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ABSTRACT

A multi-tenant database system for Software as a Service
(SaaS) should offer schemas that are flexible in that they
can be extended for different versions of the application and
dynamically modified while the system is on-line. This pa-
per presents an experimental comparison of five techniques
for implementing flexible schemas for SaaS. In three of these
techniques, the database “owns” the schema in that its struc-
ture is explicitly defined in DDL. Included here is the com-
monly-used mapping where each tenant is given their own
private tables, which we take as the baseline, and a map-
ping that employs Sparse Columns in Microsoft SQL Server.
These techniques perform well, however they offer only lim-
ited support for schema evolution in the presence of existing
data. Moreover they do not scale beyond a certain level. In
the other two techniques, the application “owns” the schema
in that it is mapped into generic structures in the database.
Included here are XML in DB2 and Pivot Tables in HBase.
These techniques give the application complete control over
schema evolution, however they can produce a significant
decrease in performance. We conclude that the ideal data-
base for SaaS has not yet been developed and offer some
suggestions as to how it should be designed.
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1. INTRODUCTION

In the Software as a Service (SaaS) model, a service pro-
vider owns and operates an application that is accessed by
many businesses over the Internet. A key benefit of this
model is that, by careful engineering, it is possible to lever-
age economy of scale to reduce total cost of ownership rel-
ative to on-premises solutions. Common practice in this
regard is to consolidate multiple businesses into the same
database to reduce operational expenditures, since there are
fewer processes to manage, as well as capital expenditures,
since resource utilization is increased.

A multi-tenant database system for SaaS should offer sche-
mas that are flexible in two respects. First, it should be
possible to extend the base schema to support multiple spe-
cialized versions of the application, e.g., for particular ver-
tical industries or geographic regions. An extension may be
private to an individual tenant or shared by multiple ten-
ants. Second, it should be possible to dynamically evolve
the base schema and its extensions while the database is
on-line. Evolution of a tenant-owned extension should be
totally “self-service”: the service provider should not be in-
volved; otherwise operational costs will be too high.

This paper presents an experimental comparison of five
techniques for implementing flexible schemas for SaaS. In
three of these techniques, the database “owns” the schema
in that its structure is explicitly defined in DDL:

Private Tables: Each tenant is given their own private in-
stance of the base tables that are extended as required.
In contrast, in all of the other mappings, tenants share
tables. We take Private Tables as the experimental
baseline.

Extension Tables: The extensions are vertically partitio-
ned into separate tables that are joined to the base
tables along a row ID column.

Sparse Columns: Every extension field of every tenant is
added to its associated base table as a Sparse Column.
Our experiments here use Microsoft SQL Server 2008
[1]. To implement Sparse Columns efficiently, SQL
Server uses a variant of the Interpreted Storage Format
[4, 7], where a value is stored in the row together with
an identifier for its column.

Our experimental results show that these techniques per-
form well, however they offer only limited support for schema
evolution. DDL commands over existing data, if they are
supported at all, consume considerable resources and neg-
atively impact performance. In the on-line setting, the ap-



plication must be given control over when and how bulk
data transformations occur. An additional issue is that these
techniques do not scale beyond a certain level.

In the other two techniques, the application “owns” the
schema in that it is mapped into generic structures in the
database:

XML: Each base table is augmented by a column that
stores all extension fields for a tenant in a flat XML
document. Since these documents necessarily vary by
tenant, they are untyped. Our experiments here use
pureXML in IBM DB2 [20].

Pivot Tables: Each value is stored along with an identifier
for its column in a tall narrow table [2]. Our exper-
iments here use HBase [11], which is an open source
version of Google BigTable [6]. BigTable and HBase
were originally designed to support the exploration of
massive web data sets, but they are increasingly be-
ing used to support enterprise applications [14]. The
Pivot Table mapping into HBase that we employ is
consistent with best practices.

These two techniques give the application complete con-
trol over schema evolution, however our experimental results
show that they can produce a significant decrease in perfor-
mance from the baseline. For XML, the decrease is greatest
for reads, which require parsing the untyped documents and
reassembling typed rows. The decrease is proportional to
the number of extension fields. For Pivot Tables, the de-
crease is more than an order of magnitude in some cases.
Note that these results should not be taken as a negative
statement about the quality of these systems, since they
have not been optimized for our use case. Moreover, HBase
is an early-stage open source project, not a mature com-
mercial product. Our results are intended to give a general
indication of the trade-offs in implementing flexible schemas.

Several major SaaS vendors have developed mapping tech-
niques in which the application owns the schema. This ap-
proach has been elevated to a design principle whereby the
application derives essential capabilities by managing the
metadata itself [19, 23]. To achieve acceptable performance,
these applications re-implement significant portions of the
database, including indexing and query optimization, from
the outside. We believe that databases should be enhanced
to directly support the required capabilities.

Our experiments are based on a multi-tenant database
testbed that simulates a simple but realistic Customer Re-
lationship Management (CRM) service. The workload con-
tains single- and multi-row create, read, and update oper-
ations as well as basic reporting tasks. The schema can
be extended for individual tenants and it can evolve over
time. Our previous work with a more limited version of this
testbed (no extensions) showed that the performance of Pri-
vate Tables degrades if there are too many tables [3]. This
effect is due to the large amount of memory needed to hold
the metadata as well as an inability to keep index pages in
the buffer pool. In this paper, we create only a moderate
number of tables, take Private Tables as the baseline, and
use it to compare the other mappings.

This paper is organized as follows. Section 2 describes
our multi-tenant database testbed and the CRM application
that it simulates. Section 3 describes the schema mapping
techniques. Section 4 presents the results of our experi-
ments. Section 5 concludes that the ideal database for SaaS
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Figure 1: CRM Application Schema

has not yet been developed and offers some suggestions as
to how it should be designed.

2. MULTI-TENANT DATABASE TESTBED

The experiments in this paper are based on a multi-tenant
database testbed we have developed that can be adapted
for different database configurations. Each configuration re-
quires a plug-in to the testbed that transforms abstract ac-
tions into operations that are specific to and optimized for
the target database.

The testbed simulates a simple but realistic CRM ser-
vice. Figure 1 shows the entities and relationships in the
base schema. The base entities are extended with additional
fields of various types for each tenant. Tenants have different
sizes and tenants with more data have more extension fields,
ranging from 0 to 100. The characteristics of the dataset are
modeled on salesforce.com’s published statistics [13].

The testbed has nine request classes. The distribution
of these requests is controlled using a mechanism similar to
TPC’s card decks.

Select 1: Select all attributes of a single entity as if it was
being displayed in a detail page in the browser.

Select 50: Select all attributes of 50 entities as if they were
being displayed in a list in the browser.

Select 1000: Select all attributes of the first 1000 entities
as if they were being exported through a Web Services
interface.

Reporting: Run one of five reporting queries that perform
aggregation and/or parent-child-roll-ups.

Insert 1: Insert one new entity instance as if it was being
manually entered into the browser.

Insert 50: Insert 50 new entity instances as if data were
being synchronized through a Web Services interface.

Insert 1750: Insert 1750 new entity instances as if data
were being imported through a Web Services interface.

Update 1: Update a single entity as if it was being modi-
fied in an edit page in the browser.

Update 100: Update 100 entity instances as if data were
being synchronized through a Web Services interface.

The testbed mimics a typical application server’s behav-
ior by creating a configurable number of connections to the
database backend. To avoid blockings, the connections are
distributed among a set of worker hosts, each of them han-
dling a few connections only. Distributing these connec-
tions among multiple hosts allows for modeling various sized,
multi-threaded application servers.



3. SCHEMA MAPPING TECHNIQUES

Within a SaaS application, each tenant has a logical sche-
ma consisting of the base schema and a set of extensions.
To implement multi-tenancy, the logical schemas from mul-
tiple tenants are mapped into one physical schema in the
database. The mapping layer transforms queries against the
logical schemas into queries against the physical schema so
multi-tenancy is transparent to application programmers.

The physical schemas for the five mapping techniques stud-
ied in this paper are illustrated in Figure 2. The example
data set used in this Figure is most clearly shown in the Pri-
vate Tables mapping (Figure 2(a)). There are three tenants
— 17, 35, and 42 — each of which has an Account table with
Account ID (Aid) and Name fields. Tenant 17 has extended
the Account table with two fields for the health care indus-
try: Hospital and Beds. Tenant 42 has extended the Account
table with one field for the automotive industry: Dealers. In
the Extension Tables mapping (Figure 2(b)), the industry
extensions are split off into separate tables that are joined
to the base Account table using a new Row number column
(Row). Tenants share the tables using a tenant ID column
(Tenant). This section describes the other three mappings
in more detail.

3.1 Sparse Columns in Microsoft SQL Server

Sparse Columns were originally developed to manage data
such as parts catalogs where each item has only a few out of
thousands of possible attributes. Storing such data in con-
ventional tables with NULL values can decrease performance
even with advanced optimizations for NULL handling. To
implement Sparse Columns, SQL Server 2008 uses a variant
of the Interpreted Storage Format [4, 7], where a value is
stored in the row together with an identifier for its column.

In our mapping for SaaS, the base tables are shared by all
tenants and every extension field of every tenant is added
to the corresponding base table as a Sparse Column, as il-
lustrated in Figure 2(c). Sparse columns must be explicitly
defined by a CREATE/ALTER TABLE statement in the
DDL and, in this sense, are owned by the database. Nev-
ertheless, the application must maintain its own description
of the extensions, since the column names cannot be stati-
cally embedded in the code. For writes, the application must
ensure that each tenant uses only those columns that they
have declared, since the namespace is global to all tenants.
For reads, the application must do an explicit projection on
the columns of interest, rather than doing a SELECT x, to
ensure that NULL values are treated correctly.

Sparse Columns requires only a small, fixed number of
tables, which gives it a performance advantage over Pri-
vate Tables; [3] shows that having many tables negatively
impacts performance. On the other hand, there is some
overhead for managing Sparse Columns. As an example,
the SQL Server documentation recommends using a Sparse
Column for an INT field only if at least 64% of the values
are NULL [15]. Both of these factors are reflected in the
performance results presented in Section 4.

3.2 XML in IBM DB2

IBM pureXML was designed to allow processing of semi-
structured data alongside of structured relational data [20].
The mapping for SaaS that we use follows the recommenda-
tions in the pureXML documentation for supporting multi-
tenancy [21]. The base tables are shared by all tenants and
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Accounti?

Aid Name Hospital Beds
1| Acme|St. Mary| 135
2|Gump| State |1042

Aid Name Dealers
(a) Private Tables

Healthcareaccount

Tenant Row Hospital Beds
17  0[St. Mary| 135
17 1| State [1042

Accountss

Aid Name

Automotiveaccount
Tenant Row Dealers
421 0 65

(b) Extension Tables

Tenant Aid Name
RISl St. Mary [ 135
17| 2 |Gump|gleSiell State

Big JDEIES

(c) Sparse Columns

Tenant Aid Name
17| 1 |Acme[<ext><hospital>St. Mary</hospital>

<beds>135</beds></ext>

17| 2 |Gump|<ext><hospital>State</hospital>

<beds>1042</beds></ext>

(d) XML

Account

17Act] |[name: Acme, hospital:St. Mary, beds:135]
17Act2| [name:Gump, hospital:State, beds:1042]
17Ctcl [
17Ctc2 [
35Actl [name: Ball]

35Ctcl [--]
42Actl [name:Big, dealers:65]

(e) Pivot Tables
Figure 2: Schema Mapping Techniques

each base table is augmented by a column (Ext_ XML) that
stores all extension fields for a tenant in a flat XML docu-
ment, as illustrated in Figure 2(d). Since these documents
necessarily vary by tenant, they are untyped. This repre-
sentation keeps the documents as small as possible, which is
an important consideration for performance [16].

pureXML offers a hybrid query language that provides
native access to both the structured and semi-structured
representations. Our testbed manipulates data in the struc-
tured format, thus accessing extension data requires a corre-
lated subquery to manage the XML. This subquery extracts
the relevant extension fields using the XMLTABLE function
which converts an XML document into a tabular format us-
ing XPath. The query with the XMLTABLE function has



SELECT b.Tenant, b.Aid, b.Name,
e.Dealers

FROM Accounts b,
XMLTABLE(’i/ext’ PASSING b.Ext_XML AS "i"
COLUMNS
Dealers INTEGER PATH ’dealers’
) AS e

WHERE Tenant = 42 AND Aid = 1;
(a) Physical SELECT Query

A

TN
)
Iy

(b) Query Execution Plan

Figure 3: Correlated Subquery for XML in DB2

to be generated client- and query-specific to access clients’
extension fields relevant in the particular query. Figure 3(a)
shows an example query against the physical schema that
selects three base fields and one extension field; Figure 3(b)
shows the associated query plan. In our testbed, rows are
always accessed through base fields, hence there is no need
to use the special XML indexes offered by pureXML [20].
To insert a new tuple with extension data, the application
has to generate the appropriate XML document; our per-
formance results generally include the time to perform this
operation. Updates to extension fields are implemented us-
ing XQuery 2.0 features to modify documents in place.

3.3 Pivot Tables in HBase

HBase [11], which is an open source version of Google
BigTable [6], was originally designed to support the explo-
ration of massive web data sets. These systems are increas-
ingly being used to support enterprise applications in a SaaS
setting [14].

In an HBase table, columns are grouped into column fam-
ilies. Column families must be explicitly defined in advance
in the HBase “DDL”, for this reason they are owned by the
database. There should not be more than tens of column
families in a table and they should rarely be changed while
the system is in operation. Columns within a column family
may be created on-the-fly, hence they are owned by the ap-
plication. Different rows in a table may use the same column
family in different ways. All values in a column are stored
as Strings. There may be an unbounded number of columns
within a column family.

Data in a column family is stored together on disk and in
memory. Thus, a column family is essentially a Pivot Table;
each value is stored along with an identifier for its column
in a tall narrow table [2].

HBase was designed to scale out across a large farm of
servers. Rows are range-partitioned across the servers by
key. Applications define the key structure, therefore implic-
itly control the distribution of data. Rows with the same key
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SELECT p-Name, COUNT(c.Case_id) AS cases
FROM Products p, Assets a, Cases c
WHERE c.Asset = a.Asset_id

AND a.Product = p.Product_id

GROUP BY p.Name
ORDER BY cases DESC

Figure 4: Logical Reporting Query

prefix will be adjacent but, in general, may end up on differ-
ent servers. The rows on each server are physically broken
up into their column families.

The mapping for SaaS that we use is illustrated in Fig-
ure 2(e). In keeping with best practices for HBase, this map-
ping ensures that data that is likely to be accessed within
one query is clustered together. A single HBase table is used
to store all tables for all tenants. The physical row key in
HBase consists of the concatenation of the tenant ID, the
name of the logical table, and the key of the row in the log-
ical table. Each logical table is packed into its own column
family, thus each row has values in only one column family.
Within a column family, each column in the logical table is
mapped into its own physical HBase column. Thus, since
columns are dynamic, tenants may individually extend the
base tables.

The reporting queries in our testbed require join, sort
and group operations, which are not currently provided by
HBase. We therefore implemented these operators outside
the database in an adaptation layer that runs in the client.
The adaptation layer utilizes operations in the HBase client
API such as update single-row, get single-row and multi-row
scan with row-filter. As an example, consider the reporting
query shown in Figure 4, which produces a list of all Prod-
ucts with Cases by joining through Assets. To implement
this query, our adaptation layer scans through all Cases for
the given tenant and, for each one, retrieves the associated
Asset and Product. It then groups and sorts the data for all
Cases to produce the final result.

In our experiments, HBase was configured to run on a sin-
gle node and the Hadoop distributed map-reduce framework
was not employed. In our experience, hundreds of tenants
for an application like CRM can be managed by a database
on a single commodity processor. In this setting, spreading
the data for a tenant across multiple nodes and doing dis-
tributed query processing would not be advantageous; the
overhead for managing the distribution would nullify any
benefits of parallelization. Of course, in addition to scal-
ing up to handle many small tenants, the ideal SaaS data-
base should also scale out to handle large tenants. But even
in this case, map-reduce is problematic for queries such as
the one in Figure 4, since it requires that data be clustered
around Products. Other queries, such as pipeline reports on
Opportunities, might require that the data be clustered in
other ways.

We conclude this section with several comments about
the usage of HBase in our experiments. First, HBase offers
only row-at-a-time transactions and we did not add a layer
to extend the scope to the levels provided by the commer-
cial databases. Second, compression of column families was
turned off. Third, neither major nor minor compactions oc-
curred during any of the experiments. Fourth, replication of
data in the Hadoop file system was turned off. Fifth, column
families were not pinned in memory. Sixth, the system was
configured so that old attribute values were not maintained.
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4. EXPERIMENTAL RESULTS

This section presents the results of our experiments on
schema extensibility and evolution. To study schema evolu-
tion, we issued a series of schema alteration statements dur-
ing a run of the testbed and measured the drop in through-
put. The experiments were run on Microsoft SQL Server
2008, IBM DB2 V.9.5 on Windows 2008, and HBase 0.19 on
Linux 2.6.18 (CentOS 5.2). The database host was a VM on
VMWare ESXi with 4 3.16 GHz vCPUs and 8 GB of RAM.

4.1 Microsoft SQL Server

Figure 5(a) shows the results of running our testbed on
Microsoft SQL Server using three different mappings: Pri-
vate Tables, Extension Tables, and Sparse Columns. The
horizontal axis shows the different request classes, as de-
scribed in Section 2, and the vertical axis shows the response
time in milliseconds on a log scale.

In comparison to Private Tables, Extension Tables clearly
exhibits the effects of vertical partitioning: wide reads (Sel 1,
Sel 50, Sel 1000) are slower because an additional join is re-
quired, while narrow reads (Report) are faster because some
unnecessary loading of data is avoided. Updates (Upd 1,
Upd 100) perform similarly to wide reads because our tests
modify both base and extension fields. Extension Tables is
faster for inserts because tables are shared among tenants
so there is a greater likelihood of finding a page in the buffer
pool with free space.

Sparse Columns performs as well or better than Private
Tables in most cases. The additional overhead for managing
the Interpreted Storage Format appears to be offset by the
fact that there are fewer tables. Sparse Columns performs
worse for large inserts (Ins 1750), presumably because the
implementation of the Interpreted Storage Format is tuned
to favor reads over writes.

Figure 5(b) shows a break down of the Private Table and
Sparse Column results by tenant size. Recall from Section 2
that larger tenants have more extension fields, ranging from
0 to 100. The results show that the performance of both
mappings decreases to some degree as the number of exten-
sion fields goes up.

SQL Server permits up to 30,000 Sparse Columns per ta-

Response Time [msec]
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ble. Our standard configuration of the testbed has 195 ten-
ants, which requires about 12,000 columns per table. We
also tried a configuration with 390 tenants and about 24,000
columns per table and there was little performance degra-
dation. The number of extension fields per tenant in our
testbed is drawn from actual usage, so SQL Server is unlikely
to be able to scale much beyond 400 tenants. As a point of
comparison, salesforce.com maintains about 17,000 tenants
in one (very large) database [13].

Figures 6(a) and 6(b) show the impact of schema evolu-
tion on throughput in SQL Server. In these graphs, the
horizontal axis is time in minutes and the vertical axis is
transactions per minute. The overall trend of the lines is
downward because data is inserted but not deleted during
a run. Part way through each run, ALTER TABLE state-
ments on 5 base tables were submitted. The first two lines in
each graph show schema-only DDL statements: add a new
column and increase the size of a VARCHAR column. The
third line in each graph shows a DDL statement that affects
existing data: decrease the size of a VARCHAR column.
To implement this statement, SQL Server scans through the
table and ensures that all values fit in the reduced size. A
more realistic alteration would perform more work than this,
so the results indicate a lower bound on the impact of evo-
lution. The gray bar on each graph indicates the period
during which this third operation took place.

In the Private Tables case (Figure 6(a)), 975 ALTER TA-
BLE statements were submitted, 5 for each of the 195 ten-
ants. Individual schema-only alterations completed very
rapidly, but nevertheless had an impact on throughput be-
cause there were so many of them. Adding a new column
took about 1 minute to complete while increasing the size
of a VARCHAR column took about 3 minutes. Decreasing
the size of a VARCHAR column took about 9 minutes and
produced a significant decrease in throughput. The overall
loss of throughput in each case is indicated by the amount
of time it took to complete the run.

In the Sparse Columns case (Figure 6(b)), the tables are
shared and 5 ALTER TABLE statements were submitted.
The schema-only changes completed almost immediately and
had no impact on throughput. Decreasing the size of a VAR-
CHAR column took about 2 minutes, during which through-
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Figure 6: SQL Server Throughput

put dropped almost to zero. The overall loss of throughput
was greater for Private Tables, as indicated by the amount of
time it took to complete the runs. However the behavior of
Private Tables is probably preferable in the SaaS setting be-
cause the throughput drop is never as deep, thus the servers
don’t need to be overprovisioned as much. In any case, nei-
ther of these mappings is ideal in that the application should
have more control over when such resource-intensive opera-
tions occur.

4.2 1IBM DB2

Figure 7(a) shows the results of running our testbed on
IBM DB2 using three different mappings: Private Tables,
Extension Tables, and XML using pureXML. The axes are
the same as in Figure 5.

In comparison to Private Tables, Extension Tables ex-
hibits the same performance variations as in SQL Server.
However XML produces a decrease in performance in most
cases. The decrease is particularly severe for reads, which re-
quire executing a correlated subquery containing an XQuery
statement embedded in a call to the XMLTABLE function,
as described in Section 3.2. Figure 7(b) shows a break down
of the Private Table and XML results by tenant size. Re-
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call from Section 2 that larger tenants have more extension
fields, ranging from 0 to 100. The results show that for
reads, the performance decrease of XML is proportional to
the number of extension fields. Note that in the Insert 1750
case, the results do not include the time to construct the
XML document (for no particularly good reason) and there
is no variation based on tenant size.

XML gives the application complete control over schema
evolution. In this setting, the application is responsible for
performing any bulk transformations associated with schema
alterations that impact existing data. To study the effi-
ciency of such transformations, we ran our schema evolution
throughput experiment on DB2 using pureXML. To simulate
the decrease-VARCHAR case, we submitted a query for each
of the five base tables that SELECTSs one field from all docu-
ments. These queries were run on the database server so no
data transfer costs were incurred. The results were almost
identical to the SQL Server Sparse Columns case shown in
Figure 6(b). The five queries took about 2 minutes to com-
plete, during which time throughput dropped to a very low
level. Of course, the advantage of the XML mapping is that
the application need not perform such transformations all
at once.
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4.3 HBase

Figure 8 shows the results of running our testbed on HBase
along with two SQL Server configurations: one using the
Sparse Columns mapping presented in Section 4.1 and one
using the adaptation layer described in Section 3.3. Recall
that the adaptation layer performs join, sort and group op-
erations outside the database. In the latter case, to further
approximate the HBase mapping, we made the base columns
as well as the extension columns sparse. It turns out that
this change was not significant: according to independent
testbed runs we performed, making the base fields sparse
has little impact on the performance of SQL Server.

In comparison to the Sparse Columns mapping in SQL
Server, HBase exhibits a decrease in performance that ranges
from one to two orders of magnitude depending on the op-
eration. One reason for this decrease is the reduced expres-
sive power of the HBase APIs, which results in the need
for the adaptation layer. This effect is particularly severe
for reports and updates, where SQL Server with adaptation
also shows a significant decrease in performance. These re-
sults are consistent with [9], which shows that high-volume
data-processing tasks such as reporting are more efficiently
processed by shipping queries to the server rather than by
shipping data to the client. The performance decrease for
updates is primarily due to the fact that the adaptation layer
submits changes one at a time rather than in bulk. HBase
has a bulk update operation, however it appears that, in the
version we used, changes are not actually submitted in bulk
unless automatic flushing to disk is turned off. In any case,
this problem with bulk updates should be easy to fix.

A second reason for the performance decrease is that rows
must be assembled from and disassembled into Pivot Tables.
Since the data for a row may be spread out across the disk,
several reads or writes may be required. This effect is partic-
ularly severe for reads. A third reason is that HBase accesses
disks (in the Hadoop File System) over the network. In con-
trast, shared-nothing architectures put disks on the local
SCSI bus while shared-disk architectures use fast SANs.

S. CONCLUSIONS

The conclusion we draw from these experiments is that the
ideal database system for SaaS has not yet been developed.
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The mappings in which the application owns the schema
perform poorly unless significant portions of the database
are re-implemented from the outside. And the mappings
in which the database owns the schema provide only lim-
ited support for schema evolution in the presence of existing
data. Moreover they cannot be scaled beyond a certain level.

We believe that the ideal SaaS database system should
be based on the Private Tables mapping. The interleav-
ing of tenants, which occurs in all of the other mappings,
breaks down the natural partitioning of the data. It forces
import and export of a tenant’s data, which must occur for
backup/restore and migration, to be carried out by query-
ing the operational system. In contrast, with Private Tables,
each tenant’s data is clustered together on disk so it can be
independently manipulated. The interleaving of tenant data
also complicates access control mechanisms in that it forces
them to occur at the row level rather than the table level.

In the ideal SaaS database system, the DDL should ex-
plicitly support schema extension. The base schema and its
extensions should be registered as “templates”. There should
be multiple tenants and each tenant should be able to select
various extensions to the base schema. The system should
not just stamp out a new copy of the schema for each ten-
ant, rather it should maintain the sharing structure. This
structure should be used to apply schema alterations to all
relevant tenants. In addition, this structure will reduce the
amount of meta-data managed by the system.

In the ideal SaaS database system, the DDL should sup-
port on-line schema evolution. The hard part here is al-
lowing evolution over existing data. As an example, Oracle
implements this capability as follows: first a snapshot of
the existing data is transformed into an interim table, then
all transactions are blocked while any intervening updates
are processed, and finally the original table is replaced by
the interim table [17]. While this is a great step forward,
the application must be given more control over when such
resource-intensive operations occur. It should be possible
to perform data transformations eagerly at the point the
schema is changed, lazily at the point data is accessed, or
every time data is accessed [18].

The ideal SaaS database system should distribute the data
for many tenants across a farm of servers. The distribution
should be tenant-aware rather than lumping all tenants into
one large data set. It should be possible to spread the data
for a large tenant across multiple servers, but that will not
be the common case and in practice should not require more
than a handful of servers per tenant. To support data distri-
bution for large tenants, the query language should be less
powerful than in conventional databases, however it should
not be so weak that the common case suffers. In particular,
the database should support multiple communication pat-
terns for joins, rather than requiring the use of map-reduce.
For example, joins in OLAP queries on a star schema tend
to distribute well because the dimension tables are small.

The ideal SaaS database system should have a shared-
nothing architecture where data is stored on fast local disks.
Data should be explicitly replicated by the database, rather
than a distributed file system, and used to provide high avail-
ability. To facilitate failure handling, the transactional guar-
antees should be weaker than in conventional databases [8].
In addition to supporting high availability, replicated data
should be used to improve scalability (handle more requests
for a given set of data), improve performance (maintain the



data in several different formats), and support on-line up-
grades (roll upgrades across the replicas).

This paper has focused on conventional row-oriented data-
bases for OLTP. Enterprise applications also require column-
oriented databases for OLAP [5, 12, 22]. The basic prescrip-
tion for SaaS databases offered here — Private Tables with
support for on-line schema extension and evolution — applies
to column stores as well as row stores.

The vertical storage structures of HBase and BigTable,
which we use to implement Pivot Tables, are similar to
column stores in that they are designed for narrow oper-
ations over many rows. Such vertical structures may be
made more competitive for wide operations by keeping the
data in memory, since the cost of reassembling rows is dom-
inated by the time to perform many reads from disk. Ad-
vancements in data storage technologies are gradually mak-
ing main-memory databases more attractive [10]. Our basic
prescription for SaaS applies equally well to main-memory
databases.
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