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Abstract

The Internet constitutes a huge distributed information source. Data sources on

the Internet are often inherently in�nite, e.g., dynamically generated data streams,

or very large. New expressive query operators are needed to generate \interesting"

data combining these data sources. A common problem is �nding best matching

pairs of data objects given user-de�ned multi-dimensional criteria. Traditional tech-

niques do not give satisfying results, because a single \best" pair cannot be deter-

mined, since diverse pairs, each being best in di�erent aspects of the comparison, are

interesting. We propose the novel class of bestmatch-join (BMJ) operators to solve

this problem. Unfortunately, the BMJ-operators are inherently blocking (pipeline-

breakers), such that, in their basic form, they are not applicable to streaming data

or \in�nite" data sources. To improve the quality of the result and to overcome

this problem we propose the constrained BMJ-operators. The constraints in combi-

nation with physical properties of the data stream, i.e., being ordered according to

a constrained join attribute, enable our new pipelined BMJ-algorithms, which are

based on synchronously shifting windows over the data streams. Finally, we present

the encouraging results of our experiments, which demonstrate the e�ectiveness of

our approach.



1 Introduction

We are moving fast towards the so-called information society. The Internet has become

a huge data source which enables users to globally exchange and query data provided

all over the world. Often, complex queries have to be processed to retrieve exactly the

information the users are interested in from this huge volume of \raw" data. A common

problem is, for instance, �nding best matching pairs of data objects provided by di�erent

data sources given user-de�ned criteria. This is done by comparing the data objects on

multiple dimensions (attributes), what leads to a partial order on the pairs of data objects.

Because partial orders naturally do not have a single minimum, diverse pairs, each being

best in di�erent aspects of the comparison, are interesting. Hence, traditional techniques

based on determining a single \best" pair fail to produce satisfying results.

We propose the novel class of BMJ-operators to solve this problem. Nearest neighbor

operators or closest-point algorithms use an overall distance between two data objects,

which is de�ned using all dimensions of the data objects, to determine closest pairs of data

objects. In contrast, our new BMJ considers each dimension individually. The quality

of the match of a pair of data objects given a special attribute is determined by user-

de�ned functions, e.g., the distance, set inclusion, etc. Hence, the BMJ computes the
best matching pairs of data objects having a maximum similarity on each individual join
attribute. The result contains those pairs for which no better matching pair exists.

Unfortunately, these basic BMJ-operators are inherently blocking operators (pipeline
breakers). Thus, they are not applicable on streaming data, because all input data has to
be processed before any results can be delivered. Further, less interesting pairs matching

very well in one but worse in all other dimensions may be contained in their result.
Therefore, we introduce reasonable restrictions to the basic bestmatch-join operators to

improve their results in common application scenarios. These constraints in combination
with physical properties of the data streams, i.e., being ordered according to a constrained
join attribute, enable a pipelining execution. We propose an algorithm for computing

BMJ-operators based on synchronously shifting data windows that allows processing of
in�nite data streams using limited storage capacity. Because of the pipelined execution,

this algorithm is suitable for application in modern stream processing query engines.

1.1 Application Scenarios

The BMJ-operation proposed in this paper for computing best matching pairs of two data
sources has a wide possible �eld of application.

A �rst application scenario is assembling a composite part out of two base parts part1
and part2. Di�erent suppliers provide di�erent models of these two parts. Since we want

to build the \perfect" composite part, we are only interested in those combinations of

models of the two parts which, e.g., have the lowest cost, minimum overall tolerance,
lowest weight, and are provided by high quality providers. A single best composite part

probably cannot be determined, because the cheapest composite part cannot be compared
to a more expensive one with a better tolerance and so on.

As another application scenario consider a recruitment agency. The task of such an

agency might be to �nd all the best job seekers for each given project advertised as a post.
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Whether a job seeker is suitable for a given project is determined upon attributes such

as the grade, professional quali�cations, the distance of the job seeker to the company,

and the experience of the job seeker. Again, comparing all pairs of open projects and job

seekers by means of a single rating function does not deliver satisfying results, because

for a given project a job seeker with a better grade might be of interest as well as a job

seeker with a worse grade but living closer to the company.

Our BMJ-operator computes in both application scenarios all best and incomparable

pairs.

Running Example

In this paper we use as a running example the matching of di�erent sensor data provided

as data streams. Consider a weather service which determines the probability of rain

at certain locations. Therefore, it shall need the temperature and humidity at these

locations. We assume that it is too expensive for the weather service to establish their

own meteorological stations and that there are both types of sensors available, which are

independently spread over the observed region. Further on, it is not necessary for a speci�c

location to accommodate both types of sensors. The measuring data of all sensors are
multiplexed by a suitable infrastructure, e.g., as proposed in [YG02, MF02], into two data

sources; one data source contains all temperature data and the other all humidity data.
Every data object of these data sources contains the sensor reading, the measurement time,
and the (two-dimensional) location of the sensor. To be able to estimate the probability

of rain, the weather agency has to �nd pairs of temperature and humidity measuring data,
which are both locally and temporally close together. Additionally, the pairs must satisfy

the following requirements to be usable for the estimation:

� The time between the measurement of the temperature and the humidity must not
exceed 10 minutes.

� The distance between the sensors for temperature and humidity must not exceed
100 m in each dimension.

Since the individual sensors most likely deliver their measurements with di�erent update

rates, it is not possible to make a static correlation of sensors to be used as pairs. In

the remainder of the paper we will show how to solve this problem of combining suitable

sensor data using BMJ-operators.

1.2 Related Work

Outside the database �eld, some work was done to solve the problem of �nding the

best data objects of a single set according to multi-dimensional criteria. In the �eld

of computational geometry [KLP75, PS85] describe the maximum vector problem and

introduce several algorithms to solve this problem. [SU00] gives a detailed overview on

di�erent aspects of the closest-point and nearest neighbor problems. These algorithms are

all main-memory techniques. In the database context, the authors of [BKS01] propose the

so-called skyline operator for databases and study di�erent implementation variants. In

[TEO01] and [KRR02] algorithms for progressively computing the skyline are proposed.
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Also, a lot of research was done in the related �eld of nearest neighbor queries, e.g.,

[RKV95, HAK00], and similarity joins, e.g., [BK01]. [Kie02] presents preference queries

and a preference algebra using partial orders.

Much research is going on in the �eld of processing data streams. In [BBD+02] require-

ments and challenges for stream processing query engines are presented. The Tukwila

project for eÆciently processing streaming XML data using adaptive query processing

techniques is introduced in [ILW+00]. Di�erent architectures for query processing over

sensor data streams are proposed in [YG02, MF02]. The authors of [CCC+02] present a

system architecture, a stream oriented set of operators, and optimization approaches for

monitoring data streams. The focus of [CF02] is to process both continuous and ad-hoc

queries on old and new data of data streams by treating data and queries symmetrically.

In [RH02] a query processing architecture continually generating partial results of a query

is presented.

1.3 Organization of the Paper

The remainder of the paper is outlined as follows. In Section 2 the class of BMJ-operators

is formally de�ned, simple evaluation methods are presented, and the constrained BMJ-

operators are introduced. The window-based algorithm, its optimizations, and special
application scenarios dealing with time-stamped data streams are shown in Section 3.
Experiments and their results are presented in Section 4 and further conclusions are

discussed in Section 5.

2 De�nition of the Bestmatch-Join Variants

In this section we give a formal de�nition of the family of BMJ-operators. To simplify
the notation we assume that the inputs of the BMJ-operators are two relational tables R
and S with the following schema:

R : f[x1; : : : ; xn; y1; : : : ; yd]g; S : f[y1; : : : ; yd; z1; : : : ; zm]g

With r 2 R and s 2 S the BMJ-operators generate pairs of tuples (r� s). As mentioned

in the introduction, these pairs shall match best according to special attributes, which are

denoted as join attributes. The attributes y1; : : : ; yd of R and S are used as join attributes.

The attributes x1; : : : ; xn and z1; : : : zm contain additional data and do not participate in
the computation of best pairs. The terms \join attributes" and \dimensions" are treated
as synonyms.

2.1 Comparing Pairs Using Partial Orders

For computing the best matching pairs of tuples all di�erent pairs (r� s) and (r0� s0) of

R�S have to be compared. Thus, for every join attribute yi (i 2 f1; : : : ; dg) an order�yi|

or at least a partial order|has to be de�ned on the elements of R�S. (r�s) �yi (r
0�s0)

denotes the situation that (r � s) matches better than (r0 � s0) according to yi. These
orders represent the user-de�ned criteria. If the join attributes are of numerical type, an
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order could, e.g., be de�ned using the minimum distance of the join attributes (denoted

as minAttrDist):

(r � s) �minAttrDist

yi
(r0 � s0), jr:yi � s:yij � jr

0:yi � s0:yij:

An example for an order based on the comparison of set-valued attributes is, for instance,

the order subset:

(r � s) �subset
yi

(r0 � s0), (r0:yi \ s
0:yi) � (r:yi \ s:yi):

Which order shall be used on a speci�c join attribute depends completely on the intended

application. Hence, these orders �yi may be provided as 'black-boxes', e.g., user-de�ned

functions, which get two pairs of tuples and return true in case of �yi , false in case of >yi,

and null otherwise.

Using the individual orders on each join attribute a single partial order �y1;:::;yd on the

elements of R� S can be constructed as follows:

(r � s) �y1;:::;yd (r
0 � s0), (r � s) �y1 (r

0 � s0) ^ : : : ^ (r � s) �yd (r
0 � s0) ^

(r � s) 6= (r0 � s0):

The in-equality predicate in the last clause of this partial order only compares the two

tuples on the join attributes. (r�s) �y1;:::;yd (r
0�s0) denotes the situation that the tuples

r and s match better than r0 and s0 according to all join attributes; this situation is called
(r� s) dominates (r0� s0). Since multiple dimensions are involved in the comparison, two

pairs may be incomparable, too.
We distinguish two types of orders on the individual join attributes. The �rst type of

orders|like minAttrDist|can be reduced to the order of real numbers using a function

fi : dom(yi)� dom(yi)! R. With such a function an order �yi can be written as

(r � s) �yi (r
0 � s0), fi(r:yi; s:yi) � fi(r

0:yi; s
0:yi):

For instance, minAttrDist is de�ned by fi(a; b) := ja� bj. The second type of orders are
arbitrary partial orders, e.g., the order subset. The methods presented in this paper are

applicable on both types. In real-world applications mainly orders of the �rst type are

used and hence we focus on this type in the remainder of the paper.

2.2 The Bestmatch-Join Operators

Using a partial order to compare elements of R � S the family of BMJ-operators can be
de�ned. The task of the BMJ-operator is to �nd all best matching elements of R � S

according to a given partial order �y1;:::;yd. That is, all elements of R�S have to be found

which are not dominated by any other pair in R�S. With the above notations the BMJ

of R and S, symbolized by ~�y1;:::;yd, can be de�ned as

R~�y1;:::;ydS :=
�
(r � s) 2 (R� S)

�� :9(r0 � s0) 2 (R� S) : (r0 � s0) �y1;:::;yd (r � s)
	
:

Since �y1;:::;yd is a partial order, not only one minimal pair exists in R�S. There may be

several minima which are all incomparable against each other. The BMJ computes all of
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Figure 1: Examples of Bestmatch-Join Variants

these minimal pairs. An alternative notation of the BMJ-operator using a partial order

� is ~��. The BMJ-operator is not associative, i.e.

(R ~�� S) ~��0 T 6= R ~�� (S ~��0 T ):

It is important to note that the BMJ-operator is di�erent from the matching problem
known in the context of graph theory. This matching problem is de�ned as �nding a

maximal subset of the edges|representing preferences for pairs of nodes|of a graph
such that no edges of this subset share a single node as start resp. end point. In contrast

to that, our BMJ-operator computes the overall best matching pairs of objects being
incomparable against each other.

Another interesting variant of the BMJ-operator is the left-outer-BMJ. It does not

only compute the overall best matching pairs but produces all best matching pairs for
each individual tuple of the left input. It can be formally de�ned as

R ~� y1;:::;ydS :=
�
(r � s) 2 (R � S)

�� :9(r � s0) 2 (R� S) : (r � s0) �y1;:::;yd (r � s)
	
:

Of course, the right-outer-BMJ is de�ned analogously. A last variant of the basic BMJ

is the full-outer-BMJ. It computes for each left and right input tuple its best pairs. It is

formally de�ned as

R ~�y1;:::;ydS :=
�
(r � s) 2 (R� S)

�� (:9(r � s0) 2 (R � S) : (r � s0) �y1;:::;yd (r � s)) _

(:9(r0 � s) 2 (R � S) : (r0 � s) �y1;:::;yd (r � s))
	
:

Figure 1 depicts on abstract examples how the BMJ and the left-outer-BMJ work.

It shows two datasets of two-dimensional points, which are symbolized by crosses (rep-
resenting a relation R) and circles (representing a relation S). The two dimensions are

used as join attributes with minAttrDist as order on each dimension. The three pairs
marked by boxes in Figure 1 (a) are the result of the BMJ R~�y1;y2S. These pairs are

incomparable against each other, because the join pair (A; a) is better than (A; c) with

respect to join attribute y2 and (A; c) is better than (A; a) with respect to join attribute
y1. Similar thoughts hold for (A; b). All other pairs are dominated by one of these three
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pairs, e.g., (B; d) is dominated by (A; a), because the distances of the points of both pairs

with respect to join attribute y1 are equal, but (A; a) is better than (B; d) with respect to

join attribute y2. This result can be achieved by, for instance, executing the SQL query

select *

from R as r, S as s

where not exists (

select *

from R as r0, S as s0

where abs(r0:y1 � s0:y1) <= abs(r:y1 � s:y1) and

abs(r0:y2 � s0:y2) <= abs(r:y2 � s:y2) and

r:y1 <> r0:y1 and r:y2 <> r0:y2 and

s:y1 <> s0:y1 and s:y2 <> s0:y2);

Figure 1 (b) shows the result of the left-outer-BMJ R ~� y1;y2S using the same inputs. For

the �rst tuple A of R the same conditions hold as before. Hence, the same pairs (A; a),

(A; c), and (A; b) are generated. Next, the data point B is examined. The pair (B; d)

dominates all other pairs with B as the �rst point and thus it is contained in the result.
There are no more tuples in R, so the result of the left-outer-BMJ contains the marked
pairs. To compute this result the de�nition of the left-outer-BMJ can be analogously

transformed into SQL as shown above for the BMJ. In order to specify BMJ-operators in
SQL queries, we propose to extend SQL's from clause as follows:

select . . .
from R [ ( left j right j full ) outer ] bestmatch join S

on R:y1 order1 S:y1, R:y2 order2 S:y2, . . .

where . . .

The join attributes y1; y2; : : : are speci�ed after the on-keyword. \order1", \order2", : : :
denote the names of the user-de�ned comparison functions to be used as an order on the

particular join attribute.
Obviously, there is a close relationship between the BMJ-operator and the skyline

operator introduced in [BKS01]. The skyline of a single set of points is de�ned as those

points which are not dominated by any other points of the set. Using the above de�ned
partial order �y1;:::;yd the BMJ can be ascribed to the computation of a skyline of the set

R�S as R~�y1;:::;ydS = skyline�y1;:::;yd
(R�S). Therewith, a �rst approach for computing

the BMJ in the materialized case|which is not the scope of this paper|is to apply

existing skyline algorithms on R � S. The outer-BMJ variants cannot be reduced to the

computation of a single skyline on R�S. Algorithm 1 shows the nested-loops approach for

computing the left-outer-BMJ. Similarly, the other outer-BMJ variants can be computed.

2.3 Constrained Bestmatch-Joins

Looking at Figure 1 it can be observed that \extreme pairs" like (A; b) may be con-
tained in the result of best matching pairs. This pair matches very well in one dimension

(y2) but very poorly in the other dimension(s). This behavior is not desirable for many
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Algorithm 1 nested-loops left-outer-BMJ

Input: R, S, partial order �y1;:::;yd

Output: R ~� y1;:::;yd S

for all r 2 R do

2: for all s 2 S do

dominated = false

4: for all s0 2 S do

if (r � s0) �y1;:::;yd (r � s) then

6: dominated = true

end if

8: end for

if :dominated then

10: Output (r � s)

end if

12: end for

end for

applications, because a single well-matching dimension might not balance the remain-
ing poorly-matching dimensions. Therefore, we propose the approach that only pairs
(r � s) 2 R � S are considered which do not exceed an individual maximum distance

in each constrained dimension. This maximum distance on yi for being considered as a
possible pair is denoted as �i. The distance of two tuples r and s according to yi is sym-

bolized by di(r; s). The situation that di(r; s) � �i for every i 2 f1; : : : ; dg is denominated
as d(r; s) � � (� symbolizes the vector of the individual �i). So, only those (r� s) 2 R�S

have to be considered as candidates for best matching pairs, for which d(r; s) � � holds.

Therewith, the constrained BMJ-operator, denoted as ~��
y1;:::;yd

, is formally de�ned as

R~��
y1;:::;yd

S :=
�
(r � s) 2 (R � S)

�� d(r; s) � � ^ :9(r0 � s0) 2 (R� S) :

(d(r0; s0) � � ^ (r0 � s0) �y1;:::;yd (r � s))
	
:

Analogously, the constrained left-outer-BMJ operator ~� �
y1;:::;yd

is de�ned as

R ~� �
y1;:::;yd

S :=
�
(r � s) 2 (R� S)

�� d(r; s) � � ^ :9(r � s0) 2 (R� S) :

(d(r; s0) � � ^ (r � s0) �y1;:::;yd (r � s))
	
:

Of course, the constrained right-outer-BMJ and the constrained full-outer-BMJ are de-
�ned similarly. Constrained BMJ-operators are expressed in SQL using our new notation

of the BMJ operators; the maximum distance constraints are simply added to the where-

clause of the query.
Therewith, the problem of the weather agency introduced in Section 1.1 can be solved

on materialized data. The temperature resp. humidity data shall be contained in the
relations Temp resp. Hum. Each relation consists of the attributes t, x, y, and v storing

the time of measurement, the x- and y-coordinates of the sensor, and the sensor reading.

The attributes t, x, and y are used as join attributes. For comparing pairs of sensor data
a partial order �t;x;y is constructed using minAttrDist on each dimension as an order. The

8



given restrictions can be employed by setting �t = 10min, �x = �y = 100m. Therewith,

the expected pairs of sensor data can be obtained by evaluating the query

Temp ~� �
t;x;y Hum:

The result contains pairs of sensor data consisting of the best matching humidity mea-

surements for each temperature sensor. If for a certain temperature sensor no humidity

measurement satisfying the speci�ed requirements is available, it will not be contained in

the result. To compute the results Algorithm 1 has to be extended to compare only those

pairs which ful�ll the given maximum distance constraints on each dimension. Another

possibility is to transform the query into standard SQL as demonstrated in the previ-

ous section; the constraints are simply added to the where-clauses of the query and the

sub-query.

3 Evaluating Bestmatch-Joins on Data Streams

Naturally, Internet data sources provide their data as data streams. These data streams
are either in�nite or very huge. In both cases it is not feasible to store them locally and
process the materialized data. Thus, methods for evaluating the constrained left-outer-

BMJ operators on streaming data are needed.
In this paper a data stream R is considered to be an ordered sequence of tuples

< r1; r2; � � � >. The tuples can only be read one-by-one. That is, the tuples are read in the
sequence r1; r2; : : : If ri has been read, the tuples rj with j � i cannot be accessed anymore.
The problems arising from computing blocking operators, like the BMJ operators, on such

data streams are discussed in the next section.

3.1 Bestmatch-Joins and Data Streams

To clarify the problems of query evaluation over data streams we �rst consider the stan-

dard join operator. To avoid a blocking execution, utilizing suitable join algorithms, e.g.,
the double pipelined hash join, enables a pipelined execution. That is, for every read input

tuple the join mates can be computed (on the basis of the inputs known up to that time)

and delivered. To be able to compute the correct result, i.e., no join mates are missed, all
consumed inputs have to be bu�ered. Hence, working on in�nite data streams a pipelined

execution is possible, but the size of the state of a join operator grows unboundedly.

In contrast to that, the BMJ-operators are|in their basic form|inherently blocking.

This is due to the fact that the best matching pairs of two (�nite) data streams might be

the last two tuples of the data streams. Therefore, the correct result cannot be delivered

before the entire streams have been processed. If the BMJ-operators are forced to deliver

any results before, these results are approximative intermediate results. That is, they

are correct with respect to the data processed up to that time, but some pairs might get

invalidated by new (better matching) pairs computed at a later time. Hence, dealing with

in�nite data streams only approximative results can be continuously propagated. As for

the conventional join, in this case the state of the BMJ-operators has an unlimited size,
because all input data has to be bu�ered.
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To avoid the computation of uninteresting pairs we introduced the constrained BMJ-

operators. On their own, the maximum distance constraints for pairs being interesting

do neither bound the size of the state of the constrained BMJ-operators, nor enable a

pipelined execution, because a best matching pair might consist of tuples being delivered

at the beginning of the �rst and at the end of the other data stream. Hence, still the

entire streams have to be processed to compute precise results. But, exploiting physical

properties of the data stream, i.e., being sorted on one join attribute, the size of the state

of the BMJ-operators can be bounded: For any tuple r 2 R only those tuples s 2 S have

to be bu�ered which are contained in the contiguous interval r:y1� �1 � s:y1 � r:y1+ �1 of

the data stream S (assuming that the data streams are ordered according to y1) and vice

versa. In case of the outer-BMJ-operators the combination of constraints and physical

properties even enables a pipelined execution. For instance, for any tuple r of the left data

stream the constrained left-outer-BMJ is able to determine, if all interesting join mates

of the right data stream are processed yet. This is the case, if all tuples s of the above

mentioned contiguous interval of the right data stream have been read. Afterwards, the

precise results for this r can be delivered without processing the remainder of the streams

and therefore a pipelined execution is achieved. This applies analogously for all outer-
BMJ-operators.

On the whole, in combination with particular physical properties of the (in�nite) data
streams we are able to compute the constrained outer-BMJ-operators in a pipelined man-
ner utilizing size-limited bu�ers. The constrained BMJ-operator remains to be inherently

blocking, but we are able to compute and deliver approximative intermediate results,
which converge to the precise result in case of �nite data streams, using a state of limited

size. In case of in�nite data streams these approximative results are the best we can
expect, because a \�nal" result does not exist.

3.2 The Window-Based Approach

In the previous section we have argued that it is possible to compute the constrained BMJ-
operators on data streams being sorted according to a join attribute in a non-blocking
fashion. Since the outer-BMJ-operators are more relevant for real-world applications, we

focus on the constrained left-outer-BMJ as an example in the remainder of the paper. The
restriction that the data streams have to be sorted is not out of touch with reality, because
many data streams, e.g., sensor data, stock quotes, etc., will naturally be delivered sorted

according to a particular dimension, e.g., the time. Furthermore, we assume that many

data sources are somewhat \intelligent", so that they can be told to deliver their data

streams sorted.

Utilizing this premise our window-based algorithm MatWin for the constrained left-
outer-BMJ works as follows. In the remainder we assume that both data streams are

sorted according to y1, that all distances of pairs di(r; s) are normalized to the interval

[0; 1], and therewith all �i are of the interval ]0; 1]. For the input data streams R and S

two data windows WR and WS are maintained and synchronously shifted over the data

streams. Because each data stream is sorted according to y1, it can be assured that
all tuples belonging to a certain interval with respect to y1 have been read from the

data streams. The upper and lower bounds of this interval are denoted with maxRS
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resp. minRS. maxRS � minRS is denominated as the height of the data windows.

miny1(WR) denotes the minimal y1-value of all tuples contained inWR. The data windows

are maintained such that their height equals �1. Hence, the contents of the data windows

given minRS and maxRS are

WR = fri 2 R j minRS � ri:y1 � maxRSg;

WS = fsj 2 S j minRS � sj:y1 � maxRSg:

During the computation the data windows are moved along the dimension y1 by increasing
minRS and maxRS. That is, all tuples ri 2 WR with ri:y1 < minRS 0 are deleted from
WR and new tuples are read from R and stored in WR as long as ri:y1 � maxRS 0,

with minRS 0 resp. maxRS 0 being the new lower resp. upper bound of the data windows.
Analogously, WS is maintained. Therewith, it can be assured that for a speci�c ri 2 R

all needed join mates sj 2 S are contained in WS at the same time: The tuple ri enters
WR, if ri:y1 = maxRS. At this time WS contains all sj 2 S, for which

ri:y1 � sj:y1 � �1

holds. Analogously, ri is deleted from WR, if ri:y1 < minRS. Before that, WS contained

all sj 2 S with
sj:y1 � ri:y1 � �1:

Hence, all interesting join mates are contained in WR and WS while the data windows
are shifted over the data streams. Because only a �xed interval with regard to y1 of the

data streams is contained in the data windows, they have a limited maximum size, which

depends on the distribution of the values of the join attribute y1. However, the maximum
size of the data windows might be large, so they are stored on secondary storage in pages

of a �xed size. In the next sections, eÆcient materializing and I/O-scheduling strategies
for computing the constrained BMJ-operators on these materialized data windows are

presented.

The Figures 2 to 4 show how the MatWin algorithm works. In these �gures two join
attributes y1; y2 are used. The data streams are sorted according to y1 and therefore the

tuples are delivered from the bottom up. Figure 2 shows the initial computation step. The

�rst data windows WR and WS are read (with minRS = 0, maxRS = �1), materialized,

and the left-outer-BMJ is computed on all pairs of WR � WS using the nested-loops
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Figure 3: Moving Data Windows

algorithm (Algorithm 1). Not all needed pairs are processed at this time, so the computed

best pairs are held in memory as an intermediate result O. Next, the data windows have

to be moved. At a �rst step, all tuples ri 2 WR are removed, for which ri:y1 = minRS

holds. To calculate the new bounds of the data windows the two distances d and d0 have to

be considered. d is the distance with regard to y1 of the �rst tuple outside the current data

window to maxRS. d0 is de�ned as d0 = miny1(WR) �minRS. Therewith, minRS and
maxRS are increased by min(d; d0) and the data windows are moved as described above.
The new situation is depicted in Figure 3. The remaining parts of the data windows

are denoted by W 0

R resp. W 0

S, the newly read parts are denominated as �WR and �WS.
Since all discarded tuples of the data windows have been completely processed, all best
matching pairs they are involved in can be propagated to the output data stream and

deleted from O. The remaining current best pairs have to be updated with the pairs of
(W 0

R[�WR)� (W
0

S [�WS). This is done by comparing the current best pairs O to pairs

of the new data windows using �y1;:::;yd. If a pair in O is dominated by a new pair, this
new pair is inserted into O and the dominated pair is deleted. (W 0

R[�WR)�(W
0

S[�WS)
can be rewritten as

(W 0

R �W 0

S) [ (W
0

R ��WS) [ (�WR � (W 0

S [�WS)):

We can see that not all pairs of the new data windows have to be compared with O,

because the pairs of W 0

R �W 0

S have already been processed in the previous step. Hence,
only the pairs of W 0

R � �WS and �WR � (W 0

S [ �WS) have to be compared with all
pairs contained in O. This situation is depicted in Figure 4. The movement of the data

windows, the propagation of �nished results, and updating O continues until no more

data can be read from the data streams.

The details of the MatWin algorithm are shown in Algorithm 2. The method Mate-
rializeWindows() (line 9) reads tuples from the data streams and materializes the data
windows onto secondary storage. Its details are presented in Section 3.3.3. The method

Update(: : : ) used in lines 11, 13, and 14 updates the current best pairs of the left-outer-

BMJ by the given parts of the data windows using a nested-loops algorithm as described
above. Of course, instead of the constrained left-outer-BMJ the other constrained BMJ-

operators can be utilized in this method. In case of the constrained BMJ, the propagated

pairs are approximative as described in the previous section. Thus, the MatWin algorithm

12
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Figure 4: Updating Current Best Pairs

must additionally keep track of propagated pairs for being able to invalidate them at a

later time.

3.3 I/O-Scheduling Using the �-Grid-Order

For an eÆcient computation of the left-outer-BMJ on the materialized data windows using

a limited amount of main memory we employ the Epsilon Grid Order developed in [BK01].
It was designed to eÆciently compute the similarity join f(p�q) 2 (P�Q) j jjp�qjj � Dg

of two data sets P and Q given a maximum distance D of the pairs of points. To suit our
needs, we extend this order to consider a maximum distance �i on each dimension instead
of using a single distance D. We denote our extended version of the Epsilon Grid Order as

�-Grid-Order. Further, the scheduling algorithms of [BK01] exploiting the Epsilon Grid
Order were presented for the similarity self-join; we adapted them to work on two inputs
instead of one.

3.3.1 De�nition and Properties of the �-Grid-Order

First, we de�ne the �-Grid-Order and afterwards we derive an important property for
utilizing it in the context of constrained BMJ computations. To keep it simple, we de�ne

the �-Grid-Order and present its properties using d-dimensional vectors p and q. The
dimensions of these vectors correspond to the join attributes in the database context.

The �-Grid-Order order is symbolized by <�. The predicate p <� q is true if there exists

a dimension i such that the following condition holds:

��
qi

�i

�
<

�
pi

�i

��
^

��
qj

�j

�
=

�
pj

�j

�
8j < i

�

pi resp. qi denote the i-th dimension of the vectors p and q. B�ohm et. al. show that the
original Epsilon Grid Order is an irreexive order. The proofs of the properties of an

irreexive order are similar for the �-Grid-Order and therefore they are not carried out.
The �-Grid-Order divides the d-dimensional space into a grid. The edges of every cell

of this grid have a length of �i in the dimension i. The tuples contained in each cell are

equal with regard to <�.

13



Algorithm 2 MatWin

Input: data streams R and S; �1; : : : ; �d; �y1;:::;yd

Output: output data stream of R ~� �
y1;:::;yd

S

/* initialization */

2: O ;; oldMaxRS  0

WR  ;; WS  ;

4: r R:next(); s S:next()

minRS  max(0; r:y1 � �1)

6: maxRS  minRS + �1
/* computation */

8: while (r 6= null) _ (WR 6= ;) do

MaterializeWindows()

10: if oldMaxRS = 0 then /* new windows */

Update(O;WR;WS;�y1;:::;yd)

12: else /* moved windows */

Update(O;W 0

R;�WS;�y1;:::;yd)

14: Update(O;�WR;W
0

S [�WS;�y1;:::;yd)

end if

16: /* update window bounds */

oldMaxRS = maxRS

18: WR:delete(fr
0 2 WR j r

0:y1 = minRSg)
if (r = null) ^ (WR = ;) then

20: break

else if (r = null) ^ (WR 6= ;) then
22: minRS = miny1(WR)

else if (r 6= null) ^ (WR 6= ;) then
24: minRS = min(miny1(WR); r:y1 � �1)

else /* (r 6= null) ^ (WR = ;) */
26: minRS = r:y1 � �1

oldMaxRS = 0

28: end if

maxRS  minRS + �1
30: WS:delete(fs

0 2 WS j s
0:y1 < minRSg)

output and delete f(r0 � s0) 2 O j r0:y1 < minRSg

32: end while

output f(r � s) 2 Og

The following properties of the �-Grid-Order enable an eÆcient computation of con-

strained BMJ-operators. Let p; p0; q be d-dimensional vectors. Given a �xed p, the follow-

ing condition holds: If q <� p � (�1; : : : ; �d), there exists a dimension i 2 f1; : : : ; dg with
pi � qi > �i and therewith

q 62 [p1 � �1]� � � � � [pd � �d]:

Additionally, for all p0 with p <� p
0 exists a dimension j 2 f1; : : : ; dg with p0j � qj > �j

14



and therewith

q 62 [p0
1
� �1]� � � � � [p0d � �d]:

Altogether, a point q cannot be a join mate of p if q <� p� (�1; : : : ; �d). Again, the proof

of this property is similar as presented for the original Epsilon Grid Order and hence it

will not be done in this paper. Analogously, it can be derived that a point q cannot be a

join mate of p if p+ (�1; : : : ; �d) <� q.

These two properties can be utilized for an eÆcient computation of R ~� �
y1;:::;yd

S (and

the other variants) as follows. We assume that S is sorted according to the �-Grid-Order
on the join attributes. Further, let

s� � := [s:y1 � �1; : : : ; s:yd � �d; s:z1; : : : ; s:zm]

and analogously s + �. For a speci�c r 2 R only those s 2 S are interesting join mates

which are contained in the interval

[s� �; s + �]

of the according to <� sorted sequence of S. Hence, not all pairs f(r � s) j s 2 Sg have

to be examined for computing the best matching pairs.

3.3.2 I/O-Scheduling

As mentioned before, the current data windows WR and WS are stored in pages on sec-

ondary storage by our MatWin algorithm. The pages of WR and WS are denoted as
P i
R resp. P j

S, where i and j range between 1 and the maximum number of pages of WR

resp. WS. To be able to exploit the bene�ts of the �-Grid-Order these data windows have
to be stored sorted according to <�. That is, every page contains a sorted sequence of
tuples. Further, the last tuple of a page P i

R has to be less or equal than the �rst tuple

of another page P i0

R with i < i0 (analogously for the pages of WS). Two approaches for
storing the tuples in that manner are presented in the next section. The pages of WR and

WS have to be loaded into main memory to perform the computation of the constrained
BMJ operators. For that purpose a bu�er for m pages shall be available. The task of
the scheduling algorithm is to load the pages of WR and WS into main memory for the

computation of the constrained BMJ operators in such a way that the number of disk

accesses is minimized.
Figure 5 depicts an exemplary assignment of tuples to pages with respect to the join

attributes y2 and y3. The join attribute y1 is omitted, because the height of the data
windows is equal to �1. Hence, with regard to y1 the tuples of the data windows are all

equal or at most divided into two parts|if minRS and maxRS are not a multiple of

�1|according to <�. Therefore, to be able to present the assignment of tuples to pages
in more detail we only show the join dimensions y2 and y3. For presentation purposes we

assume in the remainder that the layout of pages of both data windows equals that of
Figure 5. Of course, in reality the assignment of tuples to pages will not be equal for WR

and WS.

To perform the update of the current best matching pairs O with new data windows
the pages of WR and WS have to be loaded into the memory bu�ers and all interesting
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Figure 6: Pairs of Pages to be Processed

pairs have to be examined. Because of the observations of the previous section, not all

pairs of pages have to be considered for computing the constrained BMJ. Figure 6 shows

which pairs of pages have to be considered at the exemplary page layout of Figure 5.
Each cell in the matrix stands for a pair of pages. Obviously, the pair (1,1), i.e. P 1

R and

P 1

S , has to be processed. The pair (1,2) has to be considered, because P 1

R may contain
tuples which have interesting join mates stored in P 2

S . The grey shaded cells need not
to be considered. For instance, the pair (1,3) does not have to be processed, because P 3

S

cannot contain any interesting join mate s for any r 2 P 1

R.
Now, all interesting pairs of pages have to be loaded into the main memory bu�ers

causing a minimal number of disk accesses. Assuming m = 4 the naive column-by-column
scheduling method is optimal. One bu�er is reserved for storing the current page of WR.
The remaining m � 1 bu�ers are available for loading pages of WS. If m � 1 pages of

WS are contained in the bu�ers and a new page of WS has to be loaded, a page of WS is
discarded from memory using the LRU strategy. In the �gure a disk access of a page of
WR is symbolized by a single hatched oval, a disk access of a page of WS is symbolized

by a double hatched oval. First, P 1

R and P 1

S are loaded and O is updated with all pairs

of P 1

R � P 1

S . Next, P
2

S is loaded and the pairs of P 1

R � P 2

S are processed. No other pairs

of pages in this column have to be processed. This can be determined by comparing the
last and �rst tuples of the corresponding pages using <�. The values of the join attributes

of the �rst and last tuple of a page can be held in main memory to avoid additional disk

accesses. Proceeding to the next column is done by discarding P 1

R and loading P 2

R. This

scheduling is performed until all pairs of pages have been processed. In the style of [BK01]

this scheduling method is called gallop mode.

Figure 7 depicts another example using m = 4 and the gallop mode. Up to column
2 this method is optimal. Then, thrashing occurs, because the number of pages needed

for storing the whole interesting interval of tuples exceeds the number of memory bu�ers.

In this case we switch to the crabstep mode (according to [BK01]) as shown in Figure 8.
After processing the pair (2,3), P 4

S has to be loaded, but there is no available bu�er.

Hence, the loaded pages of WS are pinned to the bu�ers. The pages P 4

R; : : : ; P
5

R are
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��
��
��
��
���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
����
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

�����
�����
�����

�����
�����
�����

1 2 3 4 5 6 7

P
i
R

7

6

5

3

2

1

4P
j

S

Figure 8: Crabstep Mode

consecutively loaded into the single bu�er for pages of WR and processed. After (5,3) has

been computed, all bu�ers are freed and the scheduling is continued at (2,4) starting with

the gallop mode and switching to the crabstep mode if needed. Therewith, the number

of disk accesses can be greatly reduced|in this example from 30 to 21.
As explained in Section 3.2, the MatWin algorithm does not have to process all pairs

of WR �WS but only parts of the whole data windows, e.g., �WR �WS. The tuples of

these parts, e.g., �WR, are spread over all pages of the data windows. Of course, while
processing a pair of pages the tuples not contained in these interesting parts of the data
windows are ignored. To eÆciently process only the interesting parts of the pages the

following indexing technique can be applied. A page contains an ordered sequence of cells
of the �-Grid-Order. In every cell, all tuples are equal according to <� and hence the

sorting according to y1 can be preserved in each cell. For every page the start tuples of
the contained cells are stored. Therewith, the �rst tuple of all tuples of a page with a
y1-value greater than a given boundary can be determined by performing a binary search

in each cell of the page. Analogously, all tuples of a page with an y1-value lower than a

given boundary are processed by proceeding sequentially through each cell until a tuple
with a y1-value greater than the limit is reached.

3.3.3 Materializing the Data Windows

Finally, we show how to materialize the current data windowsWR andWS sorted according

to <�.

The common part of both methods is depicted in Algorithm 3. The memory bu�ers,

which are used in the previous section for computing the constrained BMJ operators,
are divided between the two inputs. For R resp. S mR resp. mS pages can be held in
main memory (mR + mS = m). mR and mS may be dynamically adapted to improve

the eÆciency of the materialization, e.g., if WR is completely materialized before WS,

the entire bu�er is used to materialize WS. The tuples of the data streams are read
and stored in the corresponding bu�er. If the bu�er of a data window is full or the

data window contains all necessary tuples, e.g., WR is completely �lled, if a tuple with

r:y1 > maxRS has been read, the bu�er is sorted (in memory) and written to disk using

17



Algorithm 3 MaterializeWindows

while ((r:y1 � maxRS) ^ (r 6= null)) _

((s:y1 � maxRS) ^ (s 6= null)) do

2: if (r:y1 � maxRS) ^ (r 6= null) then

if jMRj = mR � 1 then

4: Materialize(MR); MR  ;

end if

6: MR:add(r); r R:next()

end if

8: if (s:y1 � maxRS) ^ (s 6= null) then

if s:y1 � minRS then

10: if jMSj = mS � 1 then

Materialize(MS); MS  ;

12: end if

MS :add(s)

14: end if

s S:next()
16: end if

end while

18: Materialize(MR);Materialize(MS)

the Materialize()-method (lines 4, 11, 18). This is repeated until both data windows are

completely materialized. The Materialize()-method implements one of the following two
strategies.

The �rst materializing approach works like external sorting. If the memory bu�ers of a

data stream are full, the pages are sorted and written to secondary storage as a run. This
is done until all necessary tuples of a data window have been read. Finally, all created
runs and the old data window (W 0

R resp. W 0

S) of the previous step are merged to create

the current sorted data window. This approach is denoted as standard materialization.
The second approach, denoted as grid materialization, utilizes the fact that the �-

Grid-Order divides the data space in cells. This grid is held in memory as an index.

Every cell of the grid contains a list of pages. If the memory bu�ers of a data stream are

full, the tuples are sorted in memory. Using the grid structure, all tuples belonging to a

single cell are materialized by reading the last page of the list of pages of this cell and
writing the tuples to it. If a page is full, a new one is appended to this list.

Both approaches have assets and drawbacks. The standard materialization has to

create and merge the runs. Hence, all pages of the old data windows and the current
runs are read and written. In contrast to that, the grid materialization has to read and

write only the last existing page of each cell for inserting new tuples. Hence, the grid
materialization will probably generate less disk accesses. But, the grid structure will

grow rapidly with decreasing �i and an increasing number of dimensions. Additionally,

the pages might be populated sparsely, because for each cell a page is reserved.
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3.4 Exploiting Fuzzy Orders on Data Streams

The premise of the data streams being ordered is needed for the MatWin algorithm to

be able to determine, whether for a given upper bound of the data windows all necessary

tuples have been read. However, some data sources may not be able to produce a strictly

ordered data stream but a \somewhat ordered" data stream. E.g., a sensor network

collecting data from individual sensors might not be able to deliver all sensor readings as a

single data stream ordered according to the time of measurement, because the connections

of the individual sensors have variable latencies. Hence, on the whole the timestamps of

the sensor readings increase, but some tuples may be slightly out of order. But, the sensor

network might be able to assure that, e.g., all measurements up to t� 5s are delivered at

a time t. We denote data streams satisfying such additional properties as fuzzy ordered

data streams. Such properties enable the MatWin algorithm to process fuzzy ordered data

streams, because therewith it can be determined, if all needed data has been read from a

data stream.

We distinguish two types of constraints for fuzzy ordered data streams: static and

dynamic constraints. A static constraint is a �xed property of a data stream known in

advance. For instance, static constraints are:

value constraint Let ri be the last read tuple of a data stream R and maxy1 :=
maxfrj:y1j1 � j � ig. Then, this constraint assures that all tuples r0 with r0:y1 �

maxy1 � c have been entirely delivered, with c being a constant depending on the

structure of the data stream.

read-ahead constraint The read-ahead constraint de�nes the number c of tuples which

have to be read from the data stream until it can be determined, if all needed tuples
have been read yet. E.g., if we want to read all tuples r with r:y1 � maxRS, we
have to read until c consecutive tuples have y1-values greater than maxRS.

In contrast to that, dynamic constraints are delivered by the data source in the data stream
as meta-data interspersed with the data tuples. An example for such a dynamic constraint

is the concept of punctuations of data streams proposed by Tucker et. al. [TM02]. A

punctuation is a predicate, which is delivered in the data stream like a normal tuple. It
means that after a punctuation has been read, no tuples will be contained in the data

stream which satisfy that predicate. For instance, after the punctuation \y1 � c" has been

read, no more tuples with y1-values less than or equal to c are delivered. Punctuations

of a data stream can be arbitrary predicates on any attributes. For our purpose only

punctuations concerning the join attribute y1 in the form of \y1 � c" are useful.

Only minor changes to the �lling- and materializing-step of the MatWin algorithm

(line 9) have to be made to accommodate it to fuzzy ordered data streams. In case of a

sorted data stream it is suÆcient to read from a data stream given an upper boundmaxRS

of the data windows until a tuple with y1 > maxRS has been read. Therewith, the data

window contains all necessary tuples and the y1-value of this \next" tuple outside the

current data window, which is needed for the calculation of the new bounds, is known. In
case of fuzzy ordered data streams the MatWin algorithm has to continue reading tuples

from the stream until the y1-value of this \next" tuple is de�nitely known. How many
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Figure 9: Filling Data Windows on Fuzzy Ordered Data Streams

tuples have to be read ahead is determined by considering the given constraint of the

fuzzy ordered stream.

Figure 9 shows this situation for the example of the initial computing step of the

MatWin algorithm. R and S shall be fuzzy ordered data streams with the static read-

ahead constraint c = 2. While �lling the data windowWR the tuple r with r:y1 > maxRS

is read. Because of the fuzzy ordered stream, the Materialize()-method continues reading

tuples until the read-ahead constraint is satis�ed, i.e., until r0 is known. Now, it is
guaranteed that all necessary tuples for WR have been delivered and r is the \next"
tuple outside the data window. WS is handled analogously. Dynamic constraints like

punctuations can be exploited analogously. For �lling a data window with a given upper
bound maxRS the data stream is read until a punctuation \y1 � c" with c > maxRS

is received. Then, all needed tuples are known and the computation can be done as
presented in the previous sections.

Obviously, in the presence of fuzzy ordered data streams the data windows may contain

tuples lying above the upper bound of the data windows. To avoid multiple processing of
these tuples only the tuples within the upper and lower bound of the data windows have
to be considered for computing the constrained BMJ operators.

Being applicable on fuzzy ordered data streams the possible �eld of application of

the MatWin algorithm signi�cantly increases. Further, it might be possible that the

data sources can be told to deliver the data streams ordered according to the �-Grid-
Order. Obviously, such streams are fuzzy ordered data streams and therefore usable by
the MatWin algorithm. In this case the sorting steps during the materialization of the

data windows can be avoided and the MatWin algorithm becomes even more eÆcient.

3.5 Dealing with Timestamped Data Streams

In the previous sections we have shown how the constrained BMJ operators can be ef-

�ciently processed on (fuzzy ordered) data streams. In this section we propose exem-

plary application scenarios for computing constrained BMJ-operators on special data
streams which we denote as timestamped data streams. Timestamped data streams are

data streams where each tuple has an associated timestamp t and which are sorted, or at
least fuzzy ordered, according to this dimension t. We distinguish two cases with regard
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Figure 10: Fixed Time Window Evaluation

to the computation of constrained BMJ-operators on such streams: t is not used as a join
attribute and t is a join attribute.

3.5.1 Time as a Non-Join-Attribute

In this case the most common task is to consider all input data given a particular maximum
age, but the timestamps of the input tuples do not a�ect the computation of best matching
pairs. For instance, the problem \Compute R ~� �

y1;:::;yd
S of the data streams R and S using

the order �y1;:::;yd and do not consider any input data older than T" has to be solved.
Therefore, we employ a simple window-based (not the MatWin algorithm) approach

as shown in Figure 10. For each data stream a data window is maintained such that for

every time all previous tuples of the period T are contained. The upper and lower bounds
with regard to the timestamps of the tuples of both data windows are equal. Every time

a new tuple with an associated timestamp t is read from a data stream, all tuples with a
timestamp older than t � T are discarded from both data windows. The data windows

are either materialized, if they are too big for being stored in main memory, or held in

main memory. Whenever the data windows change, WR ~� �
y1;:::;yd

WS is computed, the best

matching pairs are annotated with the current time, and propagated to the output data

stream. For the computation of the constrained BMJ-operator any algorithm can be used,
e.g., the nested-loops algorithm utilizing the �-Grid-Order. We propose this re-evaluation

approach, because an algorithm continuously updating the current result of best matching

pairs does not produce satisfying results in this situation: Consider a very well matching
pair (r � s) which dominates a pair (r0 � s0), whereas r0 and s0 are younger than both r

and s. At a particular point in time, r, s, or both of them are discarded from the data

windows, because they are too old. At this time the pair (r0 � s0) might be contained
in the result, because (r � s) (which dominated (r0 � s0)) is not known any longer. An

approach which continuously updates the current best pairs will not generate the pair

(r0 � s0) after (r � s) has been discarded, because (r0 � s0) was already processed and it

will not be considered once more.
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Of course, fuzzy ordered data streams can be handled analogously as explained in

Section 3.4 for the MatWin algorithm.

3.5.2 Time as a Join-Attribute

In the second case the time-dimension is a join attribute and hence inuences the compu-

tation of best matching pairs. We show how to handle such a situation on the example:

\Compute for each tuple of the data stream R all best matching join mates of the data

stream S. Best matching pairs shall be those pairs which match best given a partial order

�y1;:::;yd (as de�ned in Section 2.1) not considering the time dimension, as well as pairs

being very young, even if they do not match perfectly according to �y1;:::;yd".

To solve this problem we have to de�ne the age of a pair. We consider the age of

a pair (r � s) being age(r; s) := max(r:t; s:t), i.e., a pair is as old as the youngest join

mate. In combination with the given partial order �y1;:::;yd a single partial order � for

comparing pairs of R � S can be constructed as follows to solve our problem using a

left-outer-BMJ-operator (with tc being the current time):

(r � s) � (r � s0), (tc � age(r; s) � tc � age(r; s0)) ^ ((r � s) �y1;:::;yd (r � s0))

Because of the de�nition of the age of a pair, a pair consisting of a young and a very

old tuple is considered to be young. Again, such pairs are not interesting in real-world
applications, because in general we are only interested in young pairs consisting of tuples

of roughly the same age. So, we only want to consider pairs (r� s) which di�er not more
than a given T in their age, i.e., to be an interesting pair the condition jr:t�s:tj � T must
hold. Since the data streams are (fuzzy) ordered according to the time-dimension and

pairs to be considered have a given maximum distance T with regard to this dimension,
the MatWin algorithm is applicable for eÆciently computing the constrained left-outer-

BMJ. Therewith, our problem is solved and the result contains all pairs for which no
younger and better matching pair exists, as well as older pairs which match better than
the younger pairs according to �y1;:::;yd.

4 Performance Evaluation

In this section we present the results of the benchmarks to show the bene�ts of our

algorithms. All tests were performed using a prototype Java (JDK 1.4) implementation.

All I/O operations are based on the java.nio-Package. In our experiments we measured
the query R ~� �

y1;:::;yd
S as an example. As input data we used relations with the schema�

[data: string, y1: double, : : : , yd: double]
	
, which were delivered as data streams R

and S. As before, y1; : : : ; yd were the join attributes of the constrained left-outer-BMJ.

On each dimension the order minAttrDist was utilized for comparison. The values of
the join attributes were randomly generated in the range [0; 1] using uniform, correlated,

and anti-correlated distributions as shown in [BKS01] and a normal distribution. All

experiments were carried out on a Sun Enterprise 450 with four 400MHz processors and
4GB of main memory. The implementation is not optimized for parallel processing, so

only one processor is utilized. In our tests we varied the size of the inputs, the number

22



0.01

0.1

1

10

100 200 300 400 500 600 700 800 900 1000

tim
e 

[m
in

]

|R| = |S|

MatWin/Standard/EGO
MatWin/Standard
MatWin/Grid/EGO
nested loops

Figure 11: Total Execution Time (2 Dimensions; Uniform Distribution; �i = 0:1)

of dimensions, the distribution of the join attributes, and the maximum distances �i for a
pair being interesting.

At �rst, we measured the total execution time of the MatWin algorithm in compar-

ison with the nested-loops algorithm to be able to judge the overall eÆciency of the
MatWin algorithm. Therefore, we used the 2-dimensional constrained left-outer-BMJ

with �i = 0:1, uniformly distributed values of the join attributes, and varied the size
of the input data streams. For the computation of the constrained left-outer-BMJ the
MatWin algorithm with/without utilizing the �-Grid-Order using the standard mate-

rialization (MatWin/Standard, MatWin/Standard/EGO) and the grid materialization
utilizing the �-Grid-Order (MatWin/Grid/EGO) were used. Figure 11 shows the results
of this experiment. All measured variants of the MatWin algorithm perform signi�cantly

better than the nested-loops algorithm. Utilizing the �-Grid-Order the eÆciency can be
further increased. The grid materialization performs slightly better than the standard

materialization. Figure 12 shows the results of the next experiment. In this test the three
MatWin-variants were measured varying the number of dimensions. The sizes of the in-
puts were �xed to 1000 tuples. The remaining parameters were as before. Obviously, the

grid materialization performs better with less dimensions. With an increasing number

of dimensions the growth of the grid prevails its bene�ts and it performs worse. The
performance of the standard materialization is not a�ected by the number of dimensions.

Considering the overall eÆciency the MatWin/Standard/EGO algorithm outperforms the
nested-loops algorithm. Other tests show, that these observations hold varying the distri-

bution of the values of the join attributes and the maximum distances �i. Of course, the

total time of execution can only be determined, if the data streams are �nite. But, it has
to be kept in mind that the nested-loops algorithm is not applicable to never-ending data

streams and thus a comparison of the overall performance is only feasible in this case.
To determine the performance of the MatWin algorithm on in�nite data streams the

following experiments investigate, how continuous the results are delivered. Therefore,

the constrained left-outer-BMJ was computed on data streams of a �xed size of 1000
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tuples with two join attributes and it was measured what percentage of the result has
been propagated at a certain time. The remaining parameters were as mentioned above.

Figure 13 depicts the results of this experiment varying the distribution of values of the

join attributes. It can be observed that the distribution of the join attributes has no
inuence on how continuous the results are propagated. The di�erence in total time is

due to the fact that using normally distributed join attributes the result contains more
pairs. Thus, more pairs have to be compared during the update of intermediate results and

the processing time increases. Figure 14 shows the results of the tests varying the number

of distinct values of the join attribute y1. Therefore, the precision of the values of y1 was
varied in the range of one to �ve decimal places to investigate, whether the granularity

of y1 inuences the propagation of results. It can be observed that the granularity does
not inuence the continuous propagation of results. An exception to this behavior is the
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measurement with one decimal place. In this case the precision is equal to �1 = 0:1. Due
to this fact the tuples are always located exactly on the boundaries of the data windows.

Whenever the data windows are moved, all tuples of the lower boundary are completely
discarded and the results they are involved in are propagated all at once. This explains

the steps in the measurement.
On the whole, the MatWin algorithm shows a good overall performance and pipelined

behavior in all our experiments.

5 Conclusion

In this paper we introduced the novel class of BMJ-operators and the more relevant
family of constrained BMJ-operators to compute best matching pairs of two data sets

based on user-de�ned multi-dimensional criteria. The constraints in combination with

physical properties of data streams overcome the blocking nature of the BMJ-operators

and enable our new pipelined BMJ-algorithms to process in�nite, (fuzzy) ordered data
streams. These algorithms are based on synchronously shifting data windows over the

data streams and materializing them on secondary storage. We discussed eÆcient I/O-

scheduling methods for processing the materialized data windows based on a particular
order of the materialized data. Our experiments showed a good overall performance and

pipelining behavior of this approach.
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