
Consolidating the Access Control of Composite
Applications and Workflows

Martin Wimmer1, Alfons Kemper1, Maarten Rits2, and Volkmar Lotz2

1 Technische Universität München, 85748 Garching b. München, Germany
2 SAP Research, Font de l’Orme, 06250 Mougins, France

{wimmerma, kemper}@in.tum.de, {maarten.rits, volkmar.lotz}@sap.com

Abstract. The need for enterprise application integration projects leads
to complex composite applications. For the sake of security and efficiency,
consolidated access control policies for composite applications should be
provided. Such a policy is based on the policies of the corresponding
autonomous sub-applications and has the following properties: On the
one hand, it needs to be as restrictive as possible to block requests which
do not comply with the integrated sub-applications’ policies. Thereby,
unsuccessful executions of requests are prevented at an early stage. On
the other hand, the composite policy must grant all necessary privileges
in order to make the intended functionality available to legitimate users.
In this paper, we present our formal model and respective algorithmic
solutions for consolidating the access control of composite applications.
The generated policies conform to the presented requirements of the least
privileges paradigm and, thus, allow to revise and optimize the access
control of composite applications. We demonstrate this by means of Web
service workflows that constitute the state of the art for the realization
of business processes.

1 Introduction

Composite applications are applications that rely on sub-applications (also called
sub-activities) to integrate their functionality. There are numerous examples for
such applications including quite simple Web applications as well as large scale
enterprise resource planning systems (ERP) that rely on database backends.
Also, business processes that are realized as Web service workflows constitute
complex composite applications. In general, sub-applications are self-contained
software components, like Web services that autonomously enforce their own
security policy. When integrating autonomous sub-activities into workflows, se-
curity dependencies must be considered. As an example consider the e-health
workflow illustrated in Figure 1 that will be executed when a patient is trans-
ferred to the cardiology department of a hospital. Depending on the diagnostic
findings, either an in-patient treatment is applied or an electrocardiogram (ECG)
is made in order to acquire further insight. Each of the individual sub-activities
that are depicted in the figure are autonomously enforcing their security policies.
In case, these policies are not consolidated, reliable workflow execution might be
hindered. Administrative employees, for instance, are allowed to query the med-
ical records of patients, but are not permitted to perform any medical treatment.

2

Fig. 1. Example of an e-health workflow

Thus, requests might be authorized by some sub-activities but rejected by others,
which results in performance drawbacks due to unsuccessful workflow executions
and can require transaction rollbacks or costly compensating actions.

In order to perform an early-filtering of the requests to avoid unsuccessful
executions, a consolidated view onto the access control of workflows or general
composite applications is needed. Thereby, we can identify two different per-
spectives onto the security configuration of a composite application. From the
security officer’s point of view, access control should be defined as tight as possi-
ble to avoid security vulnerabilities. Too restrictive policies on the other hand can
hinder legitimate users to execute the application which contradicts the process-
centered viewpoint of the application developer. Therefore, a consolidated policy
is required that is tailored to the functionality of the composite application. The
consolidation process derives the following information: (1) what are the least
required privileges for the execution of the composite application and (2) who
is granted these privileges. The first aspect allows to meet the security officer’s
requirements by defining access rules and role profiles that are restricted to the
functionality of the composite application. The second supports the application
developer in detecting unintended configurations. For instance, if only highly
privileged users (e.g., administrators) are authorized to perform the workflow,
this might be an indication for the design of the application itself having to be
revised.

In [1] we presented a security engineering approach for optimizing the ac-
cess control of Web service compositions by determining the maximum set of
authorized subjects. As we will show in this paper, in order to treat generic
composite applications, privilege relaxation tests are required in addition. Our
contributions are a formal model and corresponding algorithmic solutions for the
consolidation of the access control of generic composite applications. The consol-
idation is performed from the single-user / single-role-perspective, meaning that
a user can execute the application by the activation of one task specific role.
This complies with most business processes, which are typically representing job
specific functions and are thus designed for specific groups of employees.

The remainder of this contribution is structured as follows: Section 2 intro-
duces the syntax and semantics of our policy algebra, which constitutes the basis
of the policy consolidation approach presented in Section 3. In Section 4 elemen-

3

tary algorithms of the policy consolidation process are described. Section 5 gives
an overview over related work and Section 6 concludes the paper.

2 Policy Model

First, we introduce the policy algebra which constitutes the basis for the for-
mal specification of the proposed policy consolidation technique. Policies are
described in an attribute based way and are not restricted to identity based
description. For instance, subjects can be specified through characterizing prop-
erties like role-membership, age, profession skills and so on. The policy model
allows to express discretionary access control (DAC) rules and supports role
based access control (RBAC) models which are suitable security concepts for
almost all commercial applications. The formal syntax and semantics of our pol-
icy model are based on those introduced by Bonatti et al. [2]. We adapted and
extended this model where necessary, e.g., by introducing additional operators.

2.1 Notation

Predicates A predicate defines an attribute comparison of the form
(attribute-identifier ◦ constant). Depending on the attribute’s domain, the com-
parison operator ◦ is in {<,≤, =,≥, >} for totally ordered sets and in
{@,v,=,w, A} for partially ordered finite sets.

Subjects, objects, actions, and conditions Let Attr be the set of distinguished at-
tribute identifiers. Attr is subdivided into disjoint sets of subject, object, action,
and environment attribute identifiers (denoted as S-Attr, O-Attr, A-Attr, and
E-Attr respectively). A set of subjects S is represented by a disjunction of predi-
cate conjunctions over S-Attr. That is, S = ((s1,1∧. . .∧s1,l)∨. . .∨(sk,1∧. . .∧sk,l)),
with each si,d being a predicate conjunction that applies to one attribute. The
cardinality of S-Attr is denoted by l. The elements of S-Attr are also called di-
mensions of a subject specification. Representations of objects O and actions A
are defined in a similar way. S, O, and A are inequality-free. A condition c is a
boolean formula defined over attributes of E-Attr that can include user defined
functions with Boolean codomain (e.g., isWeekday(date)).

Rules and policies A rule R is a quadruple (S,O, A, c), consisting of specifica-
tions of subjects S, objects O, and actions A. A rule assigns a set of permis-
sions specified by (O, A) to a set of subjects. The scope of the assignment is
restricted through c. Individual rules R1, . . . , Rn can be aggregated in a policy
P = {R1, . . . , Rn}.
Evaluation context An evaluation context e ∈ E is a partial mapping of the
attributes defined in Attr. If D1, . . . , Dm are the domains of the attributes in
Attr, then E is defined as D⊥

1 ×. . .×D⊥
m, with D⊥

j = Dj∪{⊥} and ⊥ representing
an unspecified attribute value.

2.2 Semantics

Evaluation of rules An evaluation context e is evaluated against the individual
components of rules. A subject specification S applies to e, iff S maps to true
w.r.t. the attribute values of e. That is, [[S]]e := S(e) = (true|false). The seman-

4

tics of O, A and c are defined analogously. The applicability of a rule R w.r.t. e
is defined as [[R]]e := [[S]]e ∧ [[O]]e ∧ [[A]]e ∧ [[c]]e.

Evaluation of policies The semantics of a policy P depend on the employed policy
evaluation algorithm (abbrev. pe-alg). We define the evaluation algorithms pe-all
and pe-any, with [[P]]pe-alle :=

∧
R∈P [[R]]e and [[P]]pe-any

e :=
∨

R∈P [[R]]e. pe-all can
be applied to realize a static policy enforcement, in cases when access control can
be performed once for a composite application and all its sub-activities before
the execution. pe-any is useful for gradually performing access control, when
runtime information needs to be considered. In order to characterize unrestricted
specifications (i.e., tautologies) we use the symbol Υ , with ∀e ∈ E : [[Υ]]pe-alge =
true.

Policy Combining Operators

Conjunction Let S and S′ be two subject specifications. The conjunction of S
and S′ is denoted as S ∧ S′ with [[S ∧ S′]]e = [[S]]e ∧ [[S′]]e. The conjunction
operator is analogously defined on objects, actions, conditions, and rules.

Subtraction The subtraction of two subject specifications S and S′ is defined as
S−S′ with [[S−S′]]e = [[S]]e ∧¬([[S′]]e). Analogously, subtraction is also defined
on objects, actions, conditions and rules.

Projection Let R = (S,O, A, c) be a rule. The projection on the subjects part of
R is defined as ΠS(R) = S. Analogously, ΠO(R) = O, ΠA(R) = A, ΠC(R) = c,
and ΠO,A(R) = (O, A).

Let P = {R1, . . . , Rn} be a policy. ΠS(P) is defined as ΠS(P) = {ΠS(R1),
. . . , ΠS(Rn)}. Other projection operators on policies are defined in a similar way.
We use the abbreviation S(P) =

∧
1≤i≤n ΠS(Ri) to denote those subjects that

are granted all privileges defined in P .

Privilege, rule, and policy relaxation A privilege (O′, A′) relaxes a privilege
(O, A), denoted as (O, A) v (O′, A′), iff it applies to more (or the same) actions
on more (or the same) objects. That is, ([[(O, A)]]e = true) implies ([[(O′, A′)]]e =
true) for any evaluation context e. Analogously, a rule R′ relaxes a rule R,
R v R′, iff it grants more or the same privileges to more or the same users under
the same or less restrictive conditions. That is, ∀e ∈ E with ([[R]]e = true) ⇒
([[R′]]e = true). In the same way, P vpe-alg P ′, iff ∀e ∈ E : ([[P]]pe-alge = true) ⇒
([[P ′]]pe-alge = true).

Reduced policies In order to efficiently consolidate the policy of composite
applications we are focussing on reduced policies as motivated in Section 3.1:
Let the applied policy evaluation algorithm be pe-all. P is called reduced, iff

(1) ∀R, R′ ∈ P,R 6= R′ : @e ∈ E : ([[ΠO,A(R) ∧ΠO,A(R′)]]e = true) and
(2) ∀R ∈ P : S(P) = ΠS(R)

A policy fulfilling (2) but not (1) can be reduced as follows: Let Ra, Rb ∈ P ,
Ra 6= Rb : ∃e ∈ E : ([[ΠO,A(Ra) ∧ ΠO,A(Rb)]]e = true). Substitute the two
rules Ra, Rb through the three combined rules Ra−b, Ra∧b, Rb−a with Ra−b =

5

(a)

1r 2r

4r 5r3r

(b)

Fig. 2. Example for limited (a) and general (b) role hierarchies

(S(P),ΠO,A(Ra)−ΠO,A(Rb),ΠC(Ra)), Ra∧b = (Ra ∧Rb), and Rb−a = (S(P),
ΠO,A(Rb)−ΠO,A(Ra),ΠC(Rb)).

2.3 Role Based Access Control

Policy administration can easily become unmanageable if privileges are indepen-
dently assigned to each user. Scalability is provided through role based access
control (RBAC, see [3] and [4]). Using RBAC, privileges required for perform-
ing a certain task are grouped by roles. Users acquire these privileges via the
indirection of being granted those roles. Roles can be organized in a hierarchy
that defines a partial order. Senior roles, which are at higher levels in the hi-
erarchy, inherit all privileges that are granted to their junior roles. To give an
example, the role Internist in Figure 2(a) is senior to Physician, denoted as
Internist w Physician. Accordingly, Physician is called junior role of Internist.

A role r′ is an immediate descendant of a role r if r′ v r and there is no
r′′ with r 6= r′′ and r′′ 6= r′ such that r′ v r′′ v r. A role hierarchy is called
limited if each role has at most one immediate descendant. This is the case for
the example hierarchy illustrated in Figure 2(a). In contrast to this, general role
hierarchies like the one shown in Figure 2(b) support the concept of multiple
(access right) inheritance.

3 Policy Consolidation

3.1 Problem Specification

Let App1, . . . ,AppN be N ≥ 1 (autonomous) sub-activities of the composite
application App0 and Pi be the policy that applies to Appi (for 1 ≤ i ≤ N). We
equate the permission to execute the ith sub-activity with the set of privileges
that apply to the accesses performed by Appi (which itself can be a composite
application, too). These are defined by ΠO,A(Pi). In order to enforce all of these
access rights, we use pe-all as evaluation algorithm. We assume Pi to be a reduced
policy. Thus, as defined in Section 2.2, Pi has the following two characteristics:
First, the privileges defined in Pi are disjoint. This property can be assured
through the preprocessing described in Section 2.2. Second, its rules apply to
the same set of subjects. In some cases it might be required, that the privileges
ΠO,A(Pi) are granted to different groups of users under distinguished conditions.
In order to efficiently process the set of constraints, the policy is decomposed
into policies conforming to Section 2.2 that are evaluated individually.

Let P0 be the reduced policy for App0. In many cases, there might be no
predefined policy for App0, i.e., P0 is equivalent to Υ . Nevertheless, policy proto-

6

types can be pre-defined specifying intended configurations. The objective of the
policy consolidation process is to evaluate P0 against the policies of the underly-
ing applications. Its result is an optimized policy P opt that fulfills the following
two criteria:

LP Least privilege criterion: Each privilege defined in P opt must also be defined
in at least one policy Pi with 1 ≤ i ≤ N . The privileges defined in P opt must be
sufficient to perform App0 and its respective sub-activities.

MS Maximum set of subjects criterion: Each subject that is authorized based
on the original policy configurations (Pi)0≤i≤N must also be authorized by P opt.
Each subject that is defined in P opt must also be defined in at least one policy
Pi with 1 ≤ i ≤ N and in P0.

3.2 Workflow Dependencies

Sub-activities of a composite application can for example be executed in sequence
or in parallel. Also, iterations (i.e., loops) are possible. From an access control
point of view it is of importance that all sub-activities will be performed. We
represent this fact through the Sequence pattern. Furthermore, conditional and
event based executions can be defined. From the access control perspective this
denotes that only one sub-activity will be invoked, which we represent through
the so-called Switch template. Sequence and Switch templates can be nested
to model complex workflows. Apart from these kinds of control flow dependencies
further interdependencies influencing access control can exist:

a) Data-flow dependencies are given, if an output parameter x of a sub-activity
Appi is input to Appj and the value of x determines the result of the evalu-
ation of the policy Pj .

b) External dependencies are dependencies by parameters external to the sys-
tem, like time. For example, Pi and Pj might define time constraints that
restrict the execution of Appi and Appj to disjoint time frames. That is,
the conjunction of conditions defined in Pi and Pj respectively constitute
a contradiction. Nevertheless, the control-flow can be consistent due to the
execution order (e.g., think of delays during long-running transactions).

We first describe the consolidation of access control policies for the two patterns
Sequence and Switch before we return to discuss the influence of interdepen-
dencies a) and b).

3.3 Analysis of Sequence Patterns

For a Sequence pattern to be consistent from the access control perspective,
the following two conditions must be met: First, the access rights defined in P0

must include those privileges defined in the policies (Pi)1≤i≤N . Second, there
must be at least one subject that is granted these privileges. Otherwise, the
access specifications are conflicting, preventing the execution of App0. Formally:

∀1 ≤ i ≤ N : ∀R ∈ Pi : ∃R′ ∈ P0 : ΠO,A(R) v ΠO,A(R′) (1)

∃e ∈ E : [[Sall]]e = true for Sall =
∧

0≤i≤N
S(Pi) (2)

7

The consolidated policy P opt
(all) is defined as:

P opt
(all) = {(Sall,ΠO,A(R), (ΠC(R) ∧ΠC(R′))) | ∀i ∈ {1, . . . , N} :

R ∈ Pi, R
′ ∈ P0 : ΠO,A(R) v ΠO,A(R′)}

(3)

The applied evaluation algorithm is pe-all. If the policies (Pi)1≤i≤N fulfill LP,
then LP can also be inferred for P opt

(all), as the privileges in P opt
(all) are restricted

to those defined in (Pi)1≤i≤N and its rules are constrained through conjunctions
of the respective conditions defined in these policies and P0. Sub-activities can
perform similar accesses on the same objects, like scans of the same tables of a
database. Thus, P opt

(all) – which aggregates the privileges defined in (Pi)1≤i≤N –
might contain redundancies that can be eliminated according to Section 2.2.

3.4 Analysis of Switch Patterns

The access control configurations for Switch patterns can be defined from two
different perspectives. The full-authorization approach enforces each subject de-
fined in the consolidated policy to be authorized for any of the (Appi)1≤i≤N ,
irrespective which sub-activity will actually be executed. As a consequence, the
consolidated policy corresponds to P opt

(all) defined in the previous paragraph.
On the opposite side, partial-authorization distinguishes the different execu-

tion paths. Subjects might be authorized to execute App0 in case a particular
Appi is invoked next, but will be blocked in any other case. Thus, in order to
efficiently evaluate a Switch pattern the distinguished execution branches have
to be analyzed separately. Consequently, up to N security configurations have
to be considered. In order to specify the optimized policy for the ith branch, the
policies P0 and Pi are consolidated and the following must be true:

∀R ∈ Pi : ∃R′ ∈ P0 : ΠO,A(R) v ΠO,A(R′) (4)

∃e ∈ E : [[S(i)]]e = true for S(i) = S(P0) ∧ S(Pi) (5)

The consolidated policy for the ith branch (using pe-all) is defined as:

P opt
(i) = {(S(i),ΠO,A(R), (ΠC(R) ∧ΠC(R′))) |R ∈ Pi, R

′ ∈ P0 :

ΠO,A(R) v ΠO,A(R′)}
(6)

3.5 The Benefits of Policy Consolidation

The policy consolidation technique performs a static analysis of the policy of a
composite application App0 by comparing it with the security configuration of its
underlying sub-activities App1, . . . ,AppN . Its result is an optimized policy P opt

for App0 and all sub-activities (P opt = P opt
(all)) or specific branches App0 → Appi

(P opt = P opt
(i)), respectively. In case no external or dataflow dependencies exist,

the access control costs can be reduced significantly. As each execution which is
granted based on P opt will also be granted by the sub-activities, it is sufficient
to enforce access control solely at App0, thus, saving redundant enforcements
through the sub-activities. In case interdependencies 3.2.a) or 3.2.b) have to

8

be considered at runtime, no single point of access control can be established.
Nevertheless, the static analysis allows to receive a consolidated view onto the
set of authorized users (MS) and the least required privileges (LP) enabling the
following optimizations:

Evaluation of MS: S(P opt) specifies those subjects that are authorized to execute
the workflow (branch) or general composite application, respectively. It allows
application developers to check more easily whether the policy complies with
the intended security specifications, e.g., detecting over-privileged users or con-
flicts. Furthermore, in case role based access control is employed, least required
roles can be inferred. In this regard, a least required role is a role that grants
process execution without demanding for further intermediary role activations.
This “one role will do”-approach is especially relevant for business processes that
are typically defined for specific job functions. Least required roles are identified
through the predicate reduction introduced in Alg. 1 and are unique for limited
role hierarchies but not necessarily for general role hierarchies. For example, the
infima of the role hierarchy shown in Figure 2(b) are r1 and r2. The respective
least required roles are least common senior roles, i.e., r4 and r5 in the example.

Evaluation of LP: ΠO,A(P opt) represents the aggregated set of privileges tailored
to the access requirements of the composite application. In the meaning of a
reverse security engineering, this information allows to generate task specific
roles which are appropriate for the application. They are called task specific as
they group exactly those rights that are required for the composite application’s
functionality (while least required roles can be more generic).

3.6 Case Study: Web Service Workflows

Sub-activities of the intra-organizational workflow illustrated in Figure 1 on the
one hand represent practical activities that require human interaction like a
medication. On the other hand, they stand for information processing tasks,
like an update of the stock of pharmaceuticals in the database. In the following
we concentrate on the technical aspects of the workflow and assume the sub-
activities to be realized as Web services with the following access rules:

– Health personnel with permanent employment and administrative personnel
are allowed to access the medical records of patients. The subject specifica-
tion SMR applying to the sub-activity query medical records is defined as

SMR =((role w Health Pers. ∧ employment = permanent)
∨ (role w Admin. Pers.))

– Nurses of the cardiology and internists are allowed to update medical records,
e.g., by inserting ECG results. Users allowed to execute make stress electro-
cardiogram are in
SECG = ((role w Nurse ∧ field-of-activity = cardiology) ∨ (role w Internist))

– Internists are allowed to perform the sub-activity apply monitoring devices:
SApp = (role w Internist).

– The sub-activity apply medication can be performed by nurses and physi-
cians:
SMed = ((role w Nurse) ∨ (role w Physician)).

9

SEQUENCE

apply monitoring
devices (SApp)

apply medication
(SMed)

SEQUENCE make stress
electrocardiogram

SWITCH query medical
records (SMR)

(SECG)

Fig. 3. Tree representation of the e-health business process

As motivated in Section 3.2, the workflow can be modeled as a composition of
Sequence and Switch patterns. This allows the authorization dependencies of
the workflow to be represented as a tree as shown in Figure 3. Through a bottom-
up analysis, the consolidated access control configuration for the workflow can be
inferred. Typically, no access control policies are defined for the control structures
– i.e, P0 ≡ Υ for Sequence and Switch nodes. Hence, the privileges defined for
the individual Web services, are iteratively aggregated without demanding for
relaxation tests. We thus focus on determining the set of authorized users which
proceeds as follows: First, SApp and SMed are intersected as both sub-activities
are linked in sequence. It holds SApp ∧ SMed = (role w Internist). Next, the
Switch node is evaluated. The subjects that are granted full-authorization are
defined by S = (role w Internist). In contrast to this, nurses are only granted
partial authorization for the ECG-branch: S′ = (role w Nurse∧field-of-activity =
cardiology). Finally, S and S′ have to be intersected with SMR. We receive:

Sall = (SMR ∧ S) = (role w Internist ∧ employment = permanent)

S(ECG) = (SMR ∧ S′) = (role w Nurse ∧ field-of-activity = cardiology
∧ employment = permanent)

Thus, the workflow is executable for nurses and internists, whereby nurses are
only granted partial authorization. This allows the following optimization of
access control at the workflow layer: Internists that fulfill the specification of Sall

need only be authorized at the workflow layer. For nurses, access control has to
be performed twice: On top of the workflow layer and when entering the Switch
part. All other subjects, like those granted the Administrative Personnel role,
can be blocked right from the beginning, as they will never succeed in reaching
an end state of the workflow. The optimization capabilities can be realized to
the maximum extent possible, if the access control of the sub-activities can be
controlled by the composite application, for instance by building up a security
context between the workflow execution system and the autonomous services,
e.g., employing WS-SecureConversation [5]. In any case, policy enforcement at
the workflow layer helps to reduce unnecessary service executions, transaction
rollbacks and compensating actions.

4 Algorithmic Solutions

For an implementation of the described policy consolidation technique, algorith-
mic solutions for the evaluation of predicate conjunctions and subtractions, and
the validation of privilege relaxation are required.

10

4.1 Implementing the Conjunction Operator

Equations (2) and (5) introduce Sall and S(i) as conjunctions of subject specifica-
tions. The conjunction operator is semantically equivalent to the set theoretical
intersection operator. That is, Sall and S(i) can be interpreted as the intersection
of subject sets. Let S and S′ be two subject specifications. According to the pol-
icy model, S and S′ are represented via disjunctions of predicate conjunctions
over attributes in S-Attr :

S = s1 ∨ . . . ∨ sk = (s1,1 ∧ . . . ∧ s1,l) ∨ . . . ∨ (sk,1 ∧ . . . ∧ sk,l) and
S′ = s′1 ∨ . . . ∨ s′k′ = (s′1,1 ∧ . . . ∧ s′1,l) ∨ . . . ∨ (s′k′,1 ∧ . . . ∧ s′k′,l)

The attributes in S-Attr are also called the dimensions of subject specifica-
tions. We assume all dimensions in S and S′ to be specified. If a conjunction
si is not constrained in dimension d, then the respective predicate si,d repre-
sents the whole domain of d. According to Section 2.2 the intersection of S and
S′ is: S ∧ S′ =

∨
1≤i≤k,1≤j≤k′(

∧
1≤d≤l(si,d ∧ s′j,d)). Nevertheless, conjunctions

(si,d ∧ s′j,d) can be contradictory, i.e., unsatisfiable by any evaluation context.
Such terms constitute unnecessary parts of a policy and shall be omitted to
keep policy specifications clear. Alg. 1 illustrates an approach for computing a
condensed representation of S ∧ S′. We illustrate the algorithm by means of an
example. Consider the following two subject descriptions (based on the example
role hierarchy shown in Figure 2(a)):

S = (s1) = (role w Nurse ∧ yop ≥ 1) and
S′ = (s′1 ∨ s′2) = (role w Admin. Pers. ∧ yop ≥ 0) ∨

(role A Health Pers. ∧ yop ≥ 2 ∧ yop ≤ 4)

S represents all subjects that are granted the Nurse role and that have at least
one year of practice (abbrev. yop). S′ represents administrative employees and
all subjects that are granted senior roles of the Health Personnel role with at
least two and at most four years of practice. Thus, the dimensions are role and
yop. While the domain of role is a finite lattice (defined by the role hierarchy
shown in Figure 2(a)), the domain of yop is [0, +∞[.

The terms s1 and s′1 are disjoint, because they do not overlap in the role-
dimension, i.e., (s1,role∧s′1,role) is a contradiction and needs not be considered in
line 7. In contrast to this, s1 and s′2 overlap in each dimension. The conjunction
(yop ≥ 1) ∧ (yop ≥ 2 ∧ yop ≤ 4) is reduced to (yop ≥ 2 ∧ yop ≤ 4). The predi-
cates s1,role and s′2,role define the two finite sets Φ1 = {Nurse,Head Nurse} and
Φ′2 = {Nurse,Head Nurse,Physician, Internist,Surgeon}. Thus, (s1,role ∧ s′2,role)
is equivalent to Φ1 ∩ Φ′2 = {Nurse,Head Nurse}. The intersection can be repre-
sented through the predicate (role w Nurse), as Nurse is the infimum of Φ1 ∩Φ′2
according to the example role hierachy. Thus, S1 ∧ S2 = (role w Nurse ∧ yop ≥
2∧ yop ≤ 4). That is, the intersection consists of those subjects that are granted
the Nurse role and that have at least two and at most four years of practice.

11

Algorithm 1 intersect(S, S′), with S ≡ s1 ∨ . . . ∨ sk, and S′ ≡ s′1 ∨ . . . ∨ s′k′
1: Ψ = false
2: for all conjunctions si of S do
3: for all conjunctions s′j of S′ do
4: for all dimensions d = 1 . . . l do
5: ψd = reduce(si,d ∧ s′j,d)
6: end for
7: Ψ = Ψ ∨ (ψ1 ∧ . . . ∧ ψl)
8: end for
9: end for

10: return Ψ

Ψ ≡ S∧S′ =
_

1≤i≤k,1≤j≤k′

0
@ ^

1≤d≤l

`
si,d ∧ s′j,d

´
1
A

4.2 Checking Privilege Relaxation

Let (O, A) and (O′, A′) be two privileges. As objects and actions are defined
on disjoint sets of attribute identifiers (O-Attr and A-Attr, see Section 2.1) and
according to the definition of privilege relaxation (Section 2.2), (O′, A′) relaxes
(O, A), if the following holds: ∀e ∈ E : ([[O]]e = true ∧ [[A]]e = true) ⇒ ([[O′]]e =
true∧ [[A′]]e = true). Therefore, the privilege relaxation problem can be reduced
to the implication problem: Let T = (t1 ∨ . . . ∨ tk) and T ′ = (t′1 ∨ . . . ∨ t′k′)
be disjunctions of predicate conjunctions. T implies T ′, denoted as T ⇒ T ′,
if and only if every evaluation context which is satisfying T is also satisfying
T ′ [6]. Informally, T ⇒ T ′ means that T ′ is more generic than T . To evaluate
whether T ⇒ T ′ holds, each predicate conjunction ti of T is evaluated against
the predicate conjunctions t′j of T ′. The following three cases can arrive:

1. ti implies t′j , i.e., ti ⇒ t′j . Then a match for ti has been found.
2. ti and t′j are incomparable, i.e., (ti ∧ ¬t′j) = ti. Then ti has to be compared

with the remaining predicate conjunctions of T ′ to find possible matches.
3. ti and t′j overlap partially. Then, the remainder (ti ∧ ¬t′j) is separately com-

pared with the predicate conjunctions of T ′.

Alg. 2 shows a pseudo-code implementation of implies for evaluating predicate
implications. T implies T ′, if all predicate conjunctions ti of T are subsumed by
T ′. In this case the remainder ∆ is equal to false. In line 6 the sub-procedure sub-
tract is invoked which calculates the remainder of ti w.r.t. t′1, i.e., δ = (ti ∧¬t′1),
given in disjunctive normal form (DNF). The individual predicate conjunctions
of δ are separately compared to the remaining conjunctions of T ′ through a
recursive invocation of implies in line 8 of Alg. 2.

A pseudo-code implementation of subtract is depicted in Alg. 3. Computing
the predicate subtraction is done in a way similar to Alg. 1 by iteratively com-
paring the conjunctive terms ti and t′j in each dimension d (line 2–11). If ti and
t′j do not overlap in any dimension d, ti and t′j represent disjoint data sets and
the remainder is ti. Otherwise, the overall overlap of ti and t′j is iteratively com-
puted and stored in the variable work. The non-matching parts are described by
δ.

12

Algorithm 2 implies(T, T ′), with T = t1 ∨ . . . ∨ tk and T ′ = t′1 ∨ . . . ∨ t′k′
1: if k′ = 0 then
2: return T // i.e., T ′ = false
3: end if
4: ∆ = false
5: for all conjunctive terms ti of T = (t1 ∨ . . . ∨ tk) do
6: δ = subtract(ti, t

′
1)

7: if δ 6= false then
8: ∆ = ∆ ∨ implies(δ, t′2 ∨ . . . ∨ t′k′)
9: end if

10: end for
11: return ∆

`
T ⇒ T ′

´⇔ (∆ = false)

Algorithm 3 subtract(ti, t′j), with ti = ti,1 ∧ . . . ∧ ti,l and t′j = tj,1 ∧ . . . ∧ tj,l

1: δ = false, work = ti // work = w1 ∧ . . . ∧ wl

2: for d = 1 . . . l do
3: w′d = (ti,d ∧ t′j,d) // the overlap of ti,d and t′j,d

4: work = (w′1 ∧ . . . ∧ w′d−1 ∧ w′d ∧ wd+1 . . . ∧ wl)
5: if w′d ≡ false then
6: return ti // ti and t′j represent disjoint data sets
7: else if w′d 6= ti,d then
8: ω = ti,d ∧ ¬t′j,d // the remainder of ti,d minus t′j,d

9: δ = δ ∨ (w′1 ∧ . . . ∧ w′d−1 ∧ ω ∧ wd+1 . . . ∧ wl)
10: end if
11: end for
12: return DNF of δ // ω in line 8 is a predicate disjunction

As an example assume a relational database with the table Employees with
the attributes Name, Gender, Salary, and Job (abbrev. na, ge, sa, and jo). Para-
meter values of jo are health, administrative, and technical personnel (for short
HP, AP, and TP). Two privileges are defined on this relation. The first privilege
states that the complete table can be accessed via select. The second restricts
the select-access to the data of female health care employees that earn more
than 50′ $ and less than 100′ $. We use the symbol ⊥ to represent unrestricted
attribute values. The object specifications of both privileges are represented by
the following two predicate conjunctions:

t = (na =⊥ ∧ ge =⊥ ∧ sa =⊥ ∧ jo =⊥)
t′ = (na =⊥ ∧ ge = female ∧ sa > 50′ ∧ sa < 100′ ∧ jo = HP)

It can easily be verified that t relaxes t′. Let’s assume that on the other way
round it shall be examined whether t′ relaxes t, which is obviously not the case.
The following table shows the evaluation steps of subtract, in case the attributes
are processed in the order Name, Gender, Salary, and Job.

13

Variable work Remainders
1. (na =⊥ ∧ ge =⊥ ∧ sa =⊥ ∧ jo =⊥) —–
2. (na =⊥ ∧ ge = female ∧ sa =⊥ ∧ jo =⊥) δ1 = (na =⊥ ∧ ge = male ∧ sa =⊥ ∧ jo =⊥)

(na =⊥ ∧ ge = female ∧ δ2 = (na =⊥ ∧ ge = female ∧ sa ≤ 50′ ∧ jo =⊥)
3.

sa > 50′ ∧ sa < 100′ ∧ jo =⊥) δ3 = (na =⊥ ∧ ge = female ∧ sa ≥ 100′ ∧ jo =⊥)
(na =⊥ ∧ ge = female ∧ δ4 = (na =⊥ ∧ ge = female ∧ sa > 50′∧

4.
sa > 50′ ∧ sa < 100′ ∧ jo = HP) sa < 100′ ∧ jo ∈ {TP, AP})

When comparing the terms in the Salary-dimension t divides work into three
components, the overlapping part and two remainder predicates δ2 and δ3. This
is the maximum number of remainder predicates that can be generated in one
step if the attribute’s domain is a totally ordered uncountable set (the domain
of Salary is [0,+∞[). Things are different if the attribute’s domain is a partially
ordered finite set, as is the case for the dimension Job. Instead of enumerating all
attribute values (AP and TP) in distinct predicates, the internal representation
is an aggregate of the form (jo ∈ {AP,TP}) as illustrated in the table.

As a consequence, a comparison of two predicate conjunctions results in up
to 2l remainder predicate conjunctions in the worst case. As each of these are
individually compared with T ′ (line 8 of Alg. 2) this leads to an exponential
worst case complexity of implies w.r.t. the input parameter k′. Thus, the de-
scribed privilege implication problem is closely related to other well known com-
putationally hard issues like query subsumption or the satisfiability problem [6].
Nevertheless, the worst case is supposed to arrive rarely. This is due to the fact
that, for the worst case to occur, privileges have to be described through dis-
tinguished, partially overlapping predicate conjunctions – which would be the
case if policies are written in a complex (unstructured and almost unmanage-
able) way. Instead, average complexity is assumed to be close to the best case
complexity, which is in polynomial time.

4.3 Implementing the Subtraction Operator

The semantics of the subtraction of two terms T and T ′ are defined as [[T−T ′]]e =
[[T]]e ∧ ¬([[T ′]]e). Thus, the subtraction operator can be realized through the al-
ready presented algorithm implies (Alg. 2), as the remainder ∆ of implies(T, T ′)
is equivalent to T − T ′.

5 Related Literature

In Section 2 we defined the policy model that constitutes the basis for the spec-
ification of our proposed policy consolidation technique. Syntax and semantics
of this policy model are closely related to those proposed by Bonatti et al. [2]
and Wijesekera and Jajodia [7]. We extended them through additional operators
and relaxation rules for defining policy consolidation. The access control policy
of a composite application is composed of rules that codify the individual access
rights that relate to the underlying sub-activities. The enforcement of such a
policy depends on the applied evaluation algorithm. If negative or mixed au-
thorization should be employed, which could be expressed in our model as well
by means of the subtraction operator, conflict resolution techniques like those
proposed by Jajodia et al. [8] have to be employed. In this work we focussed on
positive authorization which is suitable for almost all enterprise applications.

14

Our work is also related to research on models for the specification and analy-
sis of workflow processes. Adam et al. [9] use Petri-nets to model and evaluate
control flow dependencies. Bettini et al. [10] identify temporal constraints that
might cause inconsistencies which restrict the executability of workflows. Tempo-
ral constraints must also be considered when interpreting the result of the static
policy analysis (see 3.2.b)). Nevertheless, even if dynamic dependencies have to
be evaluated at runtime, policy consolidation still offers optimization potential.
The composed policy allows to perform access control at the workflow layer, fil-
tering unsuccessful execution attempts as early as possible. The enforcement of
access rules at the workflow layer is also proposed by Gudes et al. [11]. Access
control models and architectures for workflow systems are for example proposed
by [12, 13] and [14]. Atluri et al. [13] present an approach for analyzing depen-
dencies between sub-activities that operate on the same data but are assigned to
different security levels. A framework supporting static and dynamic separation
of duties is provided by Bertino et al. [14]. In contrast to this, we concentrate
on single-user /single-role execution schemes which we assume to be prevalent
for most enterprise applications. Identifying the set of authorized users of com-
posite applications was also addressed in previous work [15]. There, a practical
approach was shown, how task-specific user profiles and roles can be determined
by analyzing the source code. In this paper we presented a generic, implementa-
tion independent policy consolidation framework which also supports the reverse
engineering of appropriate user / role profiles by determining the least required
privileges. Compliance with LP can be inferred if the policies of the underlying
sub-activities have been preprocessed and minimized. How this can be achieved
for Web services that rely on database interaction has been shown in foregoing
work [16].

6 Conclusions and Ongoing Work

As motivated in the beginning of this paper, introducing access control on the
layer of composite applications that depend on autonomous sub-applications can
be employed to filter unsuccessful execution attempts as early as possible, thus,
avoiding unnecessary work. Additionally, a consolidated view onto the access
control of a composite application allows to revise the security configuration by
restricting it to the applications’ functionality. Further optimization potential is
given, in case the access control of the underlying sub-activities can be regulated
through the composite application.

Based on the formal specification of policy consolidation, a prototype has
been implemented to show its feasibility regarding the consolidation of the ac-
cess control of Web service workflows. We employ XACML as policy language
which due to the attribute based description of access rules is well suited to
map our policy model. Workflows are specified using BPEL4WS. Currently, we
are working on the integration of the consolidation functionality in a business
process modeling tool [17] and the extension of the prototype to support all
kinds of policy consolidations as described in Section 3 of this paper.

15

References

1. M. Wimmer, M.-C. Albutiu, and A. Kemper, “Optimized Workflow Authoriza-
tion in Service Oriented Architectures,” in Proceedings of the International Confer-
ence on Emerging Trends in Information and Communication Security (ETRICS),
vol. 3995 of LNCS, (Freiburg, Germany), pp. 30–44, June 2006.

2. P. Bonatti, S. De Capitani di Vimercati, and P. Samarati, “An Algebra for Com-
posing Access Control Policies,” ACM Transactions on Information and System
Security (TISSEC), vol. 5, no. 1, pp. 1–35, 2002.

3. R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-Based Access
Control Models,” IEEE Computer, vol. 29, no. 2, pp. 38–47, 1996.

4. ANSI INCITS 359-2004, Role Based Access Control. American National Standards
Institute, Inc. (ANSI), New York, NY, USA, Feb. 2004.

5. A. Nadalin et al., “Web Services Secure Conversation Language (WS-
SecureConversation).” http://www-128.ibm.com/developerworks/library/

specification/ws-secon/, Feb. 2005.
6. S. Guo, W. Sun, and M. A. Weiss, “Solving Satisfiability and Implication Problems

in Database Systems,” ACM Trans. Database Syst., vol. 21, no. 2, pp. 270–293,
1996.

7. D. Wijesekera and S. Jajodia, “A Propositional Policy Algebra for Access Control,”
ACM Transactions on Information and System Security (TISSEC), vol. 6, no. 2,
pp. 286–325, 2003.

8. S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian, “Flexible Sup-
port for Multiple Access Control Policies,” ACM Transactions on Information and
System Security (TISSEC), vol. 26, no. 2, pp. 214–260, 2001.

9. N. R. Adam, V. Atluri, and W.-K. Huang, “Modeling and Analysis of Workflows
Using Petri Nets,” Journal of Intell. Inf. Syst., vol. 10, no. 2, pp. 131–158, 1998.

10. C. Bettini, X. S. Wang, and S. Jajodia,“Temporal Reasoning in Workflow Systems,”
Distrib. Parallel Databases, vol. 11, no. 3, pp. 269–306, 2002.

11. E. Gudes, M. S. Olivier, and R. P. van de Riet, “Modelling, Specifying and Imple-
menting Workflow Security in Cyberspace,” Journal of Computer Security, vol. 7,
no. 4, pp. 287–315, 1999.

12. W.-K. Huang and V. Atluri,“SecureFlow: a Secure Web-enabled Workflow Manage-
ment System,” in RBAC ’99: Proceedings of the 4th ACM Workshop on Role-based
Access Control, (New York, NY, USA), pp. 83–94, ACM Press, 1999.

13. V. Atluri, W.-K. Huang, and E. Bertino, “A Semantic-Based Execution Model for
Multilevel Secure Workflows,” Journal of Computer Security, vol. 8, no. 1, 2000.

14. E. Bertino, E. Ferrari, and V. Atluri, “The Specification and Enforcement of Au-
thorization Constraints in Workflow Management Systems,”ACM Trans. Inf. Syst.
Secur., vol. 2, pp. 65–104, Feb. 1999.

15. M. Rits, B. D. Boe, and A. Schaad,“Xact: a Bridge between Resource Management
and Access Control in Multi-layered Applications,” in SESS ’05: Proceedings of
the 2005 Workshop on Software Engineering for Secure Systems, (New York, NY,
USA), pp. 1–7, ACM Press, 2005.

16. M. Wimmer, D. Eberhardt, P. Ehrnlechner, and A. Kemper, “Reliable and Adapt-
able Security Engineering for Database-Web Services,” in Proceedings of the Fourth
International Conference on Web Engineering, vol. 3140 of LNCS, (Munich, Ger-
many), pp. 502–515, July 2004.

17. “Advanced Technologies for interoperability of Heterogeneous Enterprise Networks
and their Applications (ATHENA), European project.” Project homepage: http:
//www.athena-ip.org.

