small subsets of the data or some processing results—which usually constitute a much smaller data
volume than the input data—are actually needed. To enable efficient data sharing and processing, it is
imperative to reduce the huge amounts of data generated by scientific experiments and observations as
early as possible and to reuse computational results if appropriate. Thus, the transmission of unnecessary
data, the redundant transmission of data streams, the redundant execution of operators, and therefore
network and peer overload can be prevented. Hence, in such e-science scenarios as well as in many other
fields, processing and sharing of data streams will play a decisive role. It will enable new possibilities for
researchers, since they will be able to subscribe to interesting data streams of other scientists without
having to set up their own devices or experiments. This results in much better utilization of expensive

∗This research is supported by the German Federal Ministry of Education and Research (BMBF) within the D-Grid
initiative under contract 01AK804F and by Microsoft Research Cambridge (MSRC) under contract 2005-041.
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Figure 1: Example DSMS scenario

equipment such as telescopes, satellites, etc. Further, processing and sharing data streams on-the-fly in
the network helps to reduce network traffic and to avoid network congestion. Thus, even huge streams
of data can be handled efficiently by removing unnecessary parts early on, e. g., by early filtering and
aggregation, and by sharing previously generated data streams and processing results.

We propose data stream sharing as a new optimization technique addressing these issues. Data stream
sharing is based on two main optimization approaches. These are (1) in-network query processing for
distributing and executing newly registered continuous queries in the network and (2) multi-subscription
optimization for enabling the reuse and sharing of existing (parts of) data streams that were generated
to satisfy previously registered subscriptions.1

These optimizations are an integral part of our StreamGlobe system [SKK04, KSKR05]. To enable
them, we use peer-to-peer (P2P) networking techniques. P2P has gained a lot of attention in the context
of exchanging persistent data—in particular for file sharing. In contrast to that, we apply P2P networks
for the dissemination of individually subscribed and transformed data streams, allowing for data stream
sharing. By using the computational capabilities of peers in the P2P network, we can push data stream
transforming operators into the network, thus enabling efficient in-network query processing. This leads
to increased flexibility since any kind of peer can register arbitrarily complex queries regardless of its own
computational abilities. Furthermore, load balancing among peers and the reduction of network traffic
by employing early filtering and aggregation close to the data sources are enabled. At the same time,
multi-subscription optimization allows for data stream sharing and reuse of computational results among
various peers. This yields a reduction of both, network traffic and peer load. Ultimately, these optimiza-
tions improve overall performance as more clients subscribing to data streams can be accomplished. We
propose StreamGlobe as a prototype to meet the challenges described above in a generic distributed data
stream management system (DSMS). The StreamGlobe system architecture is based on a P2P overlay
network that is organized as a super-peer network [YGM03], i. e., peers are classified into super-peers
and thin-peers. Super-peers are powerful servers which form a stationary super-peer backbone network.
Thin-peers—often simply called peers in the following—are less powerful devices that can be registered
at a super-peer and deliver data streams or register queries in the network. The StreamGlobe implemen-
tation adheres to established grid computing [FK04] standards like the Open Grid Services Architecture
(OGSA) [FKNT02] and therefore fits seamlessly into existing e-science platforms. Peers in StreamGlobe
are implemented as collaborating grid services in the Globus Toolkit [Glo05] grid middleware. To ensure
interoperability, StreamGlobe is built on top of standards like XML and XQuery for representing data
streams and specifying subscriptions.

As a motivating example for the application of StreamGlobe, we introduce an astrophysical e-science
application. Consider Figure 1 which illustrates an exemplary network once without and once with data
stream sharing. Here, SP0 to SP7 are the super-peers that constitute the super-peer backbone network

1The terms query, continuous query, and subscription are treated as synonyms throughout this paper.
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<!ELEMENT photons (photon*)>

<!ELEMENT photon (coord, phc, en, det_time)>

<!ELEMENT coord (cel, det)>

<!ELEMENT cel (ra, dec)>

<!ELEMENT ra (#PCDATA)>

<!ELEMENT dec (#PCDATA)>

<!ELEMENT det (dx, dy)>

<!ELEMENT dx (#PCDATA)>

<!ELEMENT dy (#PCDATA)>

<!ELEMENT phc (#PCDATA)>

<!ELEMENT en (#PCDATA)>

<!ELEMENT det_time (#PCDATA)>
ra dec

cel

dx dy

det

coord phc en det time

photon*

photons

Figure 2: DTD of example data stream photons

and P0 to P4 are thin-peers. P0 is a satellite-bound telescope that detects photons and registers a data
stream called photons at super-peer SP4. This data stream contains real astrophysical data collected dur-
ing the ROSAT All-Sky Survey (RASS) [VAB+99] which we obtained through our cooperation partners
from the Max Planck Institute for Extraterrestrial Physics [MPE05].

In StreamGlobe, we deal with streams of XML data. Stream photons complies to a DTD of the
following structure. Each element in our example has an occurrence of exactly one. As its name implies,
the data stream delivers a stream of photons detected by the telescope’s photon detector. Each photon
in the data stream is represented by an XML element photon that incorporates the coordinates of the
corresponding photon (coord), the pulse height channel, i. e., the detector pulse caused by the photon
when hitting the detector (phc), the photon’s energy in keV (en), and the time of its detection in seconds
since the start of the observation (det time). The coordinates consist of the celestial coordinates of the
position in the sky where the photon was detected (cel) and the coordinates of the detector pixel where
the photon actually hit the detector (det). Celestial coordinates comprise the right ascension (ra) and
declination (dec) of a point in the sky, measured in degrees. Detector pixel coordinates simply contain
the two-dimensional coordinates of the respective pixel on the detector plain (dx, dy). The DTD of the
example data stream photons is shown in Figure 2, together with its tree structure.

For simplicity, we consider only one single data stream in our example. However, multiple data streams
can of course be registered at one or more super-peers in the network. Also note that while, except for
the photon element, each element in the example DTD occurs exactly once, more complex DTDs with
varying element occurrences (“?”, “+”, “*”, “|”) are also possible and can be handled accordingly.

Peers P1 to P4 in the example network are devices of astrophysicists used to register subscriptions in
the network referencing the available data stream as input. Subscriptions are registered using WXQuery,
our XQuery-based subscription language that will be introduced in detail in Section 3. We will only
consider Queries 1 and 2 of Figure 1 here. Queries 3 and 4 will be presented in Section 3. All queries
reference data stream photons as their single input. Query 1 (Q1) is shown in Figure 3 below.

<photons>

{ for $p in stream("photons")/photons/photon

where $p/coord/cel/ra >= 120.0

and $p/coord/cel/ra <= 138.0

and $p/coord/cel/dec >= -49.0

and $p/coord/cel/dec <= -40.0

return

<vela>

{ $p/coord/cel/ra } { $p/coord/cel/dec }

{ $p/phc } { $p/en } { $p/det_time }

</vela> }

</photons>

Figure 3: Query 1 (Q1)

This query selects an area in the sky that contains the vela supernova remnant and delivers the
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celestial coordinates, the pulse height channel, the energy, and the detection time of all the photons
detected in that area. The stream function was newly introduced by us and indicates a possibly infinite
data stream used as input to the query. Query 2 (Q2) is shown in Figure 4 below and filters a smaller
section of the sky.

<photons>

{ for $p in stream("photons")/photons/photon

where $p/en >= 1.3

and $p/coord/cel/ra >= 130.5

and $p/coord/cel/ra <= 135.5

and $p/coord/cel/dec >= -48.0

and $p/coord/cel/dec <= -45.0

return

<rxj>

{ $p/coord/cel/ra } { $p/coord/cel/dec }

{ $p/en } { $p/det_time }

</rxj> }

</photons>

Figure 4: Query 2 (Q2)

This query selects the area of the RXJ0852.0-4622 supernova remnant [Asc98] which is situated within
the area of vela. Note that the section of the sky selected by Query 2 is completely contained in the
section selected by Query 1. Also, Query 2 is only interested in photons having an energy value of at
least 1.3 keV.

We first consider Figure 1(a) which shows the traditional scenario of answering queries in the network.
The thickness of the arrows associated with the various network connections indicates the size of the data
streams transmitted over those connections. Each of the four queries in the system only needs a certain
part of the original data stream. However, in each case, the whole stream gets transmitted from the data
source to the peer that registered the query, leading to the transmission of unnecessary data. Since query
execution for each subscription takes place at the super-peer that the subscribing peer is connected to,
queries that perform the same operations on the same input data streams cause redundant execution of
operators. Note that this scenario already performs a basic form of data stream sharing by transmitting
a stream only once to a peer and forwarding it multiple times to various other peers if required.

Figure 1(b) shows the situation when using our stream sharing approach which answers newly reg-
istered subscriptions using (parts of) data streams already present in the network. These data streams
have been generated for satisfying previously registered continuous queries. We assume that Queries 1
to 4 have been registered one after another in ascending order in our example. Obviously, network traffic
and processing overhead can be significantly reduced by avoiding redundant transmissions and compu-
tations through sharing previously generated data streams. For example, when Query 1 is registered, its
execution can be pushed into the network and computed at SP4 instead of SP1. The result is then routed
to P1 via SP5 and SP1. When Query 2 is registered afterwards, it can reuse the stream constituting
the answer for Query 1 at SP5 because the result of Query 2 is completely contained in the answer for
Query 1. The result data stream of Query 1 is duplicated at SP5, yielding two identical streams. One is
used to answer Query 1, the other is filtered using the selection and projection of Query 2. This results
in a new stream that constitutes the result of Query 2 which is subsequently routed to P2 via SP7. More
details on this and the registration of Queries 3 and 4 will be set forth in Section 4.

The contributions presented in this paper comprise the following. First, we introduce Windowed
XQuery (WXQuery), our XQuery-based subscription language for continuous queries over XML data
streams enabling the formulation of queries including window-based aggregation operators. Then, we
develop a properties representation of data streams and subscriptions in the network. This representation
forms the basis for finding reusable streams enabling data stream sharing. Finally, we introduce a cost
model and algorithms for optimizing the evaluation of newly registered continuous queries in a P2P data
stream management system by sharing possibly preprocessed data streams.

The paper is organized as follows. In Section 2, we describe the problems of matching subscriptions
and data streams, and of suitably placing query operators in the network. Futhermore, we introduce
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a formal notion of data streams and data windows. In Section 3, we introduce WXQuery. Our new
data stream sharing approach is presented in Section 4. Section 5 gives an overview of our prototype
implementation and Section 6 shows some evaluation results. In Section 7, we present related work.
Section 8 concludes and states future work.

2 Preliminaries

In this section, we introduce and describe the problem dealt with in this paper as well as our notion of
data streams and data windows.

2.1 Problem Statement

Our goal is to efficiently integrate, distribute, and execute newly registered continuous queries over data
streams in P2P networks, thus reducing network traffic and peer load, avoiding network congestion and
peer overload, enabling load balancing among peers and network connections, and increasing flexibility in
terms of which peers can register which kinds of subscriptions. We employ a local optimization approach to
incrementally include new subscriptions in an existing network. Note that static multi-query optimization
on a set of subscriptions is a different problem that is not covered in this paper. However, if appropriate,
it could be used for periodic or event-based global reoptimization to complement our approach. The core
problem that has to be solved in order to achieve our goal is the discovery of reusable (parts of) data
streams. Solving this problem requires taking into account schema- or structure-based information, e. g.,
projections, as well as content-based information, e. g., selections, about subscriptions and data streams.
In order to enable the efficient comparison of subscriptions and data streams, we abstract from the textual
representation of the subscription and the data stream schema. Instead, we use a properties approach
introduced in Section 4.1 to gather the relevant properties of subscriptions and data streams. On this
basis, it is possible to compare the properties of a new subscription with those of existing data streams
in the network. In our approach, the contents of a data stream are represented by the properties of the
subscription generating the respective stream. Therefore, a subscription corresponds to a data stream,
i. e., the result data stream of that subscription, and vice versa. This implies that a subscription and its
corresponding result data stream are represented by the same properties. Consequently, subscriptions
and data streams are treated symmetrically in the following.

The super-peers of the overlay backbone network are connected according to some topology. The
contributions presented in this paper are independent of the actual topology used. Therefore, we do
not elaborate on this issue any further. For the validity of our approach it is, however, important that
there is a reasonable relation between the P2P overlay network we consider and the underlying physical
network. Optimization of network traffic on the overlay network must yield a corresponding optimization
benefit on the physical network. This implies, for example, that topological neighbor peers should also be
geographically close. An important question in this context is how to construct the overlay network on
the basis of an existing physical network in order to achieve such a reasonable relation. Similar problems
have already been examined [RHKS02]. However, solving this issue is not the scope of this paper.

In general, the above mentioned comparison of subscriptions and data streams will identify more than
one shareable stream for a given subscription. This leads to multiple possible evaluation plans. The
choice for one of those plans is made according to a cost function taking into account additional network
traffic and peer load caused by the new operators. The cost function will be introduced in Section 4.3.

2.2 Data Streams

Before dealing with data stream sharing, we first introduce our notion of a data stream in the context of
this work.

Definition 2.1 (Data Stream) A data stream S is an ordered sequence 〈s1, s2, . . . , sn〉 of data items
si with 1 ≤ i ≤ n and n ∈ N ∪ {+∞}. A value of n = +∞ indicates an infinite data stream. Only the
next data item arriving on the stream can be read from the stream at any time. After reading a data
item si from the stream, access to data item sj with j ∈ N and j ≤ i is not possible any more. �
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Figure 5: Example of an item-based data window with window size 4 and step size 2

Data streams in our context are possibly infinite streams of XML data. Each stream consists of a
sequence of XML elements called data stream items. The sequence of data stream items is enclosed in
a data stream root element. The data stream root element can only have one single subelement in the
schema or DTD of the stream, namely the root element of a data stream item. This element can and
generally will have multiple occurrences. The structure of a data stream item is arbitrary. In the DTD
of our example data stream photons of Figure 2, the data stream root element is photons and the data
stream items are the XML subtrees rooted at the photon elements. Note that the opening photons tag
marks the beginning of the corresponding data stream while the closing photons tag marks its ending.
The stream contains a possibly infinite sequence of photon elements. A data stream can be referenced
via a stream node, corresponding to a document node in standard XML.

The order of the data objects in a data stream depends on the sorting of the stream. A data stream
can deliver its data stream elements either sorted according to a certain order or unsorted.

Definition 2.2 (Sorting) A data stream S = 〈s1, s2, . . . , sn〉 is called sorted according to an order �,
if and only if:

∀i, j ∈ N ∪ {+∞} : i < j ⇔ si � sj �

Note that the order of data stream items as they are produced and sent out on the stream by the data
source implies a stream order corresponding to the document order of persistent XML files.

2.3 Data Windows

For being able to execute stateful operators like aggregations over possibly infinite data streams, we
employ a window-based approach. The contents of a data stream are partitioned into a sequence of data
windows and the contents of each data window can subsequently be processed, e. g. by computing an
aggregate value over the window contents. In accordance with the literature, we distinguish two variants
of data windows. These are item-based data windows and time-based data windows.

2.3.1 Item-based Data Windows

Item-based data windows have a fixed size in terms of the number of items contained in the window.
Items are inserted into the window as they arrive in the data stream. As soon as the window is full, the
processing of the window contents starts. This can be as simple as writing the window contents to the
output stream, which basically corresponds to grouping the data stream. However, it can also involve
a more complex computation like an aggregation. After processing the window contents, the window is
updated. The update is performed by sliding the window, leading to the removal of some items from the
window contents and to the addition of some new items arriving in the data stream. In an item-based
data window, the step size of the window, i. e., the amount by which the window slides along, is given in
terms of the number of items that need to be removed from the window contents and replaced by new
ones read from the data stream during an update. Data items are removed from the window contents
according to a FIFO strategy. An example for an item-based data window with window size 4 and step
size 2 is shown in Figure 5. The bullets in the figure indicate data items arriving on the stream.

Definition 2.3 (Item-based Data Window) Formally, the k-th item-based data window W count
k with

window size Δ and step size μ on a data stream S is defined as follows:

W count
k (Δ, μ) := {si ∈ S | 1 + (k − 1) · μ ≤ i ≤ Δ + (k − 1) · μ} �
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Figure 6: Example of a time-based data window with window size 4 and step size 2

2.3.2 Time-based Data Windows

Time-based data windows are not organized by the number of items contained in them but by the value
of a certain subelement which is called the reference element of the window. A data item is contained
in the window if and only if its reference element value is greater than or equal to the lower bound and
less than the upper bound of the window. This implies that there must be a total order defined on the
values of the reference element and that the lower and upper bounds of the window must be defined
in terms of the data type of the reference element. In this paper, we will always assume integer values
for the window bounds and the reference element value. Note that the reference element value does not
necessarily need to be a real time value. Rather, it suffices if it is an abstract time value which basically
can be any value of a totally ordered set of values. Also note that, for time-based windows to work
properly on data streams, the reference element values of subsequent data stream items in a data stream
must be monotonically increasing. The step size of a time-based data window then indicates the amount
by which the lower and upper bounds of the window need to be increased during updating the window.
All elements with reference element values less than the new lower bound are subsequently removed from
the window while all new elements arriving in the data stream with reference element values greater
than or equal to the new lower bound and less than the new upper bound are inserted into the window.
When the data window is completely filled, i. e., all data items with reference element values satisfying
the above condition have been inserted, the window contents can be processed and the window can be
updated again. An example for a time-based data window with window size 4 and step size 2 is given in
Figure 6. Again, the bullets in the figure indicate data items arriving on the stream.

Definition 2.4 (Time-based Data Window) Formally, the k-th time-based data window W diff
k with

reference element r, window size Δ, and step size μ on a data stream S is defined as follows:

W diff
k (r, Δ, μ) := {si ∈ S | s1.r + (k − 1) · μ ≤ si.r < s1.r + Δ + (k − 1) · μ}

Reference element values r are monotonically increasing:

∀si, sj ∈ S : i < j ⇒ si.r ≤ sj .r �

3 The WXQuery Subscription Language

In StreamGlobe, subscriptions over XML data streams are registered using a subscription language called
Windowed XQuery (WXQuery). WXQuery is a fragment of XQuery [W3C05c] that has been augmented
with support for window-based operators.

In Definition 3.1 below, α and β are WXQuery expressions and χ denotes a condition. A tag name is
denoted by t. Further, $x and $y are variables representing XML trees, where $y can also start with a
function call to reference a document node or the stream node of a data stream like stream("photons") in
the example subscriptions. A variable representing the result of a window-based aggregation operation is
denoted by $a. The variable $z can represent any of the three kinds of variables $x, $y, or $a as described
above. We use π to denote a relative path that only employs the child axis (“/”). It does not include
wildcards (“*”), conditions (“[p]”), or other axes (e. g., “//”). A relative path π differs from π in that it
can also contain conditions. An aggregation operator is denoted by Φ, i. e., Φ ∈ {min, max, sum, count, avg}.
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Expressions enclosed in [[ ]]?, [[ ]]∗, or [[ ]]+ in the definition are optional, can occur zero or more times,
or can occur one or more times, respectively. A vertical bar (|) indicates an alternation. An expression
of the form αi1,...,in represents a WXQuery expression from a restricted set of expressions. For example,
α1,2 stands for any one of the two element constructor expressions numbered 1 and 2 in the definition
below and α3,4,5,6,7 stands for any one of the remaining expressions numbered 3 to 7.

Definition 3.1 (WXQuery) The WXQuery subscription language comprises all subscriptions that con-
sist only of the following expressions:

1. <t/>
(empty direct element constructor)

2. <t> [[α1,2 | {α3,4,5,6,7}]]∗ </t>
(direct element constructor)

3. [[for $x in $y[[/π]]?[[|count Δ [[step μ]]?| | |π diff Δ [[step μ]]?|]]? |
let $a := Φ($y[[/π]]?)]]+

[[where χ]]?

return α
(FLWR expression)

4. if χ then α else β
(conditional)

5. $y/π
(output of subtrees reachable from node $y through path π)

6. $z
(output of subtree rooted at node $z)

7. ([[α[[,β]]∗]]?)
(sequence) �

The WXQuery EBNF grammar is shown in Appendix B on page 40. The FLWR expression in the
WXQuery definition introduces our new syntax for expressing data windows, e. g., for use with window-
based aggregation operators. Query 3 (Q3) in the network of Figure 1 is an example for the use of such
an operator. The query is shown in Figure 7 below.

<photons>

{ for $w in stream("photons")/photons/photon

[coord/cel/ra >= 120.0 and

coord/cel/ra <= 138.0 and

coord/cel/dec >= -49.0 and

coord/cel/dec <= -40.0]

|det_time diff 20 step 10|

let $a := avg($w/en)

return <avg_en> { $a } </avg_en> }

</photons>

Figure 7: Query 3 (Q3)

Query 4 (Q4) employs a different window and is shown in Figure 8 below.
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<photons>

{ for $w in stream("photons")/photons/photon

[coord/cel/ra >= 120.0 and

coord/cel/ra <= 138.0 and

coord/cel/dec >= -49.0 and

coord/cel/dec <= -40.0]

|det_time diff 60 step 40|

let $a := avg($w/en)

where $a >= 1.3

return <avg_en> { $a } </avg_en> }

</photons>

Figure 8: Query 4 (Q4)

The definition of a data window is enclosed in “|” characters. Item-based windows—indicated by the
keyword count—contain a fixed number of items given by the numeric value of Δ. Optionally, a step
size μ determining the update interval of the data window can be specified. For example, the window
|count 20 step 10| defines a data window that always contains 20 data items and, during each update,
removes the 10 oldest entries from the window while adding the next 10 new data items arriving in the
stream. If omitted, the step size defaults to the value of Δ, meaning the contents of the window are
completely replaced by new ones during each update.

The situation is analogous for time-based windows, except that Δ indicates the size of the window
in time units and the step size indicates the time interval between two successive data windows. Again,
the step size defaults to Δ if omitted. Time-based windows can only be applied on data streams that are
sorted according to the values of particular reference element that is used to control the window. This
premise could be somewhat relaxed to a fuzzy order by requiring that a fixed sized buffer is sufficient to
derive the total order. An example for a time-based window is |det time diff 60 step 40| in Query 4.
Note that the path inside the window is not meant to be evaluated yielding a sequence as defined by the
conventional XQuery semantics. Rather, it specifies the reference element controlling the window. The
path to the reference element is specified relative to the context node of the data window.

It is worth pointing out that data windows as introduced above could also be expressed using con-
ventional XQuery syntax. Compare for example the WXQuery specifying an item-based data window in
Figure 9 with a possible equivalent formulation in standard XQuery in Figure 10. The window construc-
tion in standard XQuery is handled by a recursive function cwin that returns the next window each time
the function is called. An example for a query with a time-based data window is shown in Figures 11
and 12, respectively. Again, a recursive function dwin is used for window construction in XQuery. The
reasons why we introduced a new window syntax in WXQuery are twofold.

• First, as can be seen from the examples, the new syntax is much less verbose and easier to read
than the standard syntax.

• Second, the semantics of the recursive function in standard XQuery requires reading the whole
input data before starting to build the first window. This blocking behavior is not applicable when
dealing with possibly infinite data streams. Therefore, the new window syntax in WXQuery is also
meant to express the streaming nature of the query and of query processing.

Note that in the standard XQuery syntax, an explicit root element for each data window is introduced.
It shows up as a direct element constructor in the recursive functions of Figures 10 and 12, constructing
an element cw or dw enclosing the window contents, respectively.

for $w in doc("data.xml")/a/b|count 4 step 2|

return

<result>

<win> { $w } </win>

</result>

Figure 9: WXQuery with item-based data window
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declare function local:cwin($count as xs:integer,

$step as xs:integer,

$data as node()*) as node()*

{

let $cwin := fn:subsequence($data, 1, $count)

let $tail := fn:subsequence($data, $step + 1)

return

if (fn:count($data) < $count) then

()

else

if (fn:count($data) = $count) then

(<cw> { $cwin } </cw>)

else

(<cw> { $cwin } </cw>, local:cwin($count, $step, $tail))

};

for $x in doc("data.xml")/a

return

<result>

{ for $w in local:cwin(4, 2, $x/b)

return

<win> { $w/* } </win> }

</result>

Figure 10: XQuery with item-based data window

for $w in doc("data.xml")/a/b|c diff 4 step 2|

return

<result>

<win> { $w } </win>

</result>

Figure 11: WXQuery with time-based data window

The query formulations in standard XQuery also make explicit the behavior when reaching the end
of a finite input stream. The end of a stream is indicated by an end of stream message, i. e. a closing
stream root element tag. Three different semantics are possible in such a case.

Cut The cut semantics only returns data windows that are guaranteed to contain all relevant data. In
the case of an item-based data window, this means that the final data window is not returned if
it contains less data elements than specified by the window size. In the case of a time-based data
window, processing terminates whenever the final data item arriving in the input stream enters the
current data window. The corresponding data window is not returned. This implies that the cut
semantics can lead to some items at the end of the data stream never being returned as the contents
of a window. The XQueries of Figures 10 and 12 yield this semantics.

Gather The gather semantics gathers all remaining data items at the end of a data stream in one final
window and returns this window before terminating. In the case of an item-based window, this can
cause the final window to contain less elements than specified by the window size. In the case of
a time-based window, the final window returned is the first window containing the final data item
of the input data stream. The XQueries of Figures 28 and 30 in Appendix A on page 37 yield this
semantics.

Run The run semantics continues to construct and return data windows until the final data item from
the input data stream leaves the current data window during updating the window contents. All
non-empty data windows up to that point are returned before terminating processing. This causes
the windows to run empty when reaching the end of the input data stream. Therefore, in the case of
item-based data windows, this semantics can lead to the final (Δ− 1)/μ� windows containing less
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declare function local:dwin($start as xs:integer,

$diff as xs:integer,

$step as xs:integer,

$data as node()*,

$refs as node()*) as node()*

{

let $dwin := for $i in $data

let $ds := for $d in $i/descendant-or-self::node()

where some $r in $refs satisfies $r is $d

return $d

where $ds >= $start and $ds < $start + $diff

return $i

let $tail := for $i in $data

let $ds := for $d in $i/descendant-or-self::node()

where some $r in $refs satisfies $r is $d

return $d

where $ds >= $start + $step

return $i

return

if (fn:count($dwin) = fn:count($data)) then

()

else

(<dw> { $dwin } </dw>, local:dwin($start + $step, $diff, $step, $tail, $refs))

};

for $x in doc("data.xml")/a

return

<result>

{ for $w in local:dwin(0, 4, 2, $x/b, $x/b/c)

return

<win> { $w/* } </win> }

</result>

Figure 12: XQuery with time-based data window

data items than specified by the window size. The XQueries of Figures 29 and 31 in Appendix A
on page 37 yield this semantics.

We use the cut semantics for item-based data windows and the run semantics for time-based data windows
in our StreamGlobe implementation. Note that the handling of the end of a finite data stream is an issue
that is dealt with here for the sake of completeness. It does, however, not affect the processing of a
running stream before reaching the end of the stream.

The let construct of WXQuery is constrained compared to ordinary XQuery as it is only used to
assign to a variable a singleton aggregation result value. Conditions in our context, whether they appear
in a where clause (“χ”) or within a path (“[p]”), are predicates that consist of atomic predicates. A
predicate is either a single atomic predicate or a conjunction of atomic predicates. Atomic predicates
can be of the form $v θ c or $v θ $w + c, where $v and $w represent paths of the form π, c represents a
constant value, and θ ∈ {=, <,≤, >,≥}. Constant values can be negative and are either integer values
or decimal values with a finite number of decimal places.

Since we concentrate on filtering, i. e., selection and projection, and window-based aggregation opera-
tors, the subscriptions we consider in this paper always have one single input data stream. Furthermore,
we restrict ourselves to queries with a single for loop in the context of this paper. Support for more
complex queries is part of future work. Restructuring, e. g., introducing new elements, reordering or
renaming output elements, etc., is done in a post-processing step at the super-peer that is connected to
the peer that registered the subscription. The result of the post-processing is delivered to the final desti-
nation and is not considered for reuse in the network. Therefore, in the case of subscriptions employing
only selection and projection operators, the schema of a data stream generated during in-network query
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Figure 13: Abstract properties of Query 1
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Figure 14: Abstract properties of Query 2

processing can differ from the schema of the corresponding original data stream only by some missing
elements which have been removed by a projection operator. Selection operators do not affect the data
stream schema at all. Any other more complex data stream schema transformations are postponed to
the post-processing step. The only exception are subscriptions containing aggregate operators. In this
case, a result data stream with a generic schema is produced by in-network query processing. The generic
schema consists of a generic enclosing element for each data stream item in the result data stream and
one generic subelement for each aggregate value computed in the subscription. Since attributes in XML
data can be converted into corresponding elements, we restrict ourselves to dealing with elements.

4 Data Stream Sharing

This section introduces our properties approach for representing subscriptions and data streams, share-
ability and dependency relations between the properties of subscriptions and data streams, our cost model,
and the algorithms for finding, comparing, and choosing an appropriate stream for satisfying a new sub-
scription. Furthermore, the handling of window-based aggregation operators and some optimizations and
extensions that improve the effectiveness and applicability of our approach are presented.

4.1 Properties

Subscriptions and data streams are treated symmetrically in our context. This is due to the fact that
a subscription can always be seen as producing a result data stream and a data stream can always be
seen as the result of a subscription. Therefore, subscriptions and data streams are also represented by
the same properties data structure.

The properties of subscriptions and data streams consist of three parts and describe how the associated
(result) data stream was generated. Simplified schematic illustrations of the properties of Queries 1 to 4
from Section 1 are shown in Figures 13 to 16. A subscription or data stream is described by a set of original
input data streams, a set of operators for each input data stream used to transform the respective input
data stream into the represented (result) data stream and, for each operator, a set of conditions specifying
the operator, i. e., selection predicates, projection elements, data window specifications, or aggregation
operators together with the identifier of the corresponding aggregated element. Predicates, e. g., selection
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Figure 15: Abstract properties of Query 3
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Figure 16: Abstract properties of Query 4

predicates, are stored using a graph representation as shown in Figures 13 to 16. This representation will
be introduced in more detail in Section 4.4.3. Data windows for window-based aggregation operators are
also stored in a specific format that contains the ordered reference element (only for time-based windows),
the window type (count or diff), the window size (Δ) and the step size (μ).

The properties of a newly registered subscription are obtained by parsing the (W)XQuery subscription
and translating it into its corresponding (W)XQueryX [W3C05b] representation. From this representa-
tion, which is a standard XML file, the necessary information to be stored in the properties data structure
is extracted using XPath [W3C05a]. The properties approach as described here supports queries with
multiple input data streams and without nesting. An extended and more flexible properties structure
which supports nested queries and enables an even more effective optimization is part of future work.

Note that the properties as described above serve two purposes. First, they represent the parts of the
originally queried input data streams that are needed by the corresponding subscription. Second, they
describe the contents—relative to the contents of the input data streams—of the data stream produced
as a result of that subscription. Also note that properties do not need to represent transformation details
like the exact structure of query results as stated in a query’s return clause.

4.2 Shareability and Dependency Relations

In order for a subscription to be able to reuse an existing data stream in the network, the data stream
to be reused must fulfill certain properties, i. e., it must contain all the necessary information needed for
satisfying the subscription.
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Definition 4.1 (Shareability Relation) The shareability relation �sr is defined on a set of subscrip-
tion and data stream properties. For two subscription or data stream properties p and p′, p′ �sr p
indicates that the data stream represented by p can be used as input to satisfy the subscription repre-
sented by p′. For the shareability relation to be fulfilled, both properties must reference the same original
input data stream. Furthermore, for selection operators, the selection predicate σ′

p of p′ must imply the
selection predicate σp of p, i. e., σ′

p ⇒ σp. For projection operators, the set R′ of elements referenced
in p′ must be a subset of the set of output elements R of p, i. e., R′ ⊆ R. Finally, for window-based
aggregation operators, the aggregation operator and any pre-aggregation selection predicates must be
equal. Furthermore, any selection on the aggregation result must fulfill the same condition as described
for selection operators above. Eventually, the data windows defined in p and p′ must be compatible. Let
W be the data window defined in p with a window size of Δ and a step size of μ. Let W ′ be the data
window defined in p′ with a window size of Δ′ and a step size of μ′. Then, W and W ′ are compatible
according to our definition if they have the same window type (item-based or time-based), are defined
on the same element, use the same reference element (only for time-based windows), and the following
three conditions hold:

• Δ′ mod Δ = 0

• Δ mod μ = 0

• μ′ mod μ = 0 �

Theorem 4.1 The shareability relation defines a strict partial order. �

Proof We need to prove that �sr is an irreflexive, antisymmetric, and transitive relation on a set of
properties. Let p, p′, and p′′ be the properties of three subscriptions or data streams.

Irreflexivity (¬(p �sr p)):
The irreflexivity of the shareability relation arises from the fact that the set R of elements referenced in
p is not a subset of the set R of output elements in p, i. e. ¬(R ⊆ R). Instead, R ⊆ R always holds.
Furthermore, the window condition Δ mod μ = 0 does not necessarily hold for an arbitrary p. Note that
the shareability relation would become reflexive and therefore a weak partial order if only subscriptions
with R = R and, for each data window defined in the subscription, Δ mod μ = 0 were allowed.

Antisymmetry (p �sr p′ ∧ p′ �sr p⇒ p = p′):
The antisymmetry of the shareability relation readily follows from its irreflexivity and transitivity. Nev-
ertheless, we present a detailed proof here. First, p �sr p′ ∧ p′ �sr p implies that p and p′ reference the
same input data stream. For selection operators, it yields that σp ⇒ σp′ ∧ σp′ ⇒ σp, i. e., σp ⇔ σp′ . For
projection operators, we have R ⊆ R′ ∧ R′ ⊆ R. Since we also have R ⊆ R ∧ R′ ⊆ R′, it follows that
R ⊆ R′ ⊆ R′ ⊆ R ⊆ R and therefore R = R = R′ = R′. Finally, for window-based aggregation operators,
it remains to be shown that W = W ′. Since Δ mod Δ′ = 0∧Δ′ mod Δ = 0, we have Δ = Δ′. Similarly,
from μ mod μ′ = 0 ∧ μ′ mod μ = 0 follows μ = μ′. Therefore, we immediately have W = W ′, since the
remaining properties of both windows must be equal due to p �sr p′ ∧ p′ �sr p.

Transitivity (p �sr p′ ∧ p′ �sr p′′ ⇒ p �sr p′′):
From p �sr p′ ∧ p′ �sr p′′ follows that p, p′, and p′′ all reference the same input data stream. For
selection operators, the transitivity of predicate implication yields (σp ⇒ σp′ ∧σp′ ⇒ σp′′ )⇒ (σp ⇒ σp′′).
For projection operators, we have R ⊆ R′ ∧ R′ ⊆ R′′. Because of R′ ⊆ R′, the transitivity of the sub-
set relation yields R ⊆ R′′. Finally, it remains to be shown that a data window W in p with window
size Δ and step size μ can reuse a data window W ′′ in p′′ with window size Δ′′ and step size μ′′. Be-
cause of p �sr p′ ∧ p′ �sr p′′ we know that Δ mod Δ′ = 0 ∧Δ′ mod Δ′′ = 0. This immediately yields
Δ mod Δ′′ = 0. Similarly, μ mod μ′ = 0∧μ′ mod μ′′ = 0 immediately yields μ mod μ′′ = 0. Furthermore,
because of p′ �sr p′′, the condition Δ′′ mod μ′′ = 0 holds for the data window defined in p′′.

The shareability relation �sr is not a total relation. For a counter-example, consider Queries 2 and 3
of Sections 1 and 3, respectively. Their properties are incomparable according to �sr, i. e., ¬(pQ2 �sr

pQ3) ∧ ¬(pQ3 �sr pQ2). This is due to the fact that Query 3 is an aggregating query that returns an
aggregate value which cannot be shared by the non-aggregating Query 2. Furthermore, the selection
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Q1

Q2 Q3

Q4

Figure 17: Shareability graph for Queries 1 to 4

predicates of the selection operators in Query 2 are more strict than those in Query 3, causing the result
data stream of Query 2 not to contain all the necessary data for Query 3. �

The shareability relation can be visualized as a shareability graph.

Definition 4.2 (Shareability Graph) A shareability graph Gsg is a directed graph Gsg = (Vsg , Esg)
with a set of vertices Vsg and a set of edges Esg. A vertex in the graph represents the properties of a
subscription or a data stream, respectively. A directed edge from one vertex to another indicates that
the (result) data stream represented by the source vertex of this edge can be shared to satisfy the query
represented by the target vertex of this edge. �

The shareability graph for Queries 1 to 4 in the example network of Figure 1(b) is shown in Figure 17.
Queries 2, 3, and 4 can share the result of Query 1. Furthermore, Query 4 can also share the result of
Query 3. Note that the shareability relation between Queries 1 and 4 is not shown as an explicit edge
between pQ1 and pQ4 in the graph since it is implied by the transitivity of the shareability relation.

Definition 4.3 (Dependency Relation) The dependency relation �dr is a restriction of the share-
ability relation including only those pairs of properties that depend on each other in an actual system
state. For two subscription or data stream properties p and p′, p′ �dr p indicates that the data stream
represented by p is actually used as input to satisfy the subscription represented by p′. �

Theorem 4.2 The dependency relation defines a strict partial order. �

Proof The proof follows directly from the definition of the dependency relation and Theorem 4.1. �

The dependency relation can be visualized as a dependency graph.

Definition 4.4 (Dependency Graph) A dependency graph Gdg is a directed graph Gdg = (Vdg, Edg)
with a set of vertices Vdg and a set of edges Edg. A vertex in the graph represents the properties of a
subscription or a data stream, respectively. A directed edge from one vertex to another indicates that
the (result) data stream represented by the source vertex of this edge is actually shared to satisfy the
query represented by the target vertex of this edge. �

The set of vertices of a dependency graph is the same as the set of vertices of the corresponding shareability
graph. The set of edges of a dependency graph is a subset of the set of edges of the corresponding
shareability graph. For the example network state of Figure 1(b), the dependency graph is identical with
the shareability graph shown in Figure 17.

4.3 Cost Model

We now introduce the cost model used in our optimizations. The cost function C focuses on the amount
of additional network traffic and peer load caused by answering a new subscription. Other parameters,
e. g., latency of network connections, could easily be added. To define C, we need to introduce some
notation. Let p be the properties of a new continuous query q that is to be registered in the network.
Then size(p) denotes the average size of one data stream item (e. g., one photon) of the stream represented
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by p. Let Pq be the set of properties of all input data streams of q, occ(ns) the average occurrence and
size(ns) the average size of element ns in the input stream represented by properties s, and Πps the set
of projection elements of p concerning the input stream represented by s. Then, for a subscription that
only contains selection and projection operators, size(p) is calculated using the following formula:

size(p) :=
∑
s∈Pq

⎛
⎝size(s)−

∑
ns /∈Πps

(
occ(ns) · size(ns)

)⎞⎠
Note that, in the above formula, size(p) denotes the average size of one data stream item in the stream
represented by p, e. g., one photon element in stream photons, whereas size(ns) denotes the average size
of one subelement ns, e. g., the phc subelement of a photon. For aggregate queries, the result data stream
is a stream of aggregate result values. The average result data stream size is therefore independent of
the input stream size in this case and is computed as the size of the computed aggregate values and
their surrounding element tags. For queries returning the contents of data windows, the average size of
a data window needs to be determined. For item-based data windows this can be done by multiplying
the window size with the average size of the items contained in the window and adding the sizes of the
enclosing window tags. For time-based data windows this works analogously except that the average
number of data items contained in a window must be estimated as the product of the input stream
frequency and the window size.

The average frequency of data items in the stream represented by p is denoted by freq(p). With
sel(σp) denoting the selectivity of the subscription represented by p, freq(p) can be computed as follows:

freq(p) := sel(σp) ·
∑
s∈Pq

freq(s)

Note that the expression
∑

s∈Pq
freq(s) in this formula depends on the semantics of the employed op-

erators in q. The above formula is valid for selection operators. Projection operators do not influence
freq(p). For window-based queries, freq(p) depends on the step defined for the data window and the
average frequency of the input data stream. For item-based data windows, freq(p) corresponds to the
frequency of the corresponding input data stream divided by the step size μ of the data window. For
time-based data windows, freq(p) depends on the distribution of the values of the reference element. To
be able to estimate the frequency of the result data stream in such a case, we keep track of the average
increment of the reference element value between two successive data items arriving in the stream. Divid-
ing the step size μ of the time-based data window by this average increment yields the average number
of data items that need to be read from the stream before the window update is complete. Then, as with
item-based data windows, the frequency of the input data stream is divided by this estimated number of
data items to obtain the estimated average frequency of the result data stream.

Introducing b(e) as the maximum bandwith of a network connection e, we can characterize the relative
amount ub(e) of bandwith of e used by the additional data streams routed over e for answering q using
the following formula:

ub(e) :=

∑
p∈Pe

(
size(p) · freq(p)

)
b(e)

Here, Pe denotes the set of properties of all additional data streams added over e to answer q.
The average computational load caused by an operator o on a peer v with a set of input stream

properties Po is denoted load(o, v, Po). The maximum load of a peer v is represented by l(v). The relative
amount ul(v) of computational load on a peer v caused by the additional operators in Ov installed at v
for answering a new subscription can be computed as follows:

ul(v) :=

∑
o∈Ov

load(o, v, Po)
l(v)

Cost function inputs like average frequencies of data stream items, average sizes and occurences of
elements, and selectivities of operators are obtained from statistics and selectivity estimations. The
average load load(o, v, Po) of an operator o on a peer v with input stream properties Po depends on the
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performance of the executing peer, expressed by a performance index (pindex(v)), and the characteristics
of the operator itself. For example, assuming a linear dependency of the load caused by a selection
operator σ from the frequency freq(s) of its only input stream s, the average load caused by σ on a peer
v can be defined as load(σ, v, s) := bload(σ) · pindex(v) · freq(s). Here, bload(σ) represents a base load
factor for the selection operator. Factors like base loads of operators and performance indices of peers
as well as formulas for combining these factors yielding realistic load estimations have to be determined,
e. g., on the basis of reference values.

The cost function C is then defined as follows:

C(P) := γ ·
(∑

e∈EP

(
ub(e) + max(0, (ub(e)− ab(e))) · e(ub(e)−ab(e))

))
+

(1− γ) ·
(∑

v∈VP

(
ul(v) + max(0, (ul(v)− al(v))) · e(ul(v)−al(v))

))

In this function, P denotes the evaluation plan of the new subscription, i. e., the operators that have to be
installed, the peers on which they have to be installed, and the additional data streams that are generated
and routed through the network. Furthermore, EP is the set of network connections and VP is the set of
peers affected by plan P . A weighting factor γ ∈ [0, 1] determines, which part of the cost function should
be more dominant—network traffic or peer load. An exponential penalty is given for overload situations
on peers and network connections. The relative amount of available bandwith on network connection e
and of available computational load on peer v is represented by ab(e) and al(v), respectively. A plan
P is better than another plan P ′ according to cost function C, expressed by P ≺C P ′, if and only if
C(P) < C(P ′).

4.4 Stream Sharing Algorithms

We now describe our stream sharing algorithms for registering and efficiently satisfying new continuous
queries in P2P data stream management systems. The algorithms search for shareable data streams in
the network, compare the properties of new subscriptions with those of existing data streams, and decide
which streams to reuse at which peers.

4.4.1 Query Registration

The algorithm for continuous query registration searches for shareable data streams in the network and
decides if a certain available data stream can actually be shared for answering a new query by comparing
the corresponding properties. Further, it decides whether a newly found evaluation plan for the new
query is better than the previously best plan.

The algorithm is divided into four parts. The OptimizeQuery algorithm, which is shown in Algo-
rithm 1, describes the discovery of shareable data streams and the generation of corresponding query
evaluation plans. The MatchProperties and MatchPredicates algorithms which are detailed in
Algorithms 2 and 3 handle the matching of properties and predicates, respectively. Finally, the matching
of aggregation operators is dealt with in the MatchAggregations algorithm shown in Algorithm 4.
Beginning with Algorithm 1, the inputs pq and vq are the properties of the new subscription q and the
network node where q is registered, respectively. The output of the algorithm is the evaluation plan P ,
describing how the network has to be changed in terms of installed operators and routed data streams
in order to satisfy q. Note that there will always be at least one plan that is suitable for answering
q—provided that q refers to existing inputs—namely the plan using the originally registered versions of
q’s input streams. The goal of our approach is to find possibly transformed versions of these streams—
generated by projection, selection, or aggregation operators in the network for answering other continuous
queries—that can also be used to answer q, possibly by applying some further transformations.

Algorithm 1 starts with an empty plan P (line 1) and iterates over all input data streams of q (line
2). For each such input data stream, the algorithm performs some initialization tasks (lines 3–6). First, a
FIFO queue LV for network nodes (peers) and another queue LP for properties are initialized. Then, the
properties ps of the currently considered input data stream s and the network node where this input data
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Algorithm 1 OptimizeQuery

Input: The properties pq of the subscription q to be registered and the node vq where q is to be registered.
Output: A query evaluation plan P .

1: P ← ∅;
2: for all ps ∈ getInputDS(pq) do
3: LV ← ∅; LP ← ∅;
4: pb ← ps; vb ← getTNode(pb);
5: Ps ← generateP lan(pb, vb, vq);
6: add(LV , vb);
7: while LV �= ∅ do
8: v ← dequeue(LV ); mark(v);
9: for all data streams available at v that are variants of ps do

10: enqueue all associated properties in LP ;
11: end for
12: while LP �= ∅ do
13: p← dequeue(LP );
14: if MatchProperties(p, ps) then
15: n← getTNode(p);
16: if (¬(isMarked(n)) ∧ (n /∈ LV )) then
17: add(LV , n);
18: end if
19: P ′

s ← generateP lan(p, v, vq);
20: if P ′

s ≺C Ps then
21: pb ← p; vb ← v; Ps ← P ′

s;
22: end if
23: end if
24: end while
25: end while
26: unmark all nodes;
27: add(P ,Ps);
28: end for
29: return P ;

stream is registered are stored in pb and vb, respectively. The variables pb and vb represent the properties
of the currently best solution for the data stream chosen as input for satisfying q and the network node
where to find and reuse that stream. Installing the whole new subscription at the super-peer at which
it is registered and using the original input streams, routed to the subscription via shortest paths in the
network, is set as the initial evaluation plan. Therefore, the part of the query evaluation plan that deals
with input stream s, called Ps, is initially set to routing s from the peer where s is registered to the peer
where q is registered via a shortest path in the network and performing any query evaluation tasks on s
at the target peer. This plan is generated by means of the generateP lan function that takes as inputs
the properties pb of the data stream chosen for reuse, the node vb where to reuse that stream, and the
node vq where the query to be answered is registered and where the query result is needed. At each
time during the remaining execution of the algorithm, the current best plan for input data stream s is
represented by Ps. Note that the initial plan does not reuse any existing data streams in the network.
Finally, the start node vb of the search in the network is added as first node to LV .

If a subscription references more than one input stream, each stream is handled individually by the
subscription algorithm. The algorithm assures that at least the relevant parts of each input stream are
delivered to the super-peer connected to the peer that registered q. Any combination of input data
streams as demanded by the subscription is performed at this peer during the final post-processing step
and the result of this combination is not considered for reuse in the network. This is the same as with
any restructuring of the query result as described in Section 3.

18



After the initialization, the algorithm basically performs a breadth-first search in the network graph
for each input stream, starting at the node that corresponds to the super-peer at which the corresponding
original input stream of q is registered. Using LIFO queues for LV and LP instead of FIFO queues would
cause the algorithm to perform depth-first search which would be equally possible. The peers in LV are
dequeued one after another (line 8). Each peer in LV is marked in order to handle circles in the network
graph, i. e., consider each node at most once. For each dequeued peer, all unmarked properties of data
streams that are available at the currently handled peer and that are variants of ps are subsequently
inserted into LP (lines 9–11). These properties are then consecutively taken out of the queue and
matched against the properties pq of q using Algorithm 2 (lines 12–14). This will be described in detail
in Section 4.4.2 below. Network connections that do not have any associated properties because they do
not carry any data streams are ignored during the breadth-first search. Also, non-matching properties
do not add any peers to LV since following these paths cannot yield a reusable data stream. Pruning
the search in this way leads to the breadth-first search traversing only the relevant part of the network
instead of the whole network.

If a property p has been successfully matched, its corresponding stream can be reused for answering q.
If the target peer of p, i. e., the peer to which the stream corresponding to p is delivered, is still unmarked,
it is added to LV to be processed later on during the breadth-first search (lines 15–18). For any found
solution, a new plan P ′

s is generated, again using the generateP lan function (line 19). Then, the value
of the cost function C for the plan reusing the found data stream is computed and compared against the
current best solution (line 20). Only if the new solution is better according to C, it replaces the current
best solution and is stored along with its cost function value for future comparisons (lines 20–22). When
there are no properties left in queue LP , the next node of LV is considered. If there are no more nodes
left in LV , the best plan Ps found for input stream s is added to the overall plan P for evaluating q (line
27). When all input streams of q have been considered, the algorithm terminates and returns the current
best solution for plan P as the final result.

The termination of the algorithm is guaranteed since there is only a finite number of input data
streams of q and of nodes and data streams in the network. For each input data stream, each node can
be added to LV at most once, and each time through the while-loop in line 7 of the algorithm one node
gets dequeued from LV . Similar considerations apply to properties of data streams and LP .

4.4.2 Matching Properties

Next, we explain how Algorithm 2 matches properties. For each input data stream of a subscription, the
properties of the subscription reflect what operators and operator conditions are employed to transform
the respective input stream into the subscription result. These properties have to be matched with
the properties of data streams already present in the network to find shareable streams for each input
stream of the new subscription. The inputs for the properties matching algorithm are the properties p
of the data stream that is considered for reuse and the properties p′ of the newly registered subscription.
The algorithm returns true if these properties match and false otherwise. If the input streams of both
properties match—checked in lines 1–4 of Algorithm 2—the operators used to transform the inputs are
fetched from the properties data structures (line 5) and assigned to O and O′, respectively. For each
operator in O, there must be a corresponding operator in O′. For example, if O contains a selection
operator, the data stream represented by p is only considered for reuse if p′ also contains a corresponding
selection. Otherwise, the stream of p would not contain all the data needed by q. If a corresponding
operator is found in O′, it has to be assured that the conditions of the two operators, which are fetched
from the properties data structures in line 10 of the algorithm, are compatible. We distinguish four
cases (lines 11–30), i. e., selection, projection, window-based aggregation, and unknown operators. If
the corresponding operators are selection operators (lines 11–15), the algorithm retrieves the graphs
representing the selection predicates (line 12) and tries to match them using Algorithm 3. In case of a
projection (lines 16–20), the set R of elements that are actually returned in the result data stream of the
query represented by p—these are the projection elements marked with bullets in the properties of the
example queries in Figures 13 to 16—has to be a superset of the set R′ of all the elements referenced in
the query—these appear as unmarked elements in the projection operator conditions of properties—in
order for the stream represented by p to be reusable. If o and o′ are one of the window-based aggregation
operators min, max, sum, count, or avg, it has to be assured that the conditions and data windows are
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Algorithm 2 MatchProperties

Input: The properties p of a data stream to be reused and p′ of a subscription to be registered.
Output: true if p and p′ match, false otherwise.

1: s← getDS(p); s′ ← getDS(p′);
2: if s �= s′ then
3: return false;
4: end if
5: O ← getOps(s); O′ ← getOps(s′);
6: for all o ∈ O do
7: match← false;
8: for all o′ ∈ O′ do
9: if o = o′ then

10: C ← getConds(o); C′ ← getConds(o′);
11: if o = σ then
12: G← getPGraph(C); G′ ← getPGraph(C′);
13: if MatchPredicates(G, G′) then
14: match← true; break;
15: end if
16: else if o = Π then
17: R← getOutElems(C); R′ ← getRefElems(C′);
18: if R ⊇ R′ then
19: match← true; break;
20: end if
21: else if o ∈ {min,max,sum,count,avg} then
22: if MatchAggregations(C, C′) then
23: match← true; break;
24: end if
25: else
26: 	i← getParams(C); 	i′ ← getParams(C′);
27: if 	i = 	i′ then
28: match← true; break;
29: end if
30: end if
31: end if
32: end for
33: if match = false then
34: return false;
35: end if
36: end for
37: return true;

compatible (lines 21–24). This is done by the MatchAggregations algorithm described further below.
All other operators are handled in the fourth and final case (lines 25–30). These are unknown operators,
in particular user defined functions. Nothing is known about the semantics of these operators. We only
require them to be deterministic, meaning that the same operators applied on the same inputs must
always yield the same results. The algorithm then demands that not only the operators but also their
input vectors, i. e., their parameter lists retrieved in line 26 of the algorithm, are the same for reusability.
More sophisticated techniques for identifying reusable user defined operators involve the development of
suitable operator descriptions and are the subject of future work.
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Algorithm 3 MatchPredicates

Input: The predicate graphs G of a data stream considered for reuse and G′ of a new subscription to
be registered.

Output: true if the predicates of G match the predicates of G′, false otherwise.

1: for all v ∈ V do
2: vmatch← false;
3: for all v′ ∈ V ′ do
4: if v =̂ v′ then
5: vmatch← true;
6: for all x ∈ {e ∈ E|e connected to v} do
7: ematch← false;
8: for all y ∈ {e′ ∈ E′|e′ connected to v′} do
9: if ζ(x)⇐ ζ(y) then

10: ematch← true; break;
11: end if
12: end for
13: if ematch = false then
14: return false;
15: end if
16: end for
17: break;
18: end if
19: end for
20: if vmatch = false then
21: return false;
22: end if
23: end for
24: return true;

4.4.3 Matching Predicates

A predicate is represented by a weighted directed graph G = (V, E) within the corresponding properties.
The construction and representation of predicate graphs are an extension of related work on the processing
of conjunctive predicates [RH80]. In addition to integer valued variables and constants, we also allow
decimal values with a finite number of decimal places. First, predicates are normalized to contain only
comparisons of the form $v ≥ c, $v ≤ c and $v ≤ $w + c where $v and $w represent variables and c
represents a constant integer or decimal value. Each variable in the predicate becomes a node in V and
an atomic predicate of the form $v ≤ $w+c is represented by a weighted directed edge in E from node $v
to node $w with weight c. Further, V contains a node for the constant zero. An atomic predicate of the
form $v ≤ c is represented by an edge from node $v to node zero with weight c and an atomic predicate
of the form $v ≥ c, which can be expressed as 0 ≤ $v − c, by an edge from node zero to node $v with
weight −c. As illustrating examples, consider Figures 13 to 16 which contain the predicate graphs of the
selections in Queries 1 to 4. After the construction of G, the predicate can be checked for satisfiability
and is minimized using techniques introduced in earlier related work [RH80]. If an operator’s predicate
is unsatisfiable, the corresponding subscription can be rejected. A minimized predicate does not contain
any redundant atomic predicates. Note that the construction of the properties together with all the steps
described in this paragraph is performed only once for each new subscription during registration.

The MatchPredicates algorithm shown in Algorithm 3 can match any predicates in the described
graph representation, e. g., selection and join predicates. In this paper, it is used to match the predicates
of selection operators. The algorithm takes the data structures G and G′ of the weighted directed graphs
representing the selection predicates of the existing data stream and the new subscription which are to
be compared and returns true if the predicates of G′ imply those of G, i. e., reusability of the data stream
is not prevented by the predicates. One prerequisite for the possibility of data stream sharing is that, for
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each node v in the node set V of G, there exists an equivalent node v′ in the node set V ′ of G′, denoted
v =̂ v′ in line 4 of Algorithm 3. Nodes are equivalent if the variables represented by them refer to the
same element. Furthermore, if two equivalent nodes v and v′ have been found, for each edge x connected
to v there must be an edge y connected to v′ such that the atomic predicate represented by x, denoted
ζ(x), is compatible with the atomic predicate represented by y, denoted ζ(y). In our algorithm, this is the
case if ζ(x)⇐ ζ(y) in line 9. An example matching for the predicate graphs of Queries 1 and 2 is shown
in Figure 18. For brevity, only the variable names instead of the full paths are shown as node labels in
the figure. The definition of ζ(e) for any edge e in a predicate graph G can be formally expressed as

ζ(e) := (sourcelabel(e) ≤ targetlabel(e) + weight(e))

where sourcelabel(e) and targetlabel(e) denote the absolute path to the variable represented by the source
and the target node of edge e, respectively, and weight(e) denotes the weight of edge e.

4.4.4 Query Evaluation Plans

The query evaluation plans that are constructed during optimization are represented as hierarchical XML
documents specifying which actions, e. g. installations of operators, have to be performed at which peers
in the network. The installation of the best plan at the end of the optimization starts at the peer
that registered the query by distributing the relevant subplans to all other affected peers in the network
asynchronously. After that, the installation of the operators specified in the subplans on their respective
peers starts in the opposite direction, i. e., first the operator closest to the data source is installed. When a
peer has installed the new local operators of its new subplan it notifies the next peer in the plan to install
its local operators in a synchronous fashion, eventually leading to a completely installed and executing
plan. An example query evaluation plan for installing Query 2 from Section 1 is shown in Appendix C
on page 43.

4.4.5 Examples

Let us now consider Queries 1 and 2 of Section 1 as illustrative examples for the above described algo-
rithms. We start with the network topology of Figure 1. We further assume, that stream photons has
already been registered in the network and is available at super-peer SP3. Note that it suffices to consider
the super-peer backbone network in the algorithm as the thin-peers are only the start and end points of
data streams but do not transform any streams.

Example 4.1 (Query 1) When Query 1 is registered, the algorithm first constructs the corresponding
properties of the query including the minimized weighted directed graphs of the selection predicates. The
only peer in the network that has a reusable stream is SP4 and the only reusable stream is the originally
registered stream photons. Consequently, the selection and projection operators of Query 1 are installed
at SP4 and the result is routed to P1 using the shortest path which is via SP5 and SP1. �

Example 4.2 (Query 2) Query 2 is registered at P2 after Query 1 has been registered. At this point
in time, the original stream photons is available at SP4 and the stream filtered by the projection and
selection of Query 1 is available at SP4, where it is generated, at SP5, and at SP1. The algorithm finds out
that the filtered stream is suitable for answering Query 2 because the set of projection elements that are
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returned by Query 1 is a superset of the set of elements referenced in Query 2 and the atomic predicates
of the minimized selection predicates in Query 1 are all implied by corresponding atomic predicates of
the minimized selection predicates in Query 2, as can be seen from Figure 18. Note that, in this example,
the original predicates are already minimized since they do not contain any redundant atomic predicates.
Altogether, four possible solutions for reusing a stream to answer Query 2 are identified by the algorithm.
These include the original stream photons at SP4 as well as the filtered stream generated for answering
Query 1 at SP4, at SP5, and at SP1. Reusing the filtered stream at SP5 yields the lowest value for
cost function C. Therefore, this stream is duplicated at SP5 and a copy, after the necessary additional
filtering is done by installing the projection and selection operators of Query 2 at SP5, is routed to P2,
again using a shortest path which is via SP7. �

4.5 Window-based Aggregation

Reusing results of window-based aggregation operators has been studied before [AW04]. Our approach
differs from this previous solution in two ways. First, we introduce a step in our windows which allows us
to explicitly specify when a new aggregate value shall be computed. Second, we consider existing results
of other subscriptions for reuse instead of precomputing aggregation results that might never be used.
As usual, we categorize aggregation operators using three classes. These classes are distributive (e. g.,
min, max, sum, count), algebraic (e. g., avg), and holistic aggregates (e. g., quantile). We concentrate on
the above mentioned distributive and algebraic aggregation operators here.

The MatchAggregations algorithm shown in Algorithm 4 is used in Algorithm 2 to compare the
conditions of window-based aggregation operators. Such operators are compared by examining their input
data, their results, and their data windows as follows. First, MatchAggregations checks whether the
aggregate considered for reuse and the new aggregate employ the same aggregation operator, are based on
the same input data, and aggregate the same element. Furthermore, selections in aggregate subscriptions
have to be handled more strictly than in other subscriptions. It has to be assured that any selection
performed on the aggregated data stream prior to the aggregation is the same in both the reused and
the new aggregate subscription. Second, it is checked whether the aggregation result which is considered
for reuse has been filtered in any way. As an example consider Query 4 which filters its aggregation
result $a using the predicate $a > 1.3. Reusing such aggregate values for computing more coarse-grained
window aggregates is not possible in general since a part of the necessary data might have been filtered

Algorithm 4 MatchAggregations

Input: The conditions C of the operators contained in the properties of a data stream to be reused and
the conditions C′ of the operators contained in the properties of a new subscription to be registered.

Output: true if the aggregations of C match the aggregations of C′, false otherwise.

1: o← getAggOp(C); o′ ← getAggOp(C′);
2: s← getDS(C); s′ ← getDS(C′);
3: e← getAggElem(C); e′ ← getAggElem(C′);
4: W ← getWindow(C); W ′ ← getWindow(C′);
5: if o = o′

∧ s = s′

∧ e = e′

∧ σ(g) = σ(g′)
∧ ref(W ) = ref(W ′)
∧Δ′ mod Δ = 0
∧Δ mod μ = 0
∧ μ′ mod μ = 0
∧MatchPredicates(getPGraph(C), getPGraph(C′)) then

6: return true;
7: end if
8: return false;
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out. However, they can still be reused for aggregates that apply the same or a more restrictive filter on
the aggregation result as long as all other prerequisites for reusability are fulfilled.

Eventually, the data windows of both operators are examined. For time-based windows, reuse is only
possible if both windows have the same ordered reference element, e. g., det time in Queries 3 and 4. For
both, time-based and item-based windows, we require the window size and the step size of the windows to
be compatible for being able to reuse existing aggregate values without any further complex optimizations
or transformations. One requirement for this is that the window size of the new subscription is a multiple
of the window size of the data stream considered for reuse. This guarantees that a fixed number of
reused windows fits into one new window. Furthermore, the window size of a reused aggregate’s data
window must be a multiple of its step size. This assures that a sequence of non-overlapping windows, i. e.,
aggregate values, covering the whole input data can be obtained—possibly by ignoring some windows.
Note that ignored aggregate values might have to be temporarily buffered to be reused for computing
subsequent values of the new aggregate. The situation for the step sizes of both windows is analogous
to their window sizes as described above, guaranteeing that the reused aggregate delivers an aggregate
value at least each time the new aggregate has to produce one. Formally, these three conditions for data
window reusability can be formulated as follows.

• Δ′ mod Δ = 0

• Δ mod μ = 0

• μ′ mod μ = 0

Note that for the values of avg aggregates to be shareable, we internally represent such aggregates by
their appropriate sum and count values. These values are actually transmitted in the super-peer network.
The final aggregate value is computed at the super-peer at which the corresponding subscription is
registered by evaluating (sum/count). The described internal representation of avg aggregates also enables
their reuse for computing sum and count aggregates, i. e., the requirement of equal aggregate operators
for shareability introduced above can be relaxed.

Example 4.3 (Queries 3 and 4) As an example illustrating how window-based aggregates are handled
by our algorithm consider Queries 3 and 4 as introduced in Section 3. We assume the network of Figure 1
with Queries 1 and 2 already registered as described earlier. Query 3, which can reuse the result data
stream of Query 1, is registered at peer P3 in the network and computes the average energy of all photons
detected in a certain area of the sky. The time-based data window has a size of 20 time units and every
10 time units a new aggregate value is computed. Furthermore, Query 3 does not filter the result values
of the aggregation in any way. Query 4 is another aggregate query that employs the same aggregation
operator, references the same input data stream, aggregates the same element, and uses the same selection
predicate as Query 3.

Obviously, in terms of cost function C, reusing the result data stream of Query 3 at SP3 is the best
solution for answering Query 4, provided that reuse is possible. In order to determine shareability, the
data windows of both subscriptions need to be compared. The situation is illustrated in Figure 19. We
compute 60 mod 20 = 0 for the window size and 40 mod 10 = 0 for the step size of the windows as well
as 20 mod 10 = 0 for the window size and the step size of the result data stream of Query 3, meaning
that reuse is possible. Since 60 div 20 = 3 holds, three consecutive non-overlapping windows of Query 3
are needed to form a window of Query 4. Because of 20 div 10 = 2, only every second aggregate value
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Figure 20: Window selection for reusing window-based aggregates

of Query 3 is to be reused for Query 4. Eventually, 40 div 10 = 4 indicates that each time four values
of Query 3 have been seen, only two of which have been reused, a new aggregate value of Query 4 is
computed. �

For being able to reuse aggregate values of previously computed window-based aggregation operators
to compute more coarse-grained aggregates, we have developed an operator for selecting the appropriate
values in the course of query evaluation in the FluX [KSSS04] query engine. FluX is a query engine for
efficiently processing (W)XQueries on XML data streams. Since, depending on the window definition,
not all aggregate values of an existing aggregate are needed and the values are not necessarily needed
in the same order as they appear in the reused stream, the appropriate elements have to be selected
and also buffered and reordered if necessary. The algorithm for selecting aggregate values is shown in
Algorithm 5. Consider the following example.

Example 4.4 (Reusing Aggregate Values) We assume a stream data window with window size Δ =
40 and step size μ = 10. The query window has a window size of Δ′ = 80 and a step size of μ′ =
20. The two data windows are illustrated in Figure 20. Algorithm 5 starts with buffering the first
((Δ′ − Δ) div μ) + 1 = ((80 − 40) div 10) + 1 = 5 aggregate values arriving in the stream. It then
sends the aggregate values at buffer positions i · (Δ div μ) for 0 ≤ i < (Δ′ div Δ) to FluX. Since
Δ′ div Δ = 80 div 40 = 2 and Δ div μ = 40 div 10 = 4, these are the values at buffer positions 0 · 4 = 0
and 1 · 4 = 4. After that, the first μ′ div μ = 20 div 10 = 2 values are removed from the buffer and the
next 2 values are read from the stream and added to the buffer. After updating the buffer, the values
needed for computing the next window aggregate value reusing the values in the buffer can be determined
as above. �

The reusing query that is executed in FluX uses the values delivered by the above algorithm as input. It
aggregates these input values using the appropriate aggregate function and an item-based data window
with equal window and step size, both set to Δ′ div Δ.

Note that Algorithm 5 buffers all aggregate values arriving in the input stream. This can be avoided
by exactly identifying the aggregate values that need to be buffered and immediately discarding the

Algorithm 5 SelectAggregateValues

Input: Window sizes Δ and Δ′ as well as step sizes μ and μ′ of a data window to be reused and a new
data window, respectively.

Output: The correct sequence of aggregate values for reuse.

1: buffer first ((Δ′ −Δ) div μ) + 1 aggregate values arriving in the stream;
2: i← 0;
3: while i < (Δ′ div Δ) do
4: send value at buffer position i · (Δ div μ) to the FluX query engine;
5: i← i + 1;
6: end while
7: remove first (μ′ div μ) values from buffer and read next (μ′ div μ) values from stream into buffer;
8: continue in line 2 above until buffer contains no more values;

25



others. The resulting alternative algorithm is shown in Appendix D on page 46. Since the alternative
algorithm is more complex to evaluate, we use the algorithm introduced above in StreamGlobe.

4.6 Extensions and Optimizations

On the basis of the algorithms of Section 4.4, we now introduce some further extensions and general
optimizations improving the quality and the efficiency of our solution. All of these extensions and
optimizations have been implemented in our StreamGlobe prototype.

4.6.1 Bypassing

The result of any subscription evaluation in the network is routed towards the receiving peer via a shortest
path in the network. In order to avoid congested network connections and overloaded peers, we introduce
a simple bypassing mechanism, thus increasing the search space of our algorithm. Whenever a plan is
discovered to cause an overload situation on any network connections or peers, a new internal network
graph representing the original network without the overloaded connections and peers is constructed.
Then the plan is modified to route its data over shortest paths within this reduced network. This can be
repeated multiple times until no overload occurs or the reduced network does not contain any valid paths
to the target peer any more. Each plan found during this procedure is compared against the current best
plan as described above.

A disadvantage of this solution is that the shortest path algorithm needs to be executed multiple times
if an overload situation is predicted. Furthermore, the approach can lead to network partitioning in the
reduced network, making it impossible to find an overload-free evaluation plan although one exists. This
can be avoided by using an alternative bypassing scheme which computes appropriate weights for each
network connection and then uses a shortest path algorithm to find the weighted shortest path between
two peers in the network. In this case, the shortest path algorithm needs to be executed only once
during the generation of a query evaluation plan. The weight of a network connection can be computed
by determining weights based on the current amount of network traffic and peer load on the respective
network connection and its two incident peers, adding the peer weights to the weight of the network
connection. A disadvantage of this scheme is, however, that the weights of network connections and
peers need to be updated each time the network state changes. If the number of iterations needed to find
a plan without overload in the first approach is low, i. e., only one iteration on average, then the first
approach is supposed to be more efficient than the second approach. In both bypassing solutions, if no
plan without overloaded network connections and peers can be found, the corresponding query can be
rejected by the system. We have implemented both bypassing schemes in StreamGlobe and use the first
one by default.

4.6.2 Optimized Loop Computation

The loops in the algorithms of Section 4.4 iterate over sets of peers, vertices, edges, properties, etc. Some
of these sets contain rather few items in practice, e. g., number of operators in a query, vertices and edges
in a predicate graph, and therefore also yield a small number of loop iterations. Additionally, many
loops can be exited early, e. g., as soon as a match is found—indicated by the break statements in the
algorithms. Some loop computations can be optimized by employing an execution similar to merge-joins.
For example, the first two loops in Algorithm 3 can be executed in a merge-join fashion if the vertices in V
and V ′ are sorted lexicographically according to their labels, i. e., according to the paths they represent.

4.6.3 Caching Matching Results

Routing a data stream through the network via several peers without transforming it leads to identical
data streams and data stream properties being available at many different peers in the network. The
basic algorithm of Section 4.4 does not take this into account when searching for shareable streams and
matches each of the identical properties anew. Furthermore, the algorithms make no difference between
incoming and outgoing data streams at a certain peer. This leads to each data stream property being
considered twice, once at the source peer and once at the target peer of the corresponding stream. Both

26



problems can be avoided by identifying identical versions of already matched properties and reusing the
corresponding cached matching result.

4.6.4 Exploiting Local Matches

A special case occurs when two or more—in terms of our properties data structure—identical subscriptions
are registered at peers that are connected to the same super-peer in the network. This might easily occur
in a multi-user network where several users have the same interests and register their continuous queries
at the same point in the network. Using the basic algorithm, each of those queries would be matched
starting at the super-peers where the input data streams of the query are registered and then traversing
the network using breadth-first or depth-first search as described in Section 4.4.1. However, in each case,
the result would be to reuse the already present answer to the subscription at the super-peer connected to
the subscribing client as this will obviously yield the lowest value for cost function C. The situation can
easily be improved by checking a new subscription’s super-peer for the presence of reusable streams prior
to executing the actual query subscription algorithm. The approach could even be extended to checking
the properties of data streams available at peers in the neighborhood of a subscribing peer. This could be
done either by checking the neighboring peers or, for larger networks where a larger neighborhood should
be considered, by flooding the network with a data stream request and using an adaptable horizon for
the flooding depth.

5 Implementation

In this section, we will give a brief overview of the StreamGlobe system architecture, which is depicted
in Figure 21.

Basically, all components of StreamGlobe which are represented by rounded rectangles in Figure 21
are implemented as collaborating grid services on top of the Globus Toolkit [Glo05]. According to the
classification of peers, the provided services are shown individually for each type. The grid services are
divided into two groups as follows. Interface services represent the different peers in the network. These
services constitute the interfaces between peers and users as well as between peers and other parts of the
StreamGlobe system. Users register subscriptions and data streams at these interfaces. Non-XML data
streams are fed into the system by means of wrappers which are executed at the corresponding peer to
convert the given data format into XML. Furthermore, these interface services receive control messages
from other peers and forward them to the appropriate core service. The set of core services of a peer
comprises all the functionality of that peer. Every peer runs exactly one instance of an interface service
and a set of core services according to its capabilities.

Thin-peers are peers with limited functionality. They publish data streams in the network and/or
receive the results of their subscriptions, but do not carry out complex query processing. Since even such
a peer has to provide metadata, e. g., statistics of a data stream needed for optimization, it mainly runs
the metadata management service. Beyond that, only the plan distribution service and a minimum query
execution service are provided. The plan distribution service is needed for all peers, since this component
is responsible for correctly setting up data communication with other peers and instantiating the queries
in the query execution service. The query execution service of a thin-peer is only able to display results
of subscriptions, to publish—and possibly wrap—data streams, and to maintain statistics, if needed. In
addition to the components of thin-peers, super-peers provide extensive query processing capabilities by
enabling full-fledged query processing for data streams. For carrying out query processing tasks, the
query execution service employs the extensible FluX [KSSS04] query engine for efficiently processing
XML data streams, which is installed on every super-peer. FluX is an event-based query engine that
achieves buffer minimization through optimizations based on schema information of data streams. It is
therefore applicable for efficient stream processing. Furthermore, user defined stream operators which are
implemented as mobile code can be executed as mobile extensions of the FluX engine. This provides for
a large amount of flexibility in specifying subscriptions. Finally, speaker-peers are basically super-peers
with the additional role of optimizing and managing their subnets. Hence, speaker-peers provide an
optimization service for carrying out the optimization tasks as described in Section 4.
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In Figure 21, the communication paths are depicted by arrows. Different StreamGlobe components
and services on a single peer communicate directly via mechanisms provided by the Globus Toolkit. Inter-
peer communication takes place between the interface services of the two communicating peers using the
RPC mechanisms of Globus. As the OGSA framework does not yet provide any suitable means for data
stream transfer, we realized our own protocols based on TCP/IP networking techniques for direct data
exchange between query execution services.

The algorithms as introduced in Section 4, like all other parts of the StreamGlobe system, are im-
plemented in Java. The query registration sequence used when registering a new continuous query
is shown in Figure 22. A newly registered WXQuery is parsed and transformed into an equivalent
WXQueryX [W3C05b] representation. From this representation, which is a standard XML file, the nec-
essary information to be stored in the query’s properties can easily be extracted using XPath [W3C05a].

Optimization starts with the matching of properties data structures as described in this paper and
leads to the generation of a query evaluation plan to be installed in the network. The final query evalu-
ation plan is distributed and installed in the network by the StreamGlobe plan distribution component.
Eventually, the queries and operators in the plan are executed on the appropriate peers using the FluX
query engine.

Figure 23 shows a screenshot of the StreamGlobe monitoring GUI. The GUI is used to continuously
monitor and visualize the current network state. The network in the figure is that of Figure 1 with the
example data stream of Figure 2 and 25 randomly generated queries registered. The screenshot shows
the network state without data stream sharing, leading to overloaded network connections indicated in

PlanMatchingWXQuery Properties
Engine
FluX

Result
PlanProperty

Parser
WXQuery

Generator
Plan

DistributorMatcher

Figure 22: Query registration sequence
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Figure 23: StreamGlobe GUI

orange and red colors in the network graph. Using data stream sharing in this scenario causes all network
connections to stay green, i. e., no overload situations occur.

6 Evaluation

This section presents the results of some performance evaluations that we conducted using our prototype
implementation in the StreamGlobe system. For the evaluation, the system was installed on a blade
server. Each super-peer ran on one blade. The blades had a 2.8GHz Xeon Processor and 1GB of main
memory each. They were interconnected by a 100MBit/s LAN. We report on four scenarios here. The
first one is the example scenario of Section 1 with 8 super-peers, 1 data stream, and 4 queries. The second
scenario is based on the same network topology like the first but registers 25 queries in the system. The
third scenario is a small scenario using 4 super-peers, 1 data stream, and 4 queries. Three of the super-
peers form a triangle in this scenario and the fourth, which is the one where the data stream is registered
at, is connected to one of the three super-peers in the triangle. The fourth scenario uses a 4 × 4 grid
topology with 16 super-peers, 2 data streams, and 100 queries. All data streams and queries are based
on real astrophysical data. The queries were generated using query templates for selection, projection,
and aggregation queries. Constant values, e. g., in selection predicates or data window definitions, were
chosen uniformely from a predefined set of values to enable a certain degree of shareability. The four
benchmark scenarios are summarized in Table 1.

For each scenario, we compare three strategies. Data shipping simply transmits the whole input data
stream for each query from the data source to the target super-peer using a shortest path in the network.
The whole query evaluation takes place at the target super-peer. Query shipping evaluates each query

Scenario Network Topology # Peers # Data Streams # Queries
Example 3-dimensional hypercube 8 1 4
Extended Example 3-dimensional hypercube 8 1 25
Small irregular 4 1 4
Grid 4 × 4 grid 16 2 100

Table 1: Benchmark scenarios
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Figure 24: Example scenario: 8 super-peers, 1 data stream, 4 queries
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Figure 25: Extended example scenario: 8 super-peers, 1 data stream, 25 queries

completely at the super-peer that the data source is registered at. The query result is transmitted to
the target peer again using a shortest path in the network. This of course only works for queries that
reference a single input data stream, which is the case in our example queries used here. Finally, stream
sharing uses our previously described optimization algorithms.

Benchmark results in terms of average CPU load in percent and average network traffic on network
connections in kbps are shown in Figures 24 and 25 for the example and the extended example scenarios.
As can be clearly seen from the diagrams, query shipping leads to massive peaks of CPU load at data
stream source peers since all computation on the respective stream is executed there. On the other hand,
network traffic caused by this strategy is comparatively low. Data shipping, as expected, causes much
more network traffic but also relatively high CPU load over the whole range of super-peers in the network,
since all the data needs to be forwarded over many peers and network connections, often even multiple
times. Stream sharing distributes computational load much better over the peers in the network than
query shipping and causes less overall CPU load than data shipping. Furthermore, network traffic is also
greatly reduced compared to the other two strategies due to the effects of reusing streams for multiple
queries.

The results for the remaining two scenarios in terms of average CPU load in percent and accumulated
network traffic in MBit including both, incoming and outgoing traffic for each super-peer are shown in
Figures 26 and 27, respectively. The results, especially for the larger grid scenario, clearly show, that
our approach significantly reduces network traffic at single peers as well as overall in the network. Note
that, while data shipping transmits the whole original data stream through the network multiple times,
once for each subscription referencing the stream as input, query shipping already significantly reduces
network traffic by means of early filtering at the data stream source. However, like data shipping, query
shipping still transmits one distinct data stream for each query through the network. Stream sharing
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Figure 26: Small scenario: 4 super-peers, 1 data stream, 4 queries
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Figure 27: 4 × 4 grid scenario: 16 super-peers, 2 data streams, 100 queries

is able to further reduce network traffic greatly by using multi-subscription optimization, transmitting
data streams through the network only once and sharing them for satisfying multiple similar or equal
queries. CPU load is comparable to the other approaches on most peers in the shown scenarios, except
for the peak at the data stream source nodes for query shipping. We expect our approach to distribute
load better over peers in larger scenarios than the other two approaches. This expectation is confirmed
by the results of an additional test where we limited the maximum CPU load of peers to 10% of their
actual capacity and the maximum bandwith of network connections between peers to 1MBit/s. We then
used the second scenario and determined how many queries had to be rejected by the system because no
query evaluation plan without causing overload on peers or network connections could be found. While
query shipping had to reject 35 and data shipping had to reject 47 out of the 100 queries that we tried
to register, our stream sharing approach only rejected 2 queries.

Of course, stream sharing does not come for free. Tables 2 and 3 show the times a query took
from the beginning of its registration until it was successfully installed and executed in the network in
our extended example and our large benchmark scenario, respectively. The stream sharing approach
stays within a factor of 3 of the other two much simpler approaches. This is acceptable, since we are
dealing with continuous queries that usually remain registered over long periods of time. The difference
between the query registration times of data stream sharing and the other two approaches is expected
to grow for increasing network sizes and numbers of queries. This is due to the larger effort invested
in query optimization. However, many real application scenarios, e. g., e-science collaboration networks,
are not supposed to grow far beyond the dimensions of our largest benchmark scenarios. Also, if query
registration time should not exceed a certain threshold, the optimization could be stopped early returning
the best query evaluation plan found so far.
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Time (ms) Data Shipping Query Shipping Stream Sharing
Average 931 890 2153
Minimum 390 284 509
Maximum 2078 2032 5025

Table 2: Query registration times (extended example scenario)

Time (ms) Data Shipping Query Shipping Stream Sharing
Average 1363 1287 3558
Minimum 265 250 672
Maximum 4953 4802 11855

Table 3: Query registration times (4 × 4 grid scenario)

7 Related Work

The techniques described in this paper can be incorporated into any data stream management sys-
tem. Numerous DSMSs have been proposed in recent years. Among them are STREAM [ABB+03]
which uses the Continuous Query Language (CQL) [ABW03] for registering subscriptions. STREAM
processes data streams by transforming them into relations and the query results back into streams again.
TelegraphCQ [CCD+03] adaptively processes data streams using, among other things, the Eddy [AH00]
approach for adaptive tuple routing. NiagaraCQ [CDTW00] optimizes query processing by sharing com-
mon computations among continuous queries through appropriately grouping queries according to similar
structures. Aurora is basically a centralized data flow system that processes tuple streams. A decentral-
ized version of Aurora is Aurora*. Finally, Medusa is a distributed infrastructure that supports federated
operation of nodes [CBB+03]. Further development lead to the Borealis [AAB+05] system. PIPES [KS04]
is a public infrastructure for processing and exploring data streams. The needs of high fan-in systems
are being addressed in the HiFi [FJK+05] system. The Cougar [YG02] approach deals with in-network
query processing in sensor networks. All of these systems more or less focus on certain aspects of data
stream handling and processing. The contributions presented in this paper can be used to augment ex-
isting DSMSs to support efficient integration of incrementally subscribed continuous queries. In [DRF04]
ONYX, an architecture and techniques for content-based dissemination of XML data in large-scale dis-
tributed publish&subscribe systems, is introduced. Like our approach, this system is based on an overlay
network. Another example for an astrophysical application in the computer science domain can be found
in [LF04].

Our project employs the FluX [KSSS04] query engine for processing continuous queries over XML
data streams. Other examples of streaming XQuery implementations include Raindrop [SJR03] and
XQRL [FHK+03]. These can be used to process standard XQueries. For being able to execute window-
based aggregation operators, they have to be augmented with support for our WXQuery extensions
introduced in Section 3.

The approach of optimizing query execution by computing identical or similar parts of queries only
once and reusing them multiple times for various queries is similar to multi-query optimization [Sel88].
However, instead of optimizing a set of queries all at once, we incrementally optimize queries one after
another when they are registered in the network, based on the current network state. Sharing of work
between queries over streams has also been addressed in previous work [MSHR02, KFHJ04]. Our solution
differs from these approaches in that we can adaptively distribute subscription evaluation among peers
in a network.

The question of which previously generated data stream should be reused for answering a newly
subscribed continuous query is similar to the problems of view materialization and view selection in the
context of persistent data [TS97, TS99]. In view materialization, however, data is materialized before
queries are posed, whereas in our scenario, reusable data streams are generated by previously registered
queries in the network.

Even closer related is semantic caching [DFJ+96, CR02], where reusable data also consists of previously
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computed query results. Semantic caching differs from query subscription in streaming environments
mainly by the difference between processing persistent data and processing data streams. In DSMSs, the
cached data corresponds to the data streams travelling through the network.

Another related field is data integration. Instead of matching new subscriptions with existing data
streams as is the case in our domain, data integration in peer data management systems (PDMS) [TH04]
uses schema matchings in order to match a new query with various data sources that have different,
however similar schemas.

Schema matching is one possible approach for comparing newly registered subscriptions with existing
data streams in the network. Many different solutions for this problem have been proposed [RB01,
DLD+04], also in the context of XML data [DDL00, DDH01]. However, generic schema matchers only
match static schema information. This is sufficient for structural filters like projection, but not for
content-based filters like selection operators. Supporting this would demand an appropriate extension of
the matcher. Furthermore, generic ontology-based schema matchers do not work without user interaction.
Since we do not need the matching power of such ontology-based matchers in our context but we do need
to match the results of structural and content-based filters alike, we have taken a different approach based
on subscription and data stream properties instead.

Of further interest is the problem of query containment, which has also been discussed in the context
of XML queries with nesting [DHT04]. Query containment, especially for XML queries, is a difficult
problem. We were able to make it manageable by exploiting the properties of our distributed system
architecture.

Multicast [DC90] routes data towards receiving ends in a way that reduces network traffic by trans-
mitting the same message or document only once for multiple recipients. It is important to point out
that our work differs from this technique in a major way. Instead of merely reusing existing messages
or documents needed in identical versions at various network sites, our approach is able to perform ex-
pressive in-network transformations. Therefore, it can dynamically create data streams that best fit the
queries to be answered while at the same time reducing network traffic and peer load.

8 Conclusion and Future Work

In this paper, we have presented a subscription language, a properties approach, a cost model, and
algorithms for registering continuous queries over data streams in P2P networks using data stream sharing.
Our approach takes three steps. First, the properties of a newly registered subscription are constructed.
Second, shareable data streams generated for answering previously registered subscriptions in the network
are identified by matching properties. An appropriate stream for answering the new subscription is chosen
according to a cost model that focuses on the reduction of network traffic and peer load, and on load
balancing aspects. Finally, operators are placed in the network to execute the new subscription.

We are currently working on an enhanced version of the approach presented in this paper that is able
to handle nested queries and to widen data streams. This enables the system to consider data streams
for sharing that initially do not contain all the necessary data for a new query but can be altered to do
so by changing some operators in the network. Apart from that, there are numerous opportunities for
future work. Dynamic optimization on the set of registered subscriptions can be introduced to retain
an optimized data flow in the network even if network conditions or data stream statistics change over
time. We intend to address the issue of scalability by introducing a hierarchical network organization
with several interconnected subnets where each subnet is optimized separately. Alternatively, a fully
distributed network architecture could also be realized, completely eliminating the need for specialized
speaker-peers. Further, additional stream processing operators like joins will be considered.
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[BLHS05] C. Bornhövd, T. Lin, S. Haller, and J. Schaper. Integrating Smart Items with Business
Processes – An Experience Report. In Proc. of the Hawaii Intl. Conf. on System Sciences,
page 227.3, Waikoloa, HI, USA, January 2005.

[CBB+03] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel, Y. Xing, and S. B.
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A Alternative XQuery Window Implementations

This section presents alternative XQuery implementations of item-based and time-based data windows.

A.1 Item-based Data Windows

Alternative XQuery implementations of item-based data windows are shown in Figures 28 and 29. In
the implementation of Figure 28, the remaining elements are gathered in a final window at the end of
the stream. In the implementation of Figure 29, the window slides along until no more elements are
contained in it.

declare function local:cwin($count as xs:integer,

$step as xs:integer,

$data as node()*) as node()*

{

let $cwin := fn:subsequence($data, 1, $count)

let $tail := fn:subsequence($data, $step + 1)

return

if (fn:count($data) <= $count) then

(<cw> { $cwin } </cw>)

else

(<cw> { $cwin } </cw>, local:cwin($count, $step, $tail))

};

for $x in doc("data.xml")/a

return

<result>

{ for $w in local:cwin(4, 2, $x/b)

return

<win> { $w/* } </win> }

</result>

Figure 28: Gathering remaining elements in final window

declare function local:cwin($count as xs:integer,

$step as xs:integer,

$data as node()*) as node()*

{

let $cwin := fn:subsequence($data, 1, $count)

let $tail := fn:subsequence($data, $step + 1)

return

if (fn:empty($tail)) then

(<cw> { $cwin } </cw>)

else

(<cw> { $cwin } </cw>, local:cwin($count, $step, $tail))

};

for $x in doc("data.xml")/a

return

<result>

{ for $w in local:cwin(4, 2, $x/b)

return

<win> { $w/* } </win> }

</result>

Figure 29: Sliding windows until no elements remain

37



A.2 Time-based Data Windows

Alternative XQuery implementations of time-based data windows are shown in Figures 30 and 31. In
the implementation of Figure 30, the remaining elements are gathered in a final window at the end of
the stream. In the implementation of Figure 31, the window slides along until no more elements are
contained in it.

declare function local:dwin($start as xs:integer,

$diff as xs:integer,

$step as xs:integer,

$data as node()*,

$refs as node()*) as node()*

{

let $dwin := for $i in $data

let $ds := for $d in $i/descendant-or-self::node()

where some $r in $refs satisfies $r is $d

return $d

where $ds >= $start and $ds < $start + $diff

return $i

let $tail := for $i in $data

let $ds := for $d in $i/descendant-or-self::node()

where some $r in $refs satisfies $r is $d

return $d

where $ds >= $start + $step

return $i

return

if (fn:count($dwin) = fn:count($data)) then

(<dw> { $dwin } </dw>)

else

(<dw> { $dwin } </dw>, local:dwin($start + $step, $diff, $step, $tail, $refs))

};

for $x in doc("data.xml")/a

return

<result>

{ for $w in local:dwin(0, 4, 2, $x/b, $x/b/c)

return

<win> { $w/* } </win> }

</result>

Figure 30: Gathering remaining elements in final window
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declare function local:dwin($start as xs:integer,

$diff as xs:integer,

$step as xs:integer,

$data as node()*,

$refs as node()*) as node()*

{

let $dwin := for $i in $data

let $ds := for $d in $i/descendant-or-self::node()

where some $r in $refs satisfies $r is $d

return $d

where $ds >= $start and $ds < $start + $diff

return $i

let $tail := for $i in $data

let $ds := for $d in $i/descendant-or-self::node()

where some $r in $refs satisfies $r is $d

return $d

where $ds >= $start + $step

return $i

return

if (fn:empty($tail)) then

(<dw> { $dwin } </dw>)

else

(<dw> { $dwin } </dw>, local:dwin($start + $step, $diff, $step, $tail, $refs))

};

for $x in doc("data.xml")/a

return

<result>

{ for $w in local:dwin(0, 4, 2, $x/b, $x/b/c)

return

<win> { $w/* } </win> }

</result>

Figure 31: Sliding windows until no elements remain
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B WXQuery EBNF Grammar

The notation of the following WXQuery EBNF grammar is based on the notation of the XQuery EBNF
grammar in [W3C05c]. In particular, it uses a special notation to reference externally defined parts of
the grammar via URLs.

[1] QueryBody ::= Expr

[2] Expr ::= ExprSingle ( "," ExprSingle )*

[3] ExprSingle ::= FLWRExpr

| PathExpr

| ElementConstructor

| ParenthesizedExpr

| IfExpr

[4] FLWRExpr ::= ( ForClause | LetClause )+

WhereClause?

"return" ExprSingle

[5] ForClause ::= "for" VarRef "in" WindowedPathExpr

[6] VarRef ::= "$" VarName

[7] VarName ::= QName

[8] QName ::= [http://www.w3.org/TR/REC-xml-names/#NT-QName]Names

[9] WindowedPathExpr ::= PathExpr ( "|" WindowSpec "|" )?

[10] PathExpr ::= ( ( PrimaryExpr "/" )? RelativePathExpr )

| ( "/" ( RelativePathExpr )? )

[11] PrimaryExpr ::= VarRef | XMLFunctionCall

[12] XMLFunctionCall ::= ( "stream"

| "doc"

| "collection" )

"(" ( StringLiteral )? ")"

[13] StringLiteral ::= ( '"' ( PredefinedEntityRef

| CharRef

| EscapeQuot

| [^"&] )* '"' )

| ( "'" ( PredefinedEntityRef

| CharRef

| EscapeApos

| [^'&] )* "'" )

[14] PredefinedEntityRef ::= "&" ( "<" | ">" | "amp" | "quot" | "apos" ) ";"

[15] CharRef ::= [http://www.w3.org/TR/REC-xml#NT-CharRef]XML

[16] EscapeQuot ::= '""'

[17] EscapeApos ::= "''"

[18] RelativePathExpr ::= StepExpr ( "/" StepExpr )*
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[19] StepExpr ::= ContextItemExpr | ( QName ( Predicate )? )

[20] ContextItemExpr ::= "."

[21] Predicate ::= "[" WherePredicate "]"

[22] WherePredicate ::= PredicateOrExpr

[23] PredicateOrExpr ::= PredicateAndExpr ( "or" PredicateAndExpr )*

[24] PredicateAndExpr ::= ( PredicateComparisonExpr | ParenPredOrExpr )

( "and" ( PredicateComparisonExpr | ParenPredOrExpr ) )*

[25] PredicateComparisonExpr ::= PredicateValue ( ComparisonOperator PredicateValue )?

[26] PredicateValue ::= ( ( "-" | "+" )? Literal )

| PredicatePath

| PredicateVariablePath

[27] Literal ::= StringLiteral | NumericLiteral

[28] NumericLiteral ::= IntegerLiteral

| DecimalLiteral

| DoubleLiteral

[29] IntegerLiteral ::= Digits

[30] Digits ::= [0-9]+

[31] DecimalLiteral ::= ( "." Digits ) | ( Digits "." [0-9]* )

[32] DoubleLiteral ::= ( ( "." Digits )

| ( Digits ( "." [0-9]* )? ) ) [eE] [+-]? Digits

[33] PredicatePath ::= QName ( "/" QName )*

[34] PredicateVariablePath ::= VarRef ( "/" PredicatePath )*

[35] ComparisonOperator ::= "=" | "!=" | "<" | "<=" | ">" | ">="

[36] ParenPredOrExpr ::= "(" PredicateOrExpr ")"

[37] WindowSpec ::= ( ( "count" IntegerLiteral )

| ( RelPathExprNoPred "diff" IntegerLiteral ) )

( "step" IntegerLiteral )?

[38] RelPathExprNoPred ::= StepExprNoPredicates ( "/" StepExprNoPredicates )*

[39] StepExprNoPredicates ::= ContextItemExpr | QName

[40] LetClause ::= "let" VarRef ":=" AggFunctionCall

[41] AggFunctionCall ::= AggFunctionName "(" PathExpr ")"

[42] AggFunctionName ::= "min" | "max" | "sum" | "count" | "avg"

[43] WhereClause ::= "where" WherePredicate

[44] ElementConstructor ::= "<" QName
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( "/>" | ( ">" ( ElementContent )* "</" QName ">" ) )

[45] ElementContent ::= ElementConstructor | EnclosedExpr

[46] EnclosedExpr ::= "{" Expr "}"

[47] ParenthesizedExpr ::= "(" ( Expr )? ")"

[48] IfExpr ::= "if" "(" PredicateOrExpr ")"

"then" ExprSingle "else" ExprSingle
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C Example Query Evaluation Plan

<?xml version ="1.0" encoding ="UTF -8"?>

<plan atPeer=" http ://127.0.0.1:8080/ ogsa/services /streamglobe /p2p/Peer/hash

-23968266 -1140103654840"

id="query -2: plan -1"

xmlns="urn:streamglobe .in.tum.de/pdc"

xmlns:pdc="urn:streamglobe .in.tum.de/pdc"

xmlns:xsi=" http :// www.w3.org /2001/ XMLSchema -instance">

<add >

<streamoperator id="query -2: plan -1:query -2:q1#"

xmlns:xsi=" http :// www.w3.org /2001/ XMLSchema -instance"

xsi:type =" queryStreamoperatorType">

<dependencies >

<streamreference id=" query -2: plan -1"/>

</dependencies >

<source >

<![CDATA[

for $p in /photons/photon

return

<rxj >

{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en} {$p/det_time}

</rxj >

]]>

</source >

<input -dtd >

<![CDATA[

<!ELEMENT photons (photon)* >

<!ELEMENT photon (coord , en , det_time) >

<!ELEMENT coord (cel) >

<!ELEMENT cel (ra, dec) >

<!ELEMENT ra (# PCDATA) >

<!ELEMENT dec (# PCDATA) >

<!ELEMENT en (# PCDATA) >

<!ELEMENT det_time (# PCDATA) >

]]>

</input -dtd >

<output -dtd >

<![CDATA[

<!ELEMENT photons (photon)* >

<!ELEMENT photon (coord , en , det_time) >

<!ELEMENT coord (cel) >

<!ELEMENT cel (ra, dec) >

<!ELEMENT ra (# PCDATA) >

<!ELEMENT dec (# PCDATA) >

<!ELEMENT en (# PCDATA) >

<!ELEMENT det_time (# PCDATA) >

]]>

</output -dtd >

</streamoperator >

<streamoperator id="query -2: plan -1"

xmlns:xsi=" http :// www.w3.org /2001/ XMLSchema -instance"

xsi:type =" counterStreamoperatorType">

<dependencies >

<streamreference id=" query -2: plan -0"/>

</dependencies >

<ds -item >photon </ds-item >

<neighbor >
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http ://127.0.0.1:8080/ ogsa/services/streamglobe /p2p/Peer/hash

-12582949 -1140103654931

</neighbor >

</streamoperator >

</add >

<plan atPeer=" http ://127.0.0.1:8080/ ogsa/services /streamglobe /p2p/Peer/hash

-12582949 -1140103654931"

id="query -2: plan -0"

xmlns="urn:streamglobe .in.tum.de/pdc"

xmlns:pdc="urn:streamglobe .in.tum.de/pdc"

xmlns:xsi=" http ://www.w3.org /2001/ XMLSchema -instance">

<add >

<streamoperator id=" query -2: plan -0"

xmlns:xsi=" http ://www.w3.org /2001/ XMLSchema -instance"

xsi:type =" counterStreamoperatorType">

<dependencies >

<streamreference id=" query -2"/>

</dependencies >

<ds-item >photon </ds-item >

<neighbor >

http ://127.0.0.1:8080/ ogsa/services/streamglobe /p2p/Peer/hash

-6292125 -1140103654995

</neighbor >

</streamoperator >

</add >

<plan atPeer=" http ://127.0.0.1:8080/ ogsa/services /streamglobe /p2p/Peer/hash

-6292125 -1140103654995"

id="query -2"

xmlns="urn:streamglobe .in.tum.de/pdc"

xmlns:pdc="urn:streamglobe .in.tum.de/pdc"

xmlns:xsi=" http ://www.w3.org /2001/ XMLSchema -instance">

<add >

<streamoperator id=" query -2:q0"

xmlns:xsi =" http ://www.w3.org /2001/ XMLSchema -instance"

xsi:type =" queryStreamoperatorType">

<dependencies >

<stream id=" photons"/>

</dependencies >

<source >

<![CDATA[

<photons >

{for $p in /photons/photon

where $p/en >= 1.3

and $p/coord/cel/ra >= 130.5

and $p/coord/cel/ra <= 135.5

and $p/coord/cel/dec >= -48.0

and $p/coord/cel/dec <= -45.0

return

<photon >

<coord >

<cel >

{$p/coord/cel/ra}

{$p/coord/cel/dec}

</cel >

</coord >

{$p/en}

{$p/det -time}

</photon >

}
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</photons >

]]>

</source >

<input -dtd >

<![CDATA[

<!ELEMENT photons (photon)* >

<!ELEMENT photon (coord , phc , en, det_time )>

<!ELEMENT coord (cel , det)>

<!ELEMENT cel (ra, dec)>

<!ELEMENT ra (# PCDATA)>

<!ELEMENT dec (# PCDATA)>

<!ELEMENT det (dx, dy)>

<!ELEMENT dx (# PCDATA)>

<!ELEMENT dy (# PCDATA)>

<!ELEMENT phc (# PCDATA)>

<!ELEMENT en (# PCDATA)>

<!ELEMENT det_time (#PCDATA)>

]]>

</input -dtd >

<output -dtd >

<![CDATA[

<!ELEMENT photons (photon)* >

<!ELEMENT photon (coord , en, det_time ) >

<!ELEMENT coord (cel) >

<!ELEMENT cel (ra, dec) >

<!ELEMENT ra (# PCDATA) >

<!ELEMENT dec (# PCDATA) >

<!ELEMENT en (# PCDATA) >

<!ELEMENT det_time (#PCDATA) >

]]>

</output -dtd >

</streamoperator >

</add >

</plan >

</plan >

</plan >
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D Alternative Aggregate Value Selection Algorithm

Algorithm 6 is an alternative to the aggregate value selection algorithm introduced in Section 4.5. This
alternative is computationally more intensive but would save memory for large data items by only buffer-
ing items that are actually needed later on. However, our data items are only aggregate values and are
therefore comparatively small. Memory usage for small data items tends to be higher in the alternative
algorithm than in the algorithm presented in Section 4.5 due to the additional use of sequence numbers
and index structures like bit vectors for identifying correct buffer entries. The buffer for the data items
is larger in the algorithm of Section 4.5 in general but the algorithm can do without additional sequence
numbers and index structures.

Algorithm 6 SelectAggregateValues

Input: Window sizes Δ and Δ′ as well as step sizes μ and μ′ of a data window to be reused and a new
data window, respectively.

Output: The correct sequence of aggregate values for reuse.

1: read first ((Δ′ −Δ) div μ) + 1 values v0 to v(Δ′−Δ) div µ from input stream
and assign sequence numbers from 0 to (Δ′ −Δ) div μ to them;

2: for value vn with sequence number n contained in buffer or read from input stream do
3: if n ∈ {i · (μ′ div μ) | i > 0 ∧ i ≤ Δ′ div Δ} then
4: insert vn into buffer;
5: end if
6: if n ∈ {i · (Δ div μ) | i ≥ 0 ∧ i < Δ′ div Δ} then
7: send vn to output;
8: end if
9: end for

10: remove values v0 to v(µ′ div µ)−1 from buffer if present;
11: decrease sequence number of each value contained in buffer by Δ′ div Δ;
12: read next Δ′ div Δ values from stream and assign increasing sequence numbers

starting from ((Δ′ −Δ) div μ)− (Δ′ div Δ) + 1;
13: continue in line 2 above until buffer contains no more values;
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E Example Scenario

<?xml version ="1.0" encoding ="UTF -8"?>

<scenario name =" example" xmlns:xsi=" http ://www.w3.org /2001/ XMLSchema -instance "

xmlns=" http ://www.in.tum.de/projects /StreamGlobe /scenario">

<statistix dbPath="${user.home }/ statistiX " reportType =" file" />

<graph >

<vertex vid ="0" label ="010" />

<vertex vid ="1" label ="100" />

<vertex vid ="2" label ="110" />

<vertex vid ="3" label ="001" />

<vertex vid ="4" label ="011" />

<vertex vid ="5" label ="111" />

<vertex vid ="6" label ="101" />

<vertex vid ="7" label ="000" />

<edge source ="4" target ="0" />

<edge source ="5" target ="2" />

<edge source ="6" target ="3" />

<edge source ="1" target ="7" />

<edge source ="0" target ="7" />

<edge source ="5" target ="4" />

<edge source ="2" target ="0" />

<edge source ="2" target ="1" />

<edge source ="4" target ="3" />

<edge source ="5" target ="6" />

<edge source ="6" target ="1" />

<edge source ="3" target ="7" />

</graph >

<streams >

<kindDefinition >

<kind name =" file" class=" streamglobe .client.p2p.FileContentServer " />

</kindDefinition >

<stream sid=" photons" type =" file">

<dtd filename ="etc/schemas/ vela_nested .dtd" />

<param name =" stream.filename">

/home/strglobe /data/vela/vela_demo .xml

</param >

<param name =" stream.server.port">

4711

</param >

<param name =" stream.sleep.time">

100

</param >

</stream >

</streams >

<queries >

<query qid ="1">

<![CDATA[

<photons >

{

for $p in stream(" photons ")/photons/photon

where $p/coord/cel/ra >= 120.0

and $p/coord/cel/ra <= 138.0

and $p/coord/cel/dec >= -49.0

and $p/coord/cel/dec <= -40.0
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return

<vela >

{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/phc} {$p/en} {$p/det -time}

</vela >

}

</photons >

]]>

</query >

<query qid ="2">

<![CDATA[

<photons >

{

for $p in stream(" photons ")/photons/photon

where $p/en >= 1.3

and $p/coord/cel/ra >= 130.5

and $p/coord/cel/ra <= 135.5

and $p/coord/cel/dec >= -48.0

and $p/coord/cel/dec <= -45.0

return

<rxj_photon >

{$p/coord/cel/ra} {$p/coord/cel/dec}

{$p/en} {$p/det -time}

</rxj_photon >

}

</photons >

]]>

</query >

<query qid ="3">

<![CDATA[

<photons >

{

for $w in stream(" photons ")/photons/photon

[coord/cel/ra >= 120.0

and coord/cel/ra <= 138.8

and coord/cel/dec >= -49.0

and coord/cel/dec <= -40.0]

|det_time diff 20 step 10|

let $a := avg($w/photon/en)

return

<avg_en >

{$a}

</avg_en >

}

</photons >

]]>

</query >

<query qid ="4">

<![CDATA[

<photons >

{

for $w in stream(" photons ")/photons/photon

[coord/cel/ra >= 120.0

and coord/cel/ra <= 138.0

and coord/cel/dec >= -49.0

and coord/cel/dec <= -40.0]
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|det_time diff 60 step 40|

let $a := avg($w/photon/en)

return

<avg_en >

{$a}

</avg_en >

}

</photons >

]]>

</query >

</queries >

<injectorMapping >

<mapping peer ="4" stream=" photons" />

</injectorMapping >

<queryMapping >

<mapping peer ="0" query ="1" />

<mapping peer ="2" query ="2" />

<mapping peer ="1" query ="3" />

<mapping peer ="6" query ="4" />

</queryMapping >

</scenario >
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