Evaluation of Adaptive Computing Concepts for
Classical ERP Systems and Enterprise Services

Martin Wimmer, Valentin Nicolescu, Daniel Gmach, Matthias Mohr, Alfons Kemper and Helmut Kremar
Technische Universitit Miinchen,
85748 Garching b. Miinchen, Germany,
Email: {wimmerma | nicolesc | gmach | mohrm | kemper | krcmar } @in.tum.de

Abstract— To ensure the operability and reliability
of large scale Enterprise Resource Planning Systems
(ERP), a peak-load oriented hardware sizing is often
used. Better utilization can be achieved by employing
an adaptive infrastructure based on smaller compu-
tational units in combination with an intelligent allo-
cation management. The SAP University Competence
Center (German SAP HCC) at the Technische Univer-
sitit Miinchen provides support for 55 ERP training
systems. The evaluation of the historical load data re-
vealed that many applications exhibit cyclical resource
consumption. In this paper we show the extraction of
load patterns and present self-organizing controlling
concepts in the context of the SAP HCC.

I. INTRODUCTION

Enterprise resource planning systems (ERP) undergo
significant changes with regard to the hardware and soft-
ware architecture: Clusters of commodity servers are dis-
placing classical mainframe architectures and monolithic
software systems are decomposed into smaller modular
components. These new computing paradigms provide
higher levels of flexibility, but also demand for new ad-
ministration principles. Thereby, ERP systems have to
respond with consistently low latency as requests are
posted in a dialog mode. Thus, an integrated Quality of
Service (QoS) management is an important issue for ERP
systems. User requests can vary according to the frequency
they occur and the load they induce. Nevertheless, using
an aggregated view on the number of served users, ERP
applications often show statistically periodic load charac-
teristics.

In order to justify this theory, we analyzed the time
dependent workload of monolithic ERP training systems
(SAP R/3 Enterprise edition). Our contribution is an ap-
proach for the extraction of load patterns, which we eval-
uated on the basis of real-world monitoring data that was
provided by the SAP Hochschul Competence Center (SAP
HCC) at the Technische Universitéit Miinchen (TUM). The
cyclical behavior of applications allows us to optimize the
static application-to-server allocation and to supervise the
deployment at runtime. Predictable critical situations like
overload on servers can be prevented. Knowing the load
characteristics of applications, those with complementary
behavior can reliably be deployed onto the same servers.

Institutions Universities 13
(partially more | Schools for applied sciences 26
than one per Vocational schools 16
system) University of cooperative education 3
Total 58

SAP systems 55

[Users | Students [18,390 |

Application | Blade servers (Sun B100s) 96
servers Others (Sun V40z) 5
DB servers Sun Fire V210, V240, V880, V890 50
Storage RAID capacity 27TB

TABLE 1
SAP HCC CUSTOMERS AND INFRASTRUCTURE (DEC. 2005)

II. TARGET INFRASTRUCTURE

We examined the CPU load caused by the ERP training
applications hosted by the SAP HCC at the TUM. The
SAP HCC acts as an application service provider (ASP)
for academia [1]. As shown in table I, it provides support
for 58 academic customers with an estimated number of
about 18,400 users. An ERP training system in terms
of the SAP HCC is typically an SAP R/3 Enterprise
edition, which includes the classical enterprise functional-
ities. Some of these basic configurations are enhanced by
business analytics covered by SAP’s Business Warehouse
(BW). We identified three different effects that determine
the load curve of such an ERP training system [2].

1) The basic characteristics can be described as a long-
term component. For example the number of user
requests is noticeably reduced during weekends and
holidays.

2) Short-term influences can be identified by the kind
of performed tasks that vary during a day depending
on the users’ work rhythm, e.g., the course structure.

3) A third component describes unusual workloads that
emerge when certain tasks are performed by all
course participants simultaneously. In general, this
does not apply to ERP production systems.

If several of these characteristics occur at the same time,
a so-called whiplash effect can be observed, i.e., high load
peaks appear after short build-up times.

The SAP HCC employs a Blade server architecture that
allows to be adaptively extended. Normally, each of the 55
SAP systems consists of several dialog instances (DI) and
one central instance (CI). While the DIs can be allocated

dynamically on the available hardware, the CI is by de-
fault statically assigned to one of the database servers.
However, the static deployment can be changed easily
due to virtual host names and an SAN infrastructure.
The CI provides basic functionality, like dispatching user
requests onto the available instances. The assignment of
requests to instances can be parameterized. For example,
the percentage of user requests for each instance can be
defined.

Initially, the hardware allocation was done in a tradi-
tional, peak-load oriented way. Better, cost-effective re-
sults can be achieved by considering the characteristics
of courses. In this regard, applications with statistically
complementary load patterns are supposed to be allocated
onto the same servers. Therefore, we analyzed the histor-
ical load information and extracted application specific
load patterns. The protocolled load represents 15min
average-aggregates of CPU load that was measured every
5 seconds. The basis for our experimental evaluation con-
stitutes the monitoring data for 38 ERP training systems
that was generated during a German summer semester
(February till July).

ITII. EXTRACTION OF APPLICATION LOAD PATTERNS
AND APPLICATION CLASSIFICATION

In our experiments we analyzed the CPU load induced
by ERP systems of the SAP HCC, but our approach is not
restricted to a certain notion of load. For example, memory
usage or Quality-of-Service (QoS)-relevant parameters like
response time, system throughput, or the number of served
users can be handled as well. In the following we look at
time series referring to generic historical load information.

We developed a three-staged approach for the extraction
and evaluation of load patterns, consisting of a preprocess-
ing phase, an analysis phase, and a classification phase.
Thereby, we kept the parametrization at a minimum level
— a prerequisite for its integration into a self-organizing
infrastructure. For the following considerations let S be
the set of distinguished ERP training systems.

A. The Preprocessing Phase

At runtime, all application instances are monitored and
the load induced by them is logged. In order to determine
the characteristics of a system s € S, the aggregated
historical load information of all instances of s has to be
determined. Thereby, in heterogeneous computing envi-
ronments, the load induced on host machines of varying
capability is considered through performance normaliza-
tion. Consequently, for each system s an equidistantly
sampled time series is calculated, representing its entire
load influence over a monitored period 7.

B. The Analysis Phase

The extraction of a load pattern proceeds under the
assumption of the time series being cyclic. Whether this
assumption holds is evaluated in the classification phase.

According to the classical additive component model, a
time series consists of a trend component, a cyclical com-
ponent, and a remainder, e. g., characterizing the influence
of noise. The trend is a monotonic function, modeling an
overall upwards or downwards development. We focus on
the cyclical component that describes the periodic load
characteristics of a system.

First, we determine the yet unknown duration of the
load pattern. In order to do so, we make a combined evalu-
ation of the periodogram function and the auto-correlation.
The periodogram function illustrates the intensities, with
which the distinguished harmonics are present in the time
series. Intuitively, if the periodogram function has a local
maximum at frequency A > 0, then it is likely that there
exists a pattern of length T - A. In general, taking the
position of the global maximum is error-prone. Thus, we
determine a set of frequency hypotheses A = {A1,..., A\, }
of local maxima positions. These hypotheses are then
evaluated against the auto-correlation function. The auto-
correlation describes linear dependencies within the time
series. If the auto-correlation shows local extrema at a
quite regular lag, it is a sign that there exists a temporal
dependency of certain length. Thus, the characteristics
described by the auto-correlation can be used to determine
the most suitable frequency hypothesis A(*) that describes
the cyclical characteristics of a time series. Assuming
that s shows periodic characteristics, Tl(s) dZEfT A g
considered to be the most probable duration of the load
pattern.

ERP training systems and business processes typically
show a periodicity which is a multiple of hours, days,
weeks and so forth. Due to unavoidable computational
inaccuracies and the influence of noise, Tl(s) can diverge
from the actual period. Thus, we perform a comparison to
calendar specific periods, to determine the best matching
calendar specific pattern length TZ(S)7 which is a multiple
of the core intervals hours, days, and weeks.

Finally, two patterns are extracted from the original
time series with respect to the supposed pattern durations
Tl(s) and TQ(S). One possible approach is to take extracts
of the respective lengths out of the original time series.
The approach we follow, is to take the average over the
pattern occurrences within the time series. In order to
reduce the influence of noise and computational inaccu-
racies, the starting points of pattern recurrences have to
be determined reliably. Candidates for distinctive starting
points mark significant changes of the derivation. Having
determined the starting points, patterns Pl(s) and P2(S) that
refer to T7*) and T4* are extracted as the average over the
respective occurrences. Thus, patterns are time series as
well, but (e. g., through interpolation) they can be seen as
functions N — Rar, with timestamps as input parameters
(e.g., milliseconds and thus € N). From the two pattern
hypotheses we take the one that minimizes the distance to
the original time series.

Adoption of the
Static Allocation

Improved
Allocation?

Pattern Extraction ' 4 Static Allo?atlon
Calculation
/3\ Static Allocation Management
read
% Initial Static
Allocation
write
! 4 -
Dynamic
Monitoring Optimization of the
Allocation

Dynamic Allocation Management

Fig. 1. The AutoGlobe framework
C. The Classification Phase

Separating time series with cyclical characteristics from
those without is done in the classification phase. The
likelihood for a time series showing a characteristic cyclical
component is estimated by a weighted evaluation of the
pattern quality and the correlation of the frequency hy-
potheses with the auto-correlation function, as discussed
in the previous section. Using a classical Lloyd-Max quan-
tizer, the systems are assigned to clusters of periodic, fuzzy
periodic and non-periodic systems.

D. Ezperimental Results

We evaluated the characteristics of 38 ERP training sys-
tems based on monitoring data that was generated during
a German summer semester. Our evaluation showed that
CPU load is more suitable for detecting cyclical charac-
teristics than other monitoring data. Table II gives an
overview of the results we gained based on the evaluation
of CPU monitoring data.

periodic 17

Cluster sizes fuzzy 8

non-periodic 13

total | 38

7-days 23

Pattern lengths more than 30 days 2
TABLE II

EXPERIMENTAL RESULTS

The ranking of applications is useful for the static
deployment as discussed in the next section. The previous
table illustrates that for 23 of the 25 ERP systems that
were classified as periodic or fuzzy T-day-patterns were
determined, which corresponds to the nature of courses.
For two of the ERP training systems patterns of length
30 days, respectively 33 days were determined.

IV. SELF-ORGANIZING ALLOCATION MANAGEMENT

We make use of application-specific load patterns to
optimize the application-to-server allocation of large scale
ERP landscapes. This idea was developed in the Auto-
Globe project [3]. AutoGlobe is a research project focusing

on the design and evaluation of self-organizing computing
concepts for emerging service oriented architectures. The
goal of bringing AutoGlobe and the SAP HCC together
is to reduce hardware and maintenance costs. Figure 1
illustrates the basic concepts of the AutoGlobe framework
that are grouped into techniques for static and dynamic
allocation optimization.

A. Static allocation management

Static application-to-server allocations are calculated
based on the estimated load induction of applications.
In case no load pattern can be determined for an ERP
training system, either the average, or — for more pes-
simistic estimations — the maximum of the time series
is used. The goal of the static allocation management is
to prevent overload situations as far as possible and to
achieve almost balanced landscape. Thereby, the available
hardware shall not be lavishly utilized, thus, providing
resources for further applications.

Let C denote the set of available servers and S the set of
ERP training systems, i.e., applications. In our setting, the
elements of C represent Blade servers. Finding the optimal
static allocation is in O(card(C)®d(%)) — a complexity
that cannot be handled in the general case. Therefore,
we employ a greedy heuristics that successively assigns
the systems s € S to the servers, whereby the systems
are ranked according to the quality of their patterns as
motivated in Section III-D. One necessary parameter of
the greedy approach is the allocation limit (AL), which
determines the upper bound of resource utilization, e.g.,
the maximum percentage of processor load. Any resource
utilization higher than AL will be considered as overload
situation.

Let T be the duration of the time period, for which a
static allocation has to be calculated. Suppose that some
systems have already been assigned to the available servers
and that the next system to be deployed is s € S. The load
induced by s is described by the pattern (l(s)(t))1gth'
Analogously, (Z(C) (t))1 <4< Tepresents the aggregated load
scheduled for systems that are already allocated on server
¢ € C. As mentioned in the previous section, these time
series are normalized.

The load increase on server ¢, when allocating s on it,
is estimated by:

def
Als,0)= 1S

(l(c) () + l(s)(t)) — max

1<t<T

(“9m)

The so-called best-match-server is the one that minimizes
cost function (1). In case all servers show a resource utiliza-
tion higher than AL, the server with minimal exceedance
is chosen. Figure 2 shows the AutoGlobe user interface
and illustrates the optimization calculation. Shown are two
exemplary application patterns. As these reveal somehow
complementary characteristics (system A shows a load
peak on Monday, while system B has peaks on Tuesday
and Friday) they can well be allocated on one host.

B[=1%]
AL=80%

£ New calculated allocation®

File Tree Chart

Semvees

(¢ @ Blade Server =

¢ ®BladeSener! i BladeServer1
M 54P Application Ser. 100
M 4P Application Ser. \

- @ BlateSener
> @ BlateSener3 o
o @ BladeSenverd
o @ EladeSeners 7
o @ Bladegeneis
o @ BlageSener?
o @ BladeSeners
> @ BlateSenerd
> @ BladeSenver1o
o @ EladeSenert 1
o @ BladeSenverl 2

Load in%

o @ Blaeserverl 2
o @ Blaesenerl 4
o @ Blateenerls
o @ BladeSenvers
o @ BladeServer! 7
o @ BladeSenerl®
o @ Blateserverla

{ Server and
| application
{information

7.08.2004 00:00 14.06.2004 00:00

Time

21.08.2904 0000 26.08.2004 00:0

Allocalion Praperties Values
[[Cests 36361 Highest/ lowest Ioa.
Calculation period start___|01.08.2004 12.00 | |Senaces on this ser.
Sebeilaggn period end 23,08 2004 12:00 | - |FIES
Duratichn 4weeks CPL-nformation
@ Elateserers Allocation calculated 08.12.2005 11:31 | [memary size
o @ Blagegervers Generated missing pattems: no
o @ Bladegener2e Sized
& @ BladeServer30 <] JClustered na

(7-day-patterns)

AutoGlobe-GUI: Example for an allocation of applications

Server Aftributes Values
40 (57.50 %) /1.42 (1775 %)

odeospue] wo)SAS JO MIIAIOAQ

2 CPUs, each with 2,600 MHz
2,068,312 K0

Algoritim Paramglers Valles
Agorithm Greedy

Expected
load on server
(4-weeks forecast)

Fig. 2.
B. Dynamic allocation management

Though a reliable static deployment has been arranged,
still unforeseeable situations like crashes of applications,
overload situations due to wrongly classified patterns or
the start of further systems for additional courses can
occur and have to be handled. Dynamic allocation adjust-
ments can be performed exception-triggered, i.e., in cases
when exceptional situations like overload situations are
detected, or pro-actively, using load-forecasting. In such
cases, either warning messages are created, or in the sense
of an automatism, the system reacts by autonomously
migrating applications or starting additional instances.
When an ERP system is split into several instances,
the dispatcher assigns user requests to instances of s
depending on the performance of the host machines these
instances are running on (see Section II).

At a first phase, AutoGlobe’s controller for dynamic
optimization will be used to supervise the SAP HCC sys-
tem in order to create recommendations that are further
controlled by the system administrator prior to their real-
ization. Later on, the reaction process shall be automated
as far as possible.

V. RELATED WORK

Substantial efforts have been made in the research
community regarding the statistical analysis of historic
load data and applying this to adaptive load balancing.
Load in this context either refers to CPU usage or the
runtime of applications, e.g., covered by the work of
[4], [5], [6], [7], the data requirements of applications [8]
or characteristics of user requests [9]. Applications with
statistically periodic load characteristics are evaluated in
[4]. Instead of just making short-termed predictions, we
extract and evaluate patterns out of historical load infor-
mation, which we employ for a long-term static allocation
management. Regarding fault tolerance, the influence of
wrongly classified patterns is absorbed by a continuous

dynamic allocation management, which is presented in
[3]. In 2001 IBM coined the term autonomic computing
[10] in analogy to the autonomic nervous system. Since
then leading companies in the area of information tech-
nology integrated autonomic computing concepts in their
products. In contrast to these commercial products that
depend on vendor-specific hardware, we examine generic
self-organizing computing solutions.

VI. CoNCLUSION AND FUTURE WORK

Regarding the SAP HCC landscape, we were able to
automatically classify applications that relate to regu-
larly held courses, which allows a sophisticated analysis
and revision of the application deployment. Currently, we
are working on a tighter integration of the AutoGlobe
system into the HCC landscape, which will help to re-
duce hardware and maintenance costs. Our intention is
to autonomously supervise the ERP training systems, to
monitor their “health”, report system breakdowns and to
calculate optimization propositions. These can be evalu-
ated and confirmed by the system administrator, who can
decide to apply them. We assume that the obtained results
are also applicable for a pure service oriented approach.
Nevertheless, an in-depth analysis of the described con-
cepts for SOA remains as future work.

REFERENCES

[1] W.-G. Bleek and I. Jackewitz, “Providing an E-Learning Plat-
form in a University Context - Balancing the Organisational
Frame for Application Service Providing,” in Annual Hawaii
Conference on System Sciences, Los Alamitos, CA, 2004.

[2] M. Mohr, T. Simon, and H. Krcmar, “Building an Adaptive In-
frastracture for Education Service Providing,” in 7. Int. Tagung
Wirtschaftsinformatik, Bamberg, Germany, 2005.

[3] S. Seltzsam, D. Gmach, S. Krompass, and A. Kemper, “Auto-
globe: An automatic administration concept for service-oriented
database applications,” in Proceedings of the 22nd International
Conference on Data Engineering (ICDE 2006), Atlanta, Geor-
gia, USA, Apr. 2006.

[4] M. Hailperin, “Load Balancing Using Time Series Analysis for
Soft Real Time Systems with Statistically Periodic Loads,”
Ph.D. dissertation, Stanford University, Dec. 1993.

(5] W. Smith, I. T. Foster, and V. E. Taylor, “Predicting Applica-
tion Run Times Using Historical Information,” in IPPS/SPDP
’98: Proceedings of the Workshop on Job Scheduling Strategies
for Parallel Processing. Springer-Verlag, 1998, pp. 122—-142.

6] P. A. Dinda and D. R. O’Hallaron, “An Evaluation of Linear
Models for Host Load Prediction,” in HPDC ’99: Proceedings
of the The Eighth IEEE International Symposium on High
Performance Distributed Computing. IEEE Computer Society,
Aug. 1999, pp. 87-96.

[7] J. Andersson, M. Ericsson, W. Lowe, and W. Zimmermann,
“Lookahead Scheduling for Reconfigurable GRID Systems,” in
10th International Euro-Par Conference, ser. Lecture Notes in
Computer Science (LNCS), vol. 3149. Pisa, Italy: Springer-
Verlag, Sept. 2004.

[8] S. Vazhkudai and J. M. Schopf, “Using Regression Techniques
to Predict Large Data Transfers,” in Int. Journal of High Per-
formance Computing Applications, vol. 17, 2003, pp. 249-268.

9] J. R. Santos, K. Dasgupta, G. Janakiraman, and Y. Turner,

“Understanding Service Demand for Adaptive Allocation of Dis-

tributed Resources,” Hewlett-Packard Development Company,

Tech. Rep. HPL-2002-85, 2002.

P. Horn, “Autonomic Computing: IBM’s Perspective on the

State of Information Technology,” http://www.research.ibm.

com/autonomic/manifesto/autonomic_computing.pdf, 2001.

[10]

