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Abstract. Peer-to-Peer infrastructures are emerging as one of the important data
management infrastructures in the World Wide Web. So far, however, most work
has focused on simple P2P networks which tackle efficient query distribution to
a large set of peers but assume that each query can be answered completely at
each peer. For queries which need data from more than one peer to be executed
this is clearly insufficient. Unfortunately, though quite a few database techniques
can be re-used in the P2P context, a P2P data management infrastructure poses
additional challenges caused by the dynamic nature of these networks. In P2P
networks, we can neither assume global knowledge about data distribution, nor
are static topologies and static query plans suitable for these networks. Unlike in
traditional distributed database systems, we have no complete schema and dis-
tribution instance available but rather work with distributed schema information
which can only direct query processing tasks from one node to one or more neigh-
boring nodes.
In this paper we first describe briefly the super-peer based topology and the
“schema-aware distributed routing indices extended with statistics and describe
how this statistics are extracted and updated. Then we show how these indices fa-
cilitate the distribution and dynamic expansion of query plans. Finally we propose
transformation rules to optimize query plans and discuss different optimization
strategies. Our techniques enable distributed query processing in a schema-based
P2P network.

1 Introduction and Motivation

P2P computing provides a very efficient way of storing and accessing distributed re-
sources, as shown by the success of music file sharing networks such as Gnutella, where
we can use simple attributes to describe the resources. A lot of effort has been put into
refining topologies and query routing functionalities of these networks. A new breed of
P2P applications inspired from earlier systems like Napster and Gnutella have more ef-
ficient infrastructures such as the ones based on distributed hash tables. Less effort has
been put into extending the representation and query functionalities offered by such net-
works. Projects exploring more expressive P2P infrastructures [22, 2, 1, 13] have only
slowly started the move toward schema-based P2P networks.

In the Edutella project [10, 22] we have been exploring some issues arising in that
context, in order to design and implement a schema-based P2P infrastructure for the
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Semantic Web. Edutella relies on the W3C metadata standards RDF and RDF Schema
(RDFS) to describe distributed resources, and uses basic P2P primitives provided as
part of the JXTA framework [12]. In the ObjectGlobe project [5, 19] we have designed
and implemented a distributed data network consisting of three kinds of suppliers: data-
providers, which supply data, function-providers, that offer query operators to process
data, and cycle-providers, which are contracted to execute query operators. ObjectGlobe
enables applications to execute complex queries which involve the execution of opera-
tors from multiple function providers at different sites (cycle providers) and the retrieval
of data and documents from multiple data sources. Thus, both systems, Edutella and
ObjectGlobe, deal with complex queries in a highly dynamic, distributed, and open en-
vironment. We rise actually the challenge to optimize the distributed query processing
in schema-based super-peer networks.

Although distributed query optimization and execution are well known issues in-
vestigated in database research, distributed query processing in schema-based P2P net-
works is novel. Middleware systems, e.g., Garlic [16], have been used to overcome the
heterogeneity faced when data is dispersed across different data sources. In [21] cen-
tral mapping information of all participating, can distributed data sources be queried.
[25] introduces so called mutant query plans, which encapsulate partially evaluated
query plans and data. Loss of pipelining during execution limits the general applica-
bility for distributed query processing, and no user-defined operators are supported.
AmbientDB [3] executes SQL queries over a P2P network. That approach is based on
distributed hash tables and does not take into account user-defined operators.

A recent work of Stuckenschmidt [31] exploits schema paths for optimizing queries
on distributed RDF repositories. That approach constructs the overall query plan in a
mediator-like manner and uses replicated schema paths (which serve as global alloca-
tion schema of the data) to determine which portions of the query plan can be pushed
to the data sources. The paper does not handle the case that individual portions of the
pushed query plan can be further distributed. In a highly distributed environment like a
P2P network it seems not realistic to assume global knowledge of the allocation schema.
Especially, the update behavior of the join indices could be a problem, e.g., assuming
new data sources with new RDF properties joining the network leads to an enormous
grow of all join indices and huge transfer costs. The paper takes into account neither
load balancing strategies during query plan generation, nor mechanisms for the dynamic
placement of operators. The whole query processing facilities are limited to joins and
selections. User-defined operators are not considered as the possibility that multiple re-
sources contribute data to the same property, i.e., a union operator has to be placed in
the query plan. This leads to an enormous explosion of the search space.

To enable dynamic, extensible, and distributed query processing in schema-based
P2P networks, where we need to evaluate complex queries requiring data from several
peers and where both standard query operators and user-defined code can be executed
nearby the data, we have to distribute query processing to the (super-)peers. Since each
peer in a P2P network usually has varying resources available, e.g., regarding bandwidth
or processing power, exploiting the different capabilities in a P2P network can lead to
an efficient network architecture, where a small subset of peers, called super-peers [34],
takes over specific responsibilities for peer aggregation, query routing, and mediation.
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Therefore, super-peers have to provide on the one hand query processing capabil-
ities, and on the other hand functionality for the management of index structures and
for query optimization. Super-peer based P2P infrastructures are usually based on a
two-phase routing architecture, which first routes queries in the super-peer backbone,
and then distributes them to the peers connected to the super-peers. Our routing mech-
anism is based on two distributed routing indices storing information to route within
the super-peer backbone and between super-peers and their respective peers [24]. The
query processors at the super-peers can be dynamically extended by special-purpose
query operators that are shipped to the query processor as part of the query plan. In
this way, query evaluation plans (QEPs for short) with user-defined code, e.g., selection
predicates, compression functions, join predicates, etc., can be pushed from the client
to the (super-)peers where they are executed.

Furthermore, super-peers have to provide an optimizer for dynamically generating
good query plans from the queries they receive. We utilize these distributed query pro-
cessing capabilities at the super-peers and distribute the user’s query to the correspond-
ing super-peers. This distribution process is guided by the (dynamic) distributed routing
indices, which correspond to the (static) data allocation schema in traditional distributed
DBMSs. However, as the index is dynamic and itself distributed over the super-peers,
static query optimization as used in distributed DBMSs is not possible. Query optimiza-
tion must be therefore be dynamic and based on the data allocation schema known at
each super-peer.

This paper is based on the framework presented in [8] and reveals details of query
optimization in P2P networks. First, we describe briefly the super-peer based topology
and the “schema-aware distributed routing indices enriched with statistics. Second, we
describe how these statistics are extracted and updated. In section 3, we describe how
these indices facilitate the distribution and dynamic expansion of query plans. Then, we
propose transformation rules to optimize query plans and discuss different optimization
strategies. Finally, we conclude with a short overview of the implemented systems and
our future work.

2 Distributed Routing Indices

Efficient query routing is one of the corner stones of advanced P2P systems. We rely on
a super-peer topology with “schema-aware” routing indices.

The HyperCuP Topology Super-peers are arranged in the HyperCuP topology. The
HyperCuP algorithm as described in [27] is capable of organizing super-peers of a P2P
network into a recursive graph structure called a hypercube that stems from the fam-
ily of Cayley graphs. Super-peers join the HyperCuP topology by asking any of the
already integrated super-peers which then carries out the super-peer integration pro-
tocol. No central maintenance is necessary for changing the HyperCuP structure. The
basic HyperCuP topology enables efficient and non-redundant query broadcasts. For
broadcasts, each node can be seen as the root of a specific spanning tree through the
P2P network. Peers connect to the super-peers in a star-like fashion. Figure 1 shows an
example super-peer based P2P network.
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Fig. 1. Routing Example Network

Routing Indices Our super-peers [24] employ routing indices which explicitly ac-
knowledge the semantic heterogeneity of schema-based P2P networks, and therefore
include schema information as well as other possible index information. The indices
are local in the sense that all index entries only refer to direct neighbors (peers and
super-peers). Network connections among the super-peers form the super-peer back-
bone that is responsible for message routing and integration/mediation of metadata.

Our super-peer network implements a routing mechanism based on two indices stor-
ing information to route within the P2P backbone and between super-peers and their re-
spective peers. The super-peer/peer routing indices (SP/P indices) contain information
about each peer connected to the super-peer, including schema and attribute information
from the peers. On registration the peer provides this information to its super-peer. In
contrast to other approaches (Gnutella, CAN [26]), our indices do not refer to individual
content elements but to peers (as in CHORD [30]). The indices can contain informa-
tion about peers at different granularities: schemas, schema properties, property value
ranges and individual property values. Details are described in [24]. Using indices with
different granularities enables us to state queries at different levels of accuracy. In or-
der to avoid backbone we use super-peer/super-peer routing indices (SP/SP indices) to
forward queries among the super-peers. These SP/SP indices are essentially extracts
and summaries from all local SP/P indices maintained in the super-peers. Similar to the
SP/P indices they contain schema information at different granularities, but refer to the
super-peers’ neighbors in the super-peer backbone. Queries are forwarded to super-peer
neighbors based on the SP/SP indices, and sent to connected peers based on the SP/P
indices.

Statistics in the Routing Indices The routing indices as described so far enable the
efficient routing of the queries. Nevertheless, additional information (statistics, physi-
cal parameters of the network, etc.) both in the SP/P and the SP/SP routing indices are
necessary to enhance the optimization process and enable the choice of the best query
execution plan. As mentioned in the introduction we aim at using approved techniques
and methods in databases particularly for distributed database systems. The most im-
portant parameters for query optimization within this context are number and size of the
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stored documents at the different peers. This information is provided by the peers dur-
ing the registration process. The following piece of the RDF-Schema PeerDescription
shows the definition of the property elementCount, used for the documents count at a
given peer at the property-value level.

(...)

<rdf:Property rdf:ID="elementCount">
<rdfs:isDefinedBy rdf:resource="http://www.learninglab.de/˜brunkhor/rdf
/PeerDescription#"/>
<rdfs:label>elementCount</rdfs:label>
<rdfs:comment>An integer that specifies how often an element has occured.
Used in conjunction with hasPropertyValues.</rdfs:comment>
<rdfs:range rdf:resource="http://www.w3c.org/2000/01/rdf_schema#Literal"/>
<rdfs:domain rdf:resource="#Peer"/>
</rdf:Property/>

(...)

If we register documents only at the property value level, we can derive the infor-
mation for the property level by accumulating the number and size of documents for
each property. Multi-valued properties like dc:author complicate this aggregation. His-
tograms [15] can help to obtain more precise estimates. For this paper, we assume that
the registration occurs at property level, property value level, and property value range
level. The schema level can be considered as meta-level, which can be used to answer
general queries (e.g. ”Which standards are used to annotate documents at Peer x?”).
Thus, the information about the number and size of documents are not relevant at this
level. Table 1 states the SP/P routing index of super-peer SP1 including statistics at
different granularities. In the following we will restrict the discussion on the size (si)
and the number (n) of the documents. However, it is absolutely conceivable and fea-
sible to add any useful further statistics such as the minimum, maximum, and average
values and the total number of documents at each peer. If a peer P y (re-)registers or
leaves a given super-peer SPx with a schema element set including document statis-
tics Sy(s1(n1, si1), . . . , sm(nm, sim)), an update of the SP/P and the SP/SP indices
is needed. The algorithm for building and updating the SP/P routing indices described
before remains unmodified. The peers simply register including their statistics informa-
tion in addition to the schema elements. The update information of the SP/SP indices
propagated via messages however must be extended as follows:

1. SPx derives the total number and size of the documents (potentially further statis-
tics) registered by the peers for each schema element s i ∈ Sy and sends these
statistics combined with si to its neighbors in its spanning tree.

2. Any other super-peer in the spanning tree of SPx updates its SP/SP index and
derives the total number and size of the documents in its SP/SP index at each s i ∈
Sy and forwards the data to its neighbors.

3 Plan Generation, Distribution and Optimization

Using the indices described in the previous section we can now formulate how query
plan generation and distribution works in our P2P network.
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Granularity SP/P Index of SP1

Schema
dc P1, P0

lom P1, SP3

Property
dc:subject P1 [13], P0 [16]
dc:language P1 [15]
lom:type P1 [10]

Property lom:type “exercise” P1 [10]
Value dc:language “de” P0 [15]

Table 1. SP/P Index of SP1 at Different Granularities

Parse
Bind

Resources

Generate &
Optimize

Sub-Queries

Instantiate
Local Plan

Distribute
Subqueries

SP/SP Index
SP/P Index

Query

Fig. 2. Plan Generation at a Super-Peer

3.1 Distributed Plan Generation

In contrast to traditional distributed query optimization approaches, we cannot generate
the query plan statically at one single host. Therefore we have to generate an abstract
query plan at a super-peer which is partially executed locally and where we push other
parts of the query plan to its neighbors. The plan generation at each super-peer therefore
involves five major steps as depicted in Figure 2 and is described in details in [7].

At first the received query (e.g. in SQL) is parsed and transformed into an internal
representation which is a decomposition of the query into its building blocks. Then,
the local indices are consulted to de- termine the location of the required resources.
For this purpose we have to distinguish between resource directions (RDs) and phys-
ical resources (PRs). Users specify the desired information by giving properties and
property-values restricting LRs. These LRs are bound to RDs resp. PRs where all levels
of granularity of the indices have to be considered. Thereby, multiple RDs and PRs can
contribute data for the same LR. Based on the bindings, a local query plan is generated.
As super-peers have a very limited view of the whole P2P network (only the neigh-
bors are known), it is obvious that no comprehensive static plan in the traditional sense
can be produced. Therefore, we determine which sub-plans are delegated to the neigh-
boring (super-)peers. These remaining parts constitute the input to the local plan. To
perform cost based optimization, the optimizer uses statistics of the input data, the net-
work topology, and the hosts. Furthermore, the optimizer may collect and use response
times, transfer rates, and even result sizes from previous query executions. Finally, the
local query plan is instantiated at the super-peer, all user-defined code is loaded, the
communication path to the super-peer which uses this part of the query plan as input is
established, and the remaining sub-queries are distributed to the corresponding super-
peers, where they are processed further.
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3.2 Query Optimization

Let us now describe some of the details involved in the optimization process at a super-
peer. We employ a transformation-based optimizer starting with an initial query plan.
The optimizer applies equivalence transformations and determines the cost of the gen-
erated alternatives using a cost model. In contrast to bottom-up approaches employed
in traditional dynamic programming based optimization we can stop at any time with a
complete and valid query plan. In our implementation we use iterative improvement to
enumerate plan alternatives. Superior techniques as shown in [28] are applicable.

In the following we present the set of the most important transformation rules, fo-
cusing on the ones relevant to processing joins and unions within the P2P context. Fur-
ther rules can be added easily. Furthermore we extend conventional cost models taking
the special requirements of P2P query processing into account. During the optimization
process we employ heuristics that favor query plans with few sub-plans as this leads to
more robust distributed query execution. A huge number of wide spread sub-plans ac-
cessing the same documents would be more error-prone and often inefficient to execute.
Our decision also implies, that less messages are exchanged between the (super-)peers
and less data is transferred.

The Initial Query Plan The initial (canonical) query plan accesses only logical re-
sources and is constructed in the following way: Use all join predicates and join the
logical resources. If logical resources could not be joined due to a lack of join predi-
cates, the Cartesian product includes them into the query plan. Thereafter, all remaining
selection predicates and user-defined filters are applied on top of the query plan. Finally,
the result is submitted to the client.

The Transformation Rules The initial query plan is optimized top-down using a
transformation-based optimizer. In such an approach we apply a set of transformation
rules to the query plan and generate alternatives, which are then ranked using our cost
model. The best (local) query plan is then executed. Transformation rules are repre-
sented as

{inputQEP} [condition/action]
{outputQEP}

where one input query plan is transformed into an output query plan. The condi-
tion/action part may be omitted. We assume that the transformations are executed at
host HL. If HL is a super-peer, we have access to the local routing indices SPP and
SPSP.

Basic Transformation Rules We can express the Bind Resources step explained in the
previous subsection as the following Binding Transformation:

{LR} [
PRj@Pj ∈ match(SPP), RDk@SPk ∈ match(SPSP)

]{⋃
j

PRj@Pj ∪
⋃
k

RDk@SPk

}

The function match consults the local indices and determines the location of the match-
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ing resources. The LRs are bound to RDs, if a corresponding data source is found in the
SP/SP index. Using the SP/P index, LRs are bound to PRs, i.e., the URIs of registered
resources. Multiple RDs and PRs can contribute data for the same LR. This is expressed
by the union of RDs and PRs. PRj@Pj denotes that the j-th bound PR belongs to LR
and references a resource at peer Pj . A similar argument applies for the RDs.

Applying the following two transformations to a query plan pushes selections and
user-defined filters down towards the data sources. This enables us to reduce the amount
of transferred data early. {

σ(A op B)
}{

σ(A) op σ(B)
} {

σ(op(A))
}{

op(σ(A))
}

A and B are arbitrary sub-plans.
The next two rules apply the associative and commutative laws to unions, joins, and

Cartesian products.{
(A op B) op C

} [
op ∈ {∪,�,×}]{

A op (B op C)
} {A op B} [

op ∈ {∪,�,×}]
{B op A}

where A, B, and C are arbitrary sub-plans.
Finally, each operator is annotated with the host where it is to be executed. This is

done bottom up from the leaves of the operator tree which constitute PRs and RDs. The
annotations of the leaves are given by the first transformation rule. Then, an operator
can be executed on host HL, if all its inputs are computed at HL, too.

{A@H1 op B@H2} [H1 �= H2]
{A@H1 op@HL B@H2}

{A@H1 op B@H2} [H1 = H2]
{A@H1 op@H1 B@H1}

{
op(A@H1)

}{
op@H1(A@H1)

}
A and B are sub-plans and op@H1 indicates that the operator op is executed at host
H1. This rule enables us to execute mobile code at remote hosts, e.g., to push selective
filter predicates, complex join predicates, or compression functions to the data sources.

The plans generated by the rules so far typically have one union operator for each
logical resource. The degree of parallelism can be increased and distributed computing
resources can be utilized better if operators are distributed over the P2P network.

Optimization Strategy: Union of Joins As shown above, several PRs and RDs can con-
tribute data for the same LRs. The simplest way for incorporating the data for such an
LR would be to union all the accessed physical resources before any other operation is
considered for that LR. This would be done by the binding transformation. This naive
strategy would produce good plans in some cases, but query optimization would be lim-
ited and possibly better plans might never be considered. Thus, several alternatives for
the naive query plan must be considered by applying equivalence transformations. To
increase the degree of distribution, the query plan can be transformed using the follow-
ing transformation which turns the join of unions into a union of joins:{

(A1 ∪ . . . ∪ An) � (B1 ∪ . . . ∪ Bm)
}{

(A1 � (B1 ∪ . . . ∪ Bm)) ∪ . . . ∪ (An � (B1 ∪ . . . ∪ Bm))
}

If many RDs and PRs are bound to LRs and when this rule is applied recursively in com-
bination with the associative and commutative laws the number of plans which have to
be considered during query optimization is huge. [4] has derived a lower bound for the
number of alternatives when joining two LRs, consisting of n 1 and n2 bound resources:
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configuration number of plans
UJ([2, 2]) 8
UJ([3, 3]) 385
UJ([4, 4]) 144705
UJ([5, 5]) 913749304

Table 2. Explosion of the Search Space

UJ(n1, n2) =
n1∑

j=1

({
n1

j

}
bell(n2)j

)
+

n2∑
j=1

({
n2

j

}
bell(n1)j

)
− bell(n1)bell(n2)

In this definition
{

m
k

}
denotes the Stirling number of the second kind which represents

the number of ways a set with m elements can be partitioned into k disjoint, non-empty
subsets. The term bell(m) denotes the Bell number which represents the number of
ways a set with n elements can be partitioned into disjoint, non-empty subsets. The def-
inition of UJ follows the construction of a query plan starting from its canonical form.
First we have to select a LR constituting of different bindings. Each such binding has
to be joined with an expression which is equivalent to the other LR. All these expres-
sions are counted by the call to the function for the Bell numbers. At the end we have
to consider duplicate QEPs which are generated when for every appearance of a LR
in a QEP the same partitioning is selected. If the same partitionings are selected, the
order in which the LRs are used in the construction of a QEP does not matter anymore.
Therefore, the last term of the definition of UJ includes the number of QEPs with that
property. Table 2 gives an impression of the search space explosion. generated plan may
have a huge number of sub-queries.

Optimizing by Collecting Resources A very promising heuristics in a distributed envi-
ronment is to collect as many bindings of one LR as possible at one host. To implement
this strategy, the optimizer determines one “collecting host” to collect all data of one
logical resource. The other hosts are informed to send all data to the collecting host
(in the following this is done by the CollectSend Operator). In contrast to the canoni-
cal query plan this collecting host is determined dynamically and may change during
query execution, i.e., we can place the resource-collecting union at an arbitrary (super-
)peer. In particular, in well clustered networks it is useful to place the collecting union
operator nearby the majority of the data and to ship only a few resources.

To include this strategy in our query optimization, we introduce Collect Resources
(CRs) which can be used in the previous rules like bound resources. Additionally, we
propose the following five transformation rules (shown in Figure 3):

– First, the collecting host HC is selected from the set of all referenced neighbors
(taken from the PRs and RDs) (Figure 3(a)). Then, we replace all bound resources,
i.e., PRs and RDs, of the input plan with a collect resource which is executed at HC

and CollectSend operators are pushed to the other neighbors. These CollectSend
operators ship all data of the LR to the collecting host HC .
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{⋃
j

PRj@Pj ∪
⋃
k

RDk@SPk

} [
HC ∈ ⋃

j

Pj ∪
⋃
k

SPk

]
{

CR(LR)@HC ∪
HC �=Hj⋃

j

CollectSend(HC , LR)@Pj ∪
HC �=Hk⋃

k

CollectSend(HC , LR)@SPk

}
(a) Collecting Host Selection{

CollectSend(HC , LR)
} [

PRj@Pj ∈ match(SPP),
RDk@SPk ∈ match(SPSP)

]
{
CollectSend(HC , LR)@Pj , . . . , CollectSend(HC , LR)@SPk

}
(b) Propagate CollectSend{

CollectSend(HC , LR)
} [

PRj@Pj ∈ match(SPP),
RDk@SPk ∈ match(SPSP)

]
{

Send(HC ,
⋃
j

PRj@Pj ∪
⋃
k

RDk@SPk)@HL

}
{
CR(LR)

} [
PRj@Pj ∈ match(SPP),
RDk@SPk ∈ match(SPSP)

]
{

Receive@HL ∪ ⋃
j

PRj@Pj ∪
⋃
k

RDk@SPk

}

(c) Execute CollectSend (d) Execute Collect Resource At Host

{
CR(LR)

} [
PRj@Pj ∈ match(SPP), RDk@SPk ∈ match(SPSP),
HC ∈ ⋃

j

Pj ∪
⋃
k

SPk, setForward(LR,HC)

]



CR(LR)@HC ∪
HC �=Hj⋃

j

CollectSend(HC , LR)@Pj

∪
HC �=Hk⋃

k

CollectSend(HC , LR)@SPk




(e) Forward Collect Resource

Fig. 3. Transformation Rules for the “Collect Resources” Strategy

– When a CollectSend operator is received by a host, it can be propagated to all its
matching neighbors (Figure 3(b)) which are determined from the local indices. The
plan is split into multiple parts which are distributed broadcast-like to the neighbors.

– Hosts can also execute the CollectSend operator (Figure 3(c)). This is treated as a
binding transformation where results are sent back to the collecting host.

– A collecting host can execute the CR operator by accepting resources belonging to
the given LR (Figure 3(d)). The results are sent from sub-plans built by the latter
two transformations. Additionally, resources are bound using the local indices.

– Finally, the CR operator can also be forwarded to a neighbor (Figure 3(e)). This
means that first, we choose the new collecting host HC from the neighbors and set
an appropriate forward. Then, the CR is pushed to HC and all matching neighbors
are instructed to send their data for LR to HC . During query instantiation a Col-
lectSend operator follows the forwards and creates a proper Send operator with the
actual collecting host as target. Thus, results are sent directly to the correct host.

Figure 4 illustrates the rules querying resources of LRp, i.e., the documents r and
u. Starting at SP2 as the local host with the initial query plan (Figure 4(a)), SP 3 is
selected as collecting host of LRp (Figure 4(b)) and a CollectSend informs SP4 to send
all documents regarding LRp to SP3. SP3 decides to forward the CR to P3 where the
results are sent directly back to the initial caller (bypassing SP3 and SP2) (Figure 4(c)).
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SP2

SP4
SP3

P4P3P2

u: LRps: LRd r: LRp
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CollectSend
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SP2

SP4
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P4P3P2

u: LRps: LRd r: LRp

CollectSend
(SP3, LRp)

SP2

SP4
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Fig. 4. Example Applications of “Collect Resources” Accessing LRp

(Thin lines demonstrate the query plan during instantiation, bold lines show the flow of results.)

SP4, on its part, propagates the CollectSend operator to P4 (Figure 4(d)). Finally, P4

finds out by considering SP3 to send the local resource r to P3 and P3 executes the CR
operator and returns u and the received document r (Figure 4(e)).

Splitting and Distributing the Query Plan Valid query plans must be completely
annotated and all resources must be bound. The best query plan is split into a local plan
and multiple remote query plans. The remote plans are shipped to the referenced hosts 1

where the optimization process continues on the smaller query plans. The local query
plan is instantiated and combines the results of the remote query plans.

Algorithm 1 splits (in DFS manner) a QEP into the local plan QL and the remote
plans. The remote plans are stored in the mapping QR from the host where to execute
the remaining query parts onto the query plan itself. One remote host may execute
multiple sub-plans. The recursive function is called with the top-level operator of the
query plan. Then the child operators are examined. If a child is executed at the same
host, i.e., the local host, the function is called recursively. Otherwise, this is the root of
a remote sub-plan and a Send operator is put on top of the sub-plan including the child

1 Note, that these are always neighboring hosts.
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Algorithm 1 Splitting the Query Plan
1: QL = Q
2: QR = ∅
3: function splitP lan(op)
4: for all childOp ∈ op.children do
5: if childOp.host == op.host then
6: splitP lan(childOp)
7: else
8: QR.put(childOp.host, Send(op.host, childOp))
9: replace(QL, childOp, Receive(childOp.host))

10: end if
11: end for
12: end function

operator. The remote sub-plan is separated from the local plan and a Receive operator
at the local host is responsible for the connection to the remote plan.

The Cost Model Some of the parameters used for our cost model are stored within
the local SP/P and SP/SP indices as described in Section 2, others are determined peri-
odically by the runtime environment. In our distributed query processing environment
we are interested in the plan with the lowest response time. Such a response time cost
model was devised in [11] and explicitly takes parallelism and pipelining into account.

The most important parameters of query optimization in traditional databases are
number and size of intermediary results. The same applies to P2P query processing,
where we utilize the number of documents and the overall/maximum/minimum size of
the registered resources for estimating the costs of a query plan. Our cost model also
considers physical properties of the network, e.g., the network bandwidth, the latency,
and the number of hops to the neighbors. But it is also important to know CPU and
memory load of the local (super-)peer and the neighbors, as especially the super-peers
are in danger of being overloaded, when too many queries execute operators at the
super-peers. This would slow down query execution, so the optimizer should be aware
of the current load situation of the local super-peer and the neighboring (super-)peers
and generate alternative query plans, e.g. by using the “Collect” strategy, which enables
the query optimizer to place operators on low loaded hosts. For these reasons, we uti-
lize load information as one important parameter for the optimizer’s cost model. Load
collectors are used to collect data for the optimizer’s view of the load situation of all
relevant resources at the neighboring hosts. We measure the average CPU and memory
load on (super-)peers and send the current situation to the neighbors. The optimizer’s
view of the load situation is updated at intervals of several seconds to prevent overload-
ing the network. Using this information the optimizer at each (super-)peer can decide
whether a sub-plan can be pushed to a neighbor, or—in the case of an overload—an
alternative query plan would produce faster results.

Additionally, adapting the techniques presented in [29], our cost model can be ex-
tended to take the response time of “similar” queries, i.e., queries accessing the same
index entries, into account.
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4 Implementation

The discussed techniques for processing and optimizing complex queries in the highly
dynamic and open environment of schema-based super-peer networks are already im-
plemented in Edutella. The Edutella System [10] which constitutes an RDF-based
metadata infrastructure for JXTA [17] is an open source project written in java.

The organisation of the super-peer backbone in the HyperCup-topology occurs dy-
namically. The distributed routing indices are also built and updated dynamically based
on the registration files of the peers/super-peers.

We distinguish between metadata statistics such as document count and file size and
network statistic parameters. The metadata statistics are automatically extracted from
the registration files and stored in the SP/P and SP/SP routing indices. The network
statistic parameters can be extracted at a given super-peer in an active way (e.g. mem-
ory load) by asking the neighboring super-peers or in a passive way by storing for
example the response time of a given super-peer or peer. The statistics are currently
used during the plan generation. The complex query processing modules are included
in the package net.jxta.edutella.complexquery. We also implemented a subpackage
net.jxta.edutella.complexquery.graph for the visualization of the QEPs. The subpack-
age net.jxta.edutella.complexquery.work includes all classes needed for the execution
of the QEP’s different steps.

The complex query processing techniques are also implemented in QueryFlow [18,
19] which is based on ObjectGlobe [5] and descends from distributed query processing.
A demonstration of the QueryFlow-based implementation was given in [33].

5 Conclusion and Further Work

Peer-to-Peer data management infrastructures are emerging as one of the important in-
frastructures for data intensive networks on the World Wide Web. In this paper we have
investigated query distribution and query optimization issues for schema-based peer-to-
peer networks, which use complex and possibly heterogeneous schemas for describing
the data managed by the participating peers. Specifically, we have addressed the short-
coming of current peer-to-peer networks that they are unable to handle queries which
need data from several peers to compute answers.

Comparing P2P data management networks to conventional distributed and feder-
ated database systems, we have identified specific additional challenges which make it
impossible to apply distributed database query planning and optimization techniques
in a straightforward way. We have therefore specified an innovative query routing and
planning architecture based on distributed routing indices managed by a suitably con-
nected set of super-peers, which makes distributed query processing available also in
P2P data management networks. Finally we have discussed how to use transformation-
based techniques for incremental query optimization at each super-peer, and specified a
set of transformation rules, relevant for processing joins and unions in such a network.
These techniques allow us to place query operators next to data sources and utilize
distributed computing resources more effectively.

Future work will concentrate on the further investigation of simulations and experi-
ments to evaluate and extend our current transformation rules. We aim also at collecting
and using statistics more intensively.
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