Quality of Service Enabled Database
Applications

S. Krompass, D. Gmach, A. Scholz, S. Seltzsam, and A. Kemper

TU Miinchen, D-85748 Garching, Germany
{krompass,gmach,scholza,seltzsam,alfons.kemper}@in.tum.de

Abstract. In today’s enterprise service oriented software architectures,
database systems are a crucial component for the quality of service (QoS)
management between customers and service providers. The database
workload consists of requests stemming from many different service classes,
each of which has a dedicated service level agreement (SLA). We present
an adaptive QoS management that is based on an economic model which
adaptively penalizes individual requests depending on the SLA and the
current degree of SLA conformance that the particular service class
exhibits. For deriving the adaptive penalty of individual requests, our
model differentiates between opportunity costs for underachieving an
SLA threshold and marginal gains for (re-)achieving an SLA thresh-
old. Based on the penalties, we develop a database component which
schedules requests depending on their deadline and their associated pen-
alty. We report experiments of our operational system to demonstrate
the effectiveness of the adaptive QoS management.

1 Introduction

Future business software systems will be designed as service oriented architec-
tures. These services are accessed via the Internet by a variety of different users
— as exemplified by providers and vendors of Web-based business software, in-
cluding RightNow Technologies, Salesforce.com, hosted SAP, and Oracle. This
Web-based software is characterized by a multitude of services which invoke
other enterprise services and ultimately submit requests to databases. The Web-
based business software is made accessible for a multitude of customers, where
each customer may have individual quality of service (QoS) requirements. The
more customers access the services, the more they compete for system resources.
In an uncontrolled environment this may lead to unpredictable and unaccept-
able response times. To prevent the customers from suffering bad performance
in terms of response times of their invoked services, service level agreements
(SLAs) are negotiated.

An SLA is a formal agreement between the service provider and a customer. The
establishment of an SLA imposes obligations on the service provider regarding
the service level of the provided services. If the constraints formulated in the
SLA are violated after a certain time window, the evaluation period, the service
provider is fined. The penalty depends on the severity of the SLA violation and

is negotiated in the SLA. SLAs are typically only defined for services directly
invoked by customers. Thus, the goal is to establish an end-to-end control for
the quality of service, which covers all layers of the Web service architecture.
The contribution of this paper is to enable QoS for the bottom layer of a ser-
vice infrastructure, where almost all services access a shared database. This is
a very common scenario in mission-critical enterprise services that rely on an
integrated database. For this scenario, we assume that an SLA for every service
submitting requests to the database has been negotiated. Due to the multitude
of services which access the database, the workload of the database consists of
requests stemming from many different customers with different service classes,
each having a dedicated SLA.

The challenge is to schedule incoming database requests in order to meet the
performance goals specified in the SLAs. Scheduling is based on adaptive prior-
ities which are derived from the current level of conformance with the request’s
SLA, that is, the percentage of timely requests, and the economic importance of
this SLA relative to other pending requests’ SLAs.

Current solutions in database systems, e.g., the Query Patroller for DB2 [7] or
the Oracle Resource Manager [13], assign groups of customers to performance
classes with static priorities. Thus, each request is assigned its priority depending
solely on the client by whom it has been submitted. This static prioritization
is used to schedule the requests, so that high-priority clients should complete
faster on average than their low-priority counterparts.

This approach is sufficient to fulfill the requirements of particularly valuable cus-
tomers. However, it cannot adequately manage overall SLA enforcement. Con-
sider an SLA which requires 90% of all service requests to be processed within
a certain time window. With static prioritization, SLAs for high-priority cus-
tomers are likely to be overfulfilled by processing almost all requests in time.
However, during peak-load times, it is likely that they overachieve their SLAs at
the expense of lower-priority users. From a business-oriented point of view, it is
desirable to provide only the service level which has been negotiated in the SLA.
If SLAs are not overfulfilled, the additional free resources are used for satisfying
SLAs that are violated with the static prioritization.

For this purpose, we developed a QoS management concept based on an economic
model which adaptively prioritizes individual requests depending on the SLA
and the current degree of SLA conformance that the particular service class
exhibits. The core of the QoS management consists of penalty-carrying requests,
that is, database requests which carry the requirements needed to fulfill the SLA
constraints from the submitting service to the database.

The rest of the paper is organized as follows: Section 2 describes the two cost
components, marginal gains and opportunity costs, of our QoS model in de-
tail and presents the adaptive QoS management with which penalty-carrying
requests are derived. Section 3 describes the system architecture and the im-
plementation of our QoS management. The scheduling of the requests is in the
focus of Section 4, followed by the evaluation results of our prototypical imple-
mentation in Section 5. An overview of related work is presented in Section 6.

Finally, in Section 7, we summarize the conclusions of our study and outline
ongoing and future research on this subject.

2 Quality of Service Model

The central concept of our quality of service management is adaptive penaliza-

tion of individual requests according to the current degree of SLA conformance

c. The conformance is monitored per service class, that is, for each transaction

type invoked by an individual customer and the associated SLA. We define ¢ as
Number of timely transaction invocations

C =
Total number of invocations of the transaction

In practice, so-called step-wise SLAs are commonly used to specify the QoS
requirements of a service class. The SLAs consist of one or more percentile con-
straints and an optional deadline constraint. Percentile constraints require n%
of all service requests to be processed within x seconds. If a percentile constraint
is violated after the evaluation period, a penalty p for every m percentage points
under fulfillment is due. Furthermore, p;,q; defines a maximum penalty for vi-
olating a percentile constraint. The deadline constraint — which does not incur
any penalty — specifies an upper bound for the execution time of the service
request. An example for a step-wise SLA with one percentile constraint d; and
one deadline constraint do is shown in the following:

dy1: 90% in less than 5s; p = $900 per 10 percentage points of underful-
fillment, P4 = $1800; evaluation period: 1 month

dy: Deadline 15s

The constraints above control the response time and the throughput of Web ser-
vice transactions. In general, SLAs contain additional constraints such as sizing
constraints which restrict the maximum number of transaction invocations per
time period. We concentrate on fulfilling the percentile and deadline constraints,
assuming any additional SLA constraints are obtained.

G) Cy
2000 T T
SLA penaty —
Service level S, .]
1500 | Marginal gain (mg) - - -]
6&/:9 Ay Opportunity costs (oc) —
%‘ 1000 F Servicelevel s,]
& | eeeeeemeTTTTTT L mg(c) = $441
500 -7 Ay [SEUNT S T — .
oc(c') =$81 >z i)
0 /() ... e LT : Servicel
0.6 0.65 0.7 0.75 0.8 0.85 \ 0.9 0.95 1

c'=0.87 (current service
level conformance)

Service level conformance
Fig. 1. Visualization of SLA constraint di

A percentile constraint in a fixed step-wise SLA implicitly defines an SLA penalty
function with n steps. The penalty function for d; of our sample SLA is shown

as the step function in Figure 1 (black solid lines). With ¢;, 1 <i < n+ 1, we
denote the boundaries of the steps of the SLA penalty function. For the example
in Figure 1, we have ¢4 = 0 (not in the figure), ¢ = 0.8, ca = 0.9, and ¢; = 1.
Using the SLA penalty function, we define service levels as follows: For a penalty
function with n steps, let s;,1 < i < n, denote the ith service level. This level
is defined in the interval [¢;11,c¢;[, so that dropping to a lower service level
corresponds to a higher penalty. Thereby, s;11 denotes a lower service level than
s;, that is, the penalty incurred at s;y1 is higher than at s;. We denote A; as
this cost difference between s;41 and s;.

As shown in Figure 1, our sample percentile constraint d; implicitly defines three
service levels: Service level s3 is defined in the interval [0,0.8], s2 in [0.8,0.9],
and s; in [0, 1]. The cost difference between service levels s3 and s, is $900 which
is identical to the cost difference between so and s;.

2.1 Penalty-Carrying Requests

Penalty-carrying requests are queries with attached penalty information in a
SQL-comment. For example, the penalty-carrying request for a select-Statement
looks like this:

/* penalty ...
* deadline ... */
select ... from ...

We use the SLA penalty function to compute these adaptive penalties for indi-
vidual service requests. In the following section, we describe how to compute the
adaptive penalty from the percentile constraint for an individual request. Then,
we describe briefly the derivation of the deadline constraint for an individual

query.

2.2 Deriving the Penalty for Individual Requests

The penalty of an individual request is covering two different economic aspects.
On the one hand, the opportunity costs model the danger of falling into the next
lower service level. If the current SLA conformance ¢ converges to the next lower
service level, the penalty for processing the service too late increases, because
delaying a further request increases the danger of an ultimate SLA violation.
Then, the opportunity costs oc are piece-wise defined quadratic functions which
are defined as follows:

Cn—1—"Cn

2
(Cn71 C) ’An—h Cn <€ < Cpoi

c) =
oc(c) - 2
L=< Ay c2<c<c

C1—C2

0, otherwise

The rationale for choosing squared terms is given below. For the opportunity
costs, we derive the decreasing parts of the parabolas as in Figure 1.

On the other hand, with marginal gains, we model the chance that a service class
re-achieves a higher service level, that is, reaches s; from s;11. If this appears to
be “within reach”, individual requests are penalized more and more to eventually
achieve the higher level. The marginal gain mg is a piece-wise quadratic function:

2
C—Cn+1 .
(Cn—cn+1) A’ﬂ—lv chy1 S Cc<cp

mg(C) = 5
() c—cC3 . A e < c<ec
co—C3 1 3 > 2

0, otherwise

Analogous to the opportunity costs, the rationale for choosing squared terms is
given below. The marginal gain is depicted as increasing part of the parabolas
in Figure 1.

If the SLA conformance of a request’s service class is approaching the next
lower service level, the chance for reaching the next higher service level is very
small. Thus, the penalty of a request of this transaction is dominated by the
opportunity costs. Similarly, the penalty is dominated by the marginal gain if
the next higher service level is “within reach”. Therefore, we define the penalty
as the maximum of the computed opportunity costs and the marginal gain of
this service request.

To define opportunity costs and marginal gains, we use a squared term — resulting
in the parabolas — to weight the distance from the borders of neighboring service
levels. If linear terms are used, requests stemming from SLAs with high penalties
are almost always be handled with top priority, because there is only a very
small area in the middle of a service level where the calculated penalties are
low. This leads to overfulfillment and therefore an inferior overall performance.
In contrast to that, if the order of the functions is chosen too high, the request
has high priority only for SLA conformances near the borders of the next higher
and next lower service level, respectively. So, if the opportunity costs are defined
by higher order polynomials, there are only very few requests with high priority.
If all of these requests are delayed, e.g., by waiting for database locks, the SLA
conformance falls onto the next lower service level. To justify this rationale,
we conducted extensive experimental studies, which cannot be reported here
for space limitations. These studies have shown that squared terms were better
suited to model the opportunity costs and marginal gains than linear order higher
order terms.

2.3 Deriving the Deadline Constraint for Individual Requests

The time constraint of a deadline constraint x4 specifies an upper bound for
the processing time of a transaction. We therefore need to derive the deadlines
for individual requests of that transaction. Requests which have passed their
deadline are scheduled with maximum priority, that is, they are not delayed by
other requests and most likely have a processing time that is less or equal to

the observed average processing time. Note that the deadline is no guarantee, as
high priority requests can still be delayed if they access an object that is locked
by a request with lower priority.

With enf;, we denote the latest time at which a request r; should be executed to
be able to complete the respective transaction within the time constraint given
by x4. To compute enf;, we monitor the execution times of requests already
processed in the current transaction. In addition to that, we monitor previous
invocations of the transaction and maintain the average processing time of each
request. Thus, we derive the expected time to process the remaining requests
by summing up the average response times of the requests. The time constraint
enf; for the current request is computed by subtracting the observed execution
times and the expected time to process the remaining requests from xg4.

3 System Architecture and Implementation

To provide end-to-end quality of service for Web services, it is essential to incor-
porate all components of a Web service architecture, that is, the invoked service
itself, all called sub-services and the databases at the bottom layer.

Processing SLA
. —
time component

v
Penalty function
-t

Database server

Penalty-
Y with scheduler

carrying request

E—

Fig. 2. Architecture Overview

A primary design goal for the implementation of the described concepts was
to ease the future extension of the QoS management to entire Web service ar-
chitectures. We therefore encapsulated all SLA-relevant functionality, including
the monitoring of the SLA conformance and the generation of adaptive penal-
ties, into a central entity, the SLA component. Figure 2 shows the resulting
architecture. The SLA component can easily be extended to monitor the overall
execution of Web service requests and not only derive adaptive penalties for the
database layer, but also for all sub requests on the Web service layer. The adap-
tive penalties are piggybacked onto the corresponding requests and transported
as penalty-carrying requests to the database. Upon completion of the database
request, the SLA component is notified of the observed response time by the
client and can thus update the current SLA conformance ratio.

The actual scheduling of requests is based on the adaptive penalties and is real-
ized by a scheduler. The scheduler intercepts all arriving requests and carries out
the admission control and the reordering of individual requests. The scheduler is
architected as an external component so that it can be easily adapted to sched-
uling arbitrary service requests, besides the database requests exemplified here.

4 Request Scheduling

At the database server, the processing of a newly arriving penalty-carrying re-
quest works as follows. To prevent the database from being overloaded, the
admission control limits the number of simultaneously executing requests. If the
request it not immediately executed, it is queued. Prior to dequeueing a request,
all queued requests are scheduled, that is, they are ordered by their priority. If
there are sufficient system resources, requests are dequeued by the admission
control.

In most current database systems, processes are assigned the same amount of
resources, irrespective of the priority of the respective request. This implies that
the available resources of the database are assigned in a round-robin manner to
all active requests. In other words, all requests are equally important. To limit
the database load it is therefore sufficient to restrict the number of concurrent
queries, irrespective of their individual complexity [15].

As an alternative, we experimented with an admission control that is based on
the optimizer costs of the requests that are currently being processed. However,
our empirical studies, which cannot be shown here due to space restrictions,
revealed that the query-complexity based admission control performed worse
than simply controlling the multi-programming level by restricting the maximum
number of concurrently processed requests.

Requests which are held back are put in one of two queues, as shown in Fig-
ure 3. Queue A holds requests which belong to running transactions, requests of
transactions not yet started are maintained in queue B. Statements to be pro-
cessed are chosen from queue A. Only if this queue is empty, new transactions
are started by picking statements from queue B, so that running transactions
are not unnecessarily delayed. Using this approach, we avoid the problem of
lock convoys [6]. Lock convoys can arise if a transaction 7Ty, which submits vari-
ous requests to the database, exclusively locks a database object and there are
pending requests of other transactions which intend to lock the same object.
The queue of waiting objects does not shrink as long as the locking transaction
is not finished. Before T}, releases the blocking lock, all of its requests need to
be processed. Thus, intuitively, requests from active transactions are prioritized
over requests from pending transactions.

Our goal is, prior to dequeuing a request, to create a schedule of the pending
requests, such that the overall sum of incurred penalties is minimized. Thus,
the requests are ordered in both queues according to their adaptive penalties.
So, a request is inserted and removed, respectively, in O(logn) time by using a
priority queue implementation, that is, the overhead for scheduling a request is
negligible. For queue lengths of 150, which we observed in our benchmarks, the
scheduling of a single request took about 0.28 milliseconds.

5 Performance Evaluation

We performed comprehensive benchmarks using our prototype implementation
to assess the effectiveness of the adaptive request-penalization. For the perfor-

Requests of active transactions

Queue A m Admission
@)

Sorted by scheduling algorithm

Sorted by S(‘/h(&dgling algorithm

if A is empty

Database core

Simultaneously
E } executing
requests

Requests of new transactions

Fig. 3. Dual Queue Scheduling

mance evaluation, we chose the TPC-C benchmark as a representative Online
Transaction Processing (OLTP) workload.

5.1 Description of the Benchmarks

The TPC-C-benchmark models a company which is a wholesale supplier op-
erating several warehouses which serve customers in geographically distributed
sales districts. The database workload of the benchmark is centered around five
principal business transactions of an order-entry environment. The transactions
are invoked by emulated users whose behavior is controlled by think times and
keying times. The detailed specification of the TPC-C benchmark can be found
in [16].

The SLA for a transaction is based on the corresponding response time goal. For
our experiments, we specified the SLAs using XML, similar to WS-Agreement [10],
which is becoming a standard for establishing a service agreement between a
service provider and a client. Our experiments are conducted with the step-wise
SLAs introduced in Section 2. For each transaction, we define an SLA with a per-
centile and an deadline constraint. The percentile constraint requires 90% of the
invocations to be processed in less than the corresponding response time require-
ment which is specified for each transaction in [16]. A violation of this constraint
is fined with a penalty which depends on the terminal representing the client
from which the transaction is invoked, that is, the SLA applies for the terminal
and all transactions that are invoked from this terminal. In our test scenario,
we chose a customer-mix where 15% of the terminals incur high ($1000), 35%
incur medium ($200), and the remaining terminals incur low penalties ($40) if
the corresponding SLA is violated. This customer mix models a service provider
with a high number of regular customers that must be preferably processed
compared to “normal” users. In order to avoid starvation of queued requests, we
define an upper bound for the execution time of a transaction in our benchmark
SLA for high and medium priority customers. The deadline is set to three times
the response time requirement for transactions stemming from high-priority cus-
tomers and four times for medium-priority transactions. There are no deadline
constraints for low-priority customers.

For our experiments, we implemented our own version of the TPC-C benchmark
based on MaxDB Version 7.5 [11]. The number of warehouses is held constant
at 20, thus, the size of the database is about 2GB. As specified by the TPC-C,
the number of terminals is ten times the number of warehouses, thus yielding a
total number of 200 terminals during the benchmark.

For the benchmarks, we dimensioned the 100%-workload such that the required
response times of the specification are met without any scheduling and admission
control at all. Furthermore, we define a productive workload of 80%, as databases
should not be operated at its limit due to possible load peaks. We control the
workload by multiplying the keying and think times with a scaling factor.

A single benchmark consists of several phases. First, there is a “warmup” phase
where the database is operated at 80% load for 15 minutes. Subsequently, 8 minute-
periods of peak load (200% workload) alternate with “rest periods” (80% work-
load) which again last for 15 minutes. The benchmark terminated after an eval-
uation period of 65 minutes. After this time, the requests that have been accu-
mulated in the second load peak, have been processed, so that the number of
queued requests is reduced to the normal level again. The scheduler with admis-
sion control is configured such that the throughput is identical to the throughput
of a benchmark with terminals directly connected to the database.

Our experiments are performed running the QoS-enabled database on a server
with 1GB RAM and an Intel Xeon processor with 2.8GHz. The operating system
is SUSE Linux Enterprise 9 based on kernel 2.6. All terminals run on another
server with identical hardware and connect to the database via Gigabit-Ethernet
using the MaxDB JDBC-driver.

5.2 Results

First, we present the analysis of the SLA conformance using static prioritiza-
tion, that is, the priority of a customer remains constant throughout the entire
benchmark. Figure 4 shows the SLA conformance for the NewOrder transaction
which is the central transaction of the TPC-C benchmark. The values shown
are the conformances at the end of the evaluation period for each of the termi-
nals involved. The SLA conformances are ordered decreasingly, grouped by the
priority of the terminals. With static prioritization, all SLAs for transactions
stemming from high-priority terminals are overfulfilled, reaching an SLA con-
formance near 1. All low-priority terminals underachieve their SLAs. For 46%
of the terminals having medium priority, the SLAs are obtained, while for 54%,
the corresponding SLA is violated. This inequity between terminals having equal
priority arises if transactions from one terminal compete with more high-priority
transactions than the other. Due to the lack of SLA awareness, the static prior-
itization cannot differentiate between a transaction stemming from a customer
whose SLA is currently vastly overfulfilled and a transaction where the next
higher service level is within reach.

In contrast to this, the SLA conformance using adaptive prioritization is far
more balanced within a group. Figure 5 shows the SLA compliance of all ter-
minals using our novel adaptive penalization. Again, all high-priority terminals

0.

©

0.

o

0.

SLA Conformance
=

0.

N

0

high priority medium priority m— low priority m—

—_—

Terminal

Fig. 4. SLA Conformance for all Terminals Using Static Prioritization

0 ‘

Terminal

0.

©

0.

o

0.

SLA Conformance
=

0.

N

high priority medium priority m— low priority m—

Fig.5. SLA Conformance for all Terminals Using Adaptive Penalization

satisfy their SLAs. But the SLAs are not overfulfilled to the extent as with
static prioritization, that is, the SLA conformance with static prioritization is
between 95.7% and 100% and with our adaptive prioritization between 93.4%
and 97%. This adaptive “down-grading” of requests stemming from high-priority
terminals is used to free resources for requests from low- and medium-priority
terminals. Furthermore, as requests stemming from low-priority terminals do
not have deadlines, these requests are delayed as long as possible to allow the
prioritized execution of higher priority requests.

If the pending requests are statically prioritized, the reduction of costs induced
by violating the SLAs of the terminals is due to favoring requests stemming
from high-priority terminals to lower-priority requests. For our example configu-
ration, the costs decreased by 55%, from $28, 080 using the static prioritization
to $12,600 with the adaptive penalization.

6 Related work

Enabling QoS for Web service infrastructures is in the focus of our research
group. Braumand]l et al. [2] discuss distributed query processing systems on the
Internet where the queries have different QoS demands. The paper presents an
extension to the distributed query processing to support user QoS constraints.
The query processor generates plans in such a way that its quality estimates
are compliant with the user-defined quality constraints. Gmach et al. [5] present
a fuzzy controller module which supervises services in a service oriented archi-
tecture. The controller executes appropriate actions to remedy overload, failure,
and idle situations in the service architecture.

Quality of Service is an important issue for e-commerce and other e-services.
Beeri et al. [1] analyze service compositions at compile-time stage to gain fur-
ther information on the service’s behavior. Selecting services which are dynami-
cally bound to composite services at runtime to satisfy user QoS requirements is
presented by Maximilien and Singh [12], and Gibelin and Makpangou [4]. How-
ever, these approaches are only applicable if there are several concrete services
which implement the same interface. This is not necessarily true for enterprise
services. Kraiss et al. [8,9] describe an analytical model for the HEART tuning
tool for message oriented middleware. The tool assigns static priorities to differ-
ent workload classes. The messages of the different classes are then processed by
a priority based scheduling algorithm in the middleware. The approach differs
from our work in three points. First, there is a fixed number of workload classes.
Second, for each class, the workload parameters have to manually be specified
by an administrator. Third, if the workload change, the priorities for the classes
have to be recomputed.

An admission control and request scheduling for e-commerce Web sites is pre-
sented by Elnikety et al. [3]. Their work focuses on achieving stable behavior
during overload and improved response times. Analog to our SLA based request
management component they install a proxy between the Web service and the
database. However, the optimization is not associated to the SLA conformance.
As we have discussed in this paper, considering the conformance is an integral
part of an adaptive QoS management.

Schroeder et al. [14] present a framework for providing QoS where the response
time requirements are specified in an SLA. To meet the multiclass response time
goals, the number of concurrently executing requests is dynamically adjusted
using a feedback control loop which considers the available hardware resources
and concurrently executing queries in the database. However, other than our
approach their work is not based on an economic model that optimizes the
overall system performance across different classes.

7 Conclusion and Future Work

In this paper, we presented and evaluated an adaptive QoS management that
is based on an economic model which adaptively penalizes individual requests
depending on the SLA and the current degree of SLA conformance. Our eco-
nomic model differentiates between opportunity costs and marginal gains. Using
this economic model, we compute adaptive penalties and annotate them to in-
dividual requests, thus creating penalty-carrying queries. Second, we described
the architecture and the implementation of our QoS management. Third, we pre-
sented the scheduling of the requests which is based on an admission control. We
integrated our research prototype of a QoS-enabled database into MaxDB. Us-
ing our prototype, we demonstrated the effectiveness of our proposed approach
by performing comprehensive real-world studies using the TPC-C benchmark as
OLTP workload.

Having shown the effectiveness of our approach for databases, we now move
towards scheduling in multi-level service infrastructures.

References

1.

10.
11.
12.

13.

14.

15.

16.

C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying Business Processes with
BP-QL. In Proceedings of the 31st International Conference on Very Large Data
Bases, Trondheim, Norway, September 2005.

R. Braumandl, A. Kemper, and D. Kossmann. Quality of Service in an Information
Economy. TOIT, 3(4):291-333, 2003.

S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel. A Method for Transparent
Admission Control and Request Scheduling in E-Commerce Web Sites. In Proceed-
ings of the 13th International Conference on WWW, pages 276-286, New York,
NY, USA, 2004. ACM Press.

N. Gibelin and M. Makpangou. Efficient and Transparent Web-Services Selection.
In Proceedings of the 3rd International Conference on Service Oriented Computing,
Lecture Notes in Computer Science (LNCS), Vol. 3826, pages 527-532, 2005.

D. Gmach, S. Krompass, S. Seltzsam, and A. Kemper. AutoGlobe: An Automatic
Administration Concept for Service-Oriented Database Applications. In Proceed-
ings of the 22nd International Conference on Data Engineering (ICDE). IEEE
Computer Society, 2006.

J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993.

IBM DB2 Query Patroller. http://www-306.ibm.com/software/data/db2/
querypatroller/.

A. Kraiss, F. Schon, G. Weikum, and U. Deppisch. Towards Response Time Guar-
antees for E-Service Middleware. IEEE Data Engineering Bulletin, 24(1):58-63,
2001.

A. Kraiss, F. Schon, G. Weikum, and U. Deppisch. With HEART Towards Re-
sponse Time Guarantees for Message-Based E-Services. In Proceedings of the 8th
International Conference on Extending Database Technology, pages 732—735, Lon-
don, UK, 2002. Springer.

H. Ludwig and Toshiyuki. WS-Agreement Concepts, Use, and Implementation. In
Tutorial at the ICSOC, 2005.

MaxDB. http://wuw.mysql.com/products/maxdb/.

M. Maximilien and M. P. Singh. Toward Autonomic Web Services Trust and
Selection. In Proceedings of the 2nd International Conference on Service Oriented
Computing, pages 212-221, New York, NY, USA, 2004. ACM Press.

Oracle Database Resource Manager. http://www.oracle.com/technology/
deploy/availability/htdocs/rm_overview.html.

B. Schroeder, M. Harchol-Balter, A. Iyengar, and E. Nahum. Achieving Class-
Based QoS for Transactional Workloads. In Proceedings of the 22nd International
Conference on Data Engineering (ICDE). IEEE Computer Society, 2006.

B. Schroeder, M. Harchol-Balter, A. Iyengar, and E. Nahum. How to Determine
a Good Multi-Programming Level for External Scheduling. In Proceedings of the
22nd International Conference on Data Engineering (ICDE). IEEE Computer So-
ciety, 2006.

TPC Benchmark C, Standard Specification Version 5.4. http://www.tpc.org/
tpcc/, April 2004.

