
Semantic Caching for Web Services�

Stefan Seltzsam1, Roland Holzhauser2, and Alfons Kemper1

1 TU München, D-85747 Garching, Germany, 〈first name〉.〈last name〉@in.tum.de
2 Universität Passau, D-94030 Passau, Germany, holzhaus@fmi.uni-passau.de

Abstract. We present a semantic caching scheme suitable for caching
responses from Web services on the SOAP protocol level. Existing se-
mantic caching schemes for database systems or Web sources cannot
be applied directly because there is no semantic knowledge available
about the requests to and responses from Web services. Web services are
typically described using WSDL (Web Service Description Language)
documents. For semantic caching we developed an XML-based declar-
ative language to annotate WSDL documents with information about
the caching-relevant semantics of requests and responses. Using this in-
formation, our semantic cache answers requests based on the responses
of similar previously executed requests. Performance experiments—based
on the scenarios of TPC-W and TPC-W Version 2—conducted using our
prototype implementation demonstrate the effectiveness of the proposed
semantic caching scheme.

1 Introduction

Service-oriented architectures (SOAs) based on Web services are emerging as
the dominant application on the Internet. Mission critical services like business-
to-business (B2B) or business-to-consumer (B2C) services often require more
performance, scalability, and availability than a single server can provide. Server
side caching, e.g., [1, 2], and some kind of cluster architecture alleviate some of
these problems. A major drawback remains: all clients must still access the Web
service directly over the Internet, which is possibly resulting in high latency,
high bandwidth consumption, and high server load.

There are many Web services characterized by read-mostly interactions, e.g.,
B2C and B2B services offering query-like interfaces to access product catalogues.
Such services are also used in standard benchmarks like TPC-W [3] and TPC-W
Version 2 [4]. Another important category of Web services includes information
services like stock quote services, news services, weather services, etc., which
typically offer read-only access. There are Web services with different access
patterns but since the Web service categories described above are very common
and important, this paper focuses on them.

Our generic approach to achieving higher performance and scalability is
called Semantic SOAP Protocol Level Cache (SSPLC). The performance increase
is based on semantic caching of responses from Web services in request/response
message exchange patterns on the SOAP [5] protocol level. Clients are not di-
rectly accessing the origin service anymore; instead they are accessing instances
� This research is supported by the Advanced Infrastructure Program (AIP)

group of SAP and the German National Research Foundation under contract
DFG Ke 401/7-2.

seltzsam
Hervorheben

of SSPLC. As long as requests can be answered based on cached data, the origin
server hosting the Web service is not involved anymore. Therefore, the load at
the origin server is reduced, bandwidth consumption is diminished, and latency
is reduced. The advantage of a semantic cache is that it reuses the responses
to prior requests to answer similar requests, not only the exact same requests.
Thus, if request R1 retrieves all books written by “Rowling” and afterwards a
request R2 retrieves all books written by “Joanne Rowling”, a semantic cache
reuses the response to R1 to answer the more selective request R2.

Our proposed cache can be used like traditional HTTP proxies, i.e., SSPLC
instances need not be hosted by service providers themselves, but can easily
be run by, e.g., companies and universities, just like HTTP proxies nowadays.
However, SSPLC can also be used as reverse-proxy cache or edge server cache.
with the additional advantage that server-driven cache consistency techniques
are applicable.

Our approach relies on service provider cooperation. All instructions to con-
trol the SSPLC are embedded by the provider of a service in SOAP result docu-
ments and in the WSDL [6] description of a service. The SOAP results are aug-
mented with information about cache consistency. This is the only modification
to a Web service required for the use of SSPLC. The effort necessary to gener-
ate these annotations depends on the consistency strategy and the complexity of
the application logic and is subject to further investigations. Simple annotations,
e.g., TTL values, can be inserted by the SOAP-engine in a post-processing step
without modifications of the Web service. More complex annotations demand
some coding effort. Additionally, the WSDL document of the service is anno-
tated with information about the caching-relevant semantics of a service. This
is done manually using an XML-based declarative language because automatic
reasoning about the semantics normally results in a very conservative caching
behavior. Writing these annotations is considered to be quite easy for the devel-
opers of a Web service as they already have the required knowledge. Altogether,
we assume that the additional effort for the provider to make a Web service
cachable is clearly outweigh by its benefits.

The remainder of the paper is organized as follows: In Section 2 we present
background information and introduce an example Web service used as running
example. Several basic design decisions are described in Section 3. A detailed
description of SSPLC, the embedded control instructions of service providers,
and some sophisticated features of the SSPLC are presented in Section 4. Exper-
imental results follow in Section 5. Section 6 surveys related work and Section 7
presents our conclusions.

2 Background Knowledge and Running Example

2.1 Fundamentals of Semantic Caching
Semantic caching is a client-side caching technique introduced in the mid 90s
for DBMSs to exploit the semantic locality of queries [7, 8]. A semantic cache is
managed as a collection of semantic regions which group together semantically
related objects. Regions are composed of region descriptor and region content.

The descriptor basically contains a predicate (like ’author = “Joanne Rowling” ’)
describing the region content. The content stores the objects related to a region
descriptor. Access history is maintained and cache replacement is performed at
the granularity of semantic regions.

Every query sent to a semantic cache is split into two disjoint parts: a probe
query and a remainder query. The probe query extracts the relevant portion of
the result already available in the cache while the remainder query is sent to
the origin server to fetch the missing, i.e., not cached, part of the result. If the
remainder query is empty, the cache does not interact with the origin server. In
the context of DBMSs or Web sources, all participating components have been
full-fledged DBMSs. Since Web services normally have a more constrained query
interface, semantic caching must be adapted to these limitations (see Section 4).

2.2 Running Example
Amazon offers a SOAP-based Web service interface which is very similar to their
broadly known HTTP interface. Since Amazon is in fact a “real-world implemen-
tation” of the TPC-W benchmark, we use parts of their interface for our example
and the TPC-W benchmark scenario as basis for performance experiments con-
ducted using our prototype implementation. Our example service is called Book
Store Light and is a slim version of Amazon. The relevant operation of this ser-
vice is a search for books written by certain authors (author search). The XML
documents used by Amazon are too large to be presented entirely in this pa-
per. We shortened and simplified them to a reasonable degree and removed all
namespaces and types from the presented documents for better readability and
a more concise presentation.

2.3 The Communication Protocol SOAP
SOAP [5] is an XML-based communication protocol for distributed applications.
The root element of a SOAP message is an Envelope element containing an op-
tional Header element for SOAP extensions and a Body element for the payload.
SOAP is designed to exchange messages containing structured and typed data
and can be used on top of several different transfer protocols like HTTP, SMTP,
and FTP. The usage of SOAP over HTTP is the default in the current landscape
of Web services. Figure 3 shows an example SOAP response corresponding to
the request shown in Figure 1.

2.4 The Description Language WSDL
WSDL (Web Service Description Language) [6] is an XML-based language to
describe the technical specifications of a Web service, in particular the operations
offered by a Web service, the syntax of the input and output documents, and
the communication protocol to use for communication with the service. The
exact structure of a WSDL document is complex and out of the scope of this
paper, but we will give a brief overview of the WSDL standard. At first, a
service in WSDL is described on an abstract level and afterwards bound to a
specific protocol, network address (normally a URL), and message format. On

the abstract level port types are defined. A port type is a set of operations (like
author search). Every operation has a number of input and output messages
associated defining the order and type of the messages sent to/received from the
operation. The messages themselves are assembled from several typed parts. The
types are defined using XML Schema.

On the non-abstract level, port types are bound to concrete communication
protocols and concrete formats of the messages using so-called bindings. At last,
a service in WSDL is defined as a set of ports, i.e., bindings with associated
network addresses (normally URLs).

Since SSPLC is currently mainly based on annotations at the ab-
stract level we will focus on this level. Figure 4 shows a fragment of a
WSDL document defining the port type of the Book Store Light service
(BookStoreLightPort) having one operation (AuthorSearchRequest). This op-
eration expects an AuthorSearchRequest message as input and produces an
AuthorSearchResponse message as an output document. These messages are
defined just above the portType element. Messages are composed of several
part elements. As shown in the figure, the request message has one part of type
AuthorRequest and the response message has one part of type ProductInfo.
These types are defined using XML Schema in another fragment of the WSDL
document, shown in Figure 2. An element of type AuthorRequest has the ele-
ments author and levelOfDetail, both of type string, in its content. In our
example, levelOfDetail can be “heavy” or “lite” and influences the level of
detail of the result. Figure 1 shows an example SOAP message requesting the
most important information about books written by “Joanne Rowling”.

An element of type ProductInfo contains the two subelements
TotalResults and DetailsArray. The former is of type int, whereas
DetailsArray is, in short, an array of Details elements. Details is another
type defined inside the WSDL document, having the three subelements Asin,
Title, and Authors. The first two subelements are of type string, the last one
is of type AuthorArray which is an array of strings representing the authors
of the book. For our example, we assume that Asin is only present in a result if
levelOfDetail was “heavy”.

3 Basics of the Web Service Cache

We will now discuss our design decisions on several basic caching aspects. These
concerns are not the main focus of our work so we used existing solutions as far
as possible and adapted existing work where necessary.

3.1 Replacement Policy

Since cache memory is a limited resource, the cache may have to discard some
regions to free memory for new regions. After experimenting with some differ-
ent replacement strategies, we decided to use our own modified version of the
2Q strategy [9], which is a low overhead approximation to LRU-2. Empirically,
standard 2Q is a smart choice because of good replacement decisions and low

<Envelope encodingStyle="http://...">

<Body>

<AuthorSearchRequest>

<AuthorSearchRequest>

<author>Joanne Rowling</author>

<levelOfDetail>lite</levelOfDetail>

</AuthorSearchRequest>

</AuthorSearchRequest>

</Body>

</Envelope>

Fig. 1. Example SOAP Request

<types><schema>

<complexType name="AuthorRequest"><all>

<element name="author" type="string" />

<element name="levelOfDetail"

type="string" />

</all></complexType>

<complexType name="ProductInfo"><all>

<element name="TotalResults" type="int" />

<element name="DetailsArray"

type="DetailsArray" />

</all></complexType>

<complexType name="DetailsArray">

<complexContent>

<restriction base="Array">

<attribute ref="arrayType"

arrayType="Details[]" />

</restriction>

</complexContent></complexType>

<complexType name="Details"><all>

<element name="Asin" type="string" />

<element name="Title" type="string" />

<element name="Authors"

type="AuthorArray" />

</all></complexType>

<complexType name="AuthorArray">

<complexContent>

<restriction base="Array">

<attribute ref="arrayType"

arrayType="string[]" />

</restriction>

</complexContent></complexType>

</schema></types>

Fig. 2. Type Definitions

<Envelope encodingStyle="http://...">

<Body>

<AuthorSearchRequestResponse>

<return>

<TotalResults>200</TotalResults>

<DetailsArray arrayType="Details[200]">

<Details>

<Title>

Harry Potter and the Sorcerer’s Stone

</Title>

<Authors arrayType="string[2]">

<Author>Joanne K. Rowling</Author>

<Author>Mary GrandPré</Author>

</Authors>

</Details>

<!-- 199 more Details elements -->

</DetailsArray>

</return>

</AuthorSearchRequestResponse>

</Body>

</Envelope>

Fig. 3. Example SOAP Response

<message name="AuthorSearchRequest">

<part name="AuthorSearchRequest"

type="AuthorRequest" />

</message>

<message name="AuthorSearchResponse">

<part name="return" type="ProductInfo" />

</message>

<portType name="BookStoreLightPort">

<operation name="AuthorSearchRequest">

<input message="AuthorSearchRequest" />

<output message="AuthorSearchResponse" />

</operation>

</portType>

Fig. 4. Messages and Port Types

<CacheControlHeader>

<CacheConsistency>

<TTL>P0Y0M0DT12H00M00S</TTL>

</CacheConsistency>

</CacheControlHeader>

Fig. 5. Cache Consistency Information

<binding name="BSLBinding" type="BookStoreLightPort">

<binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />

<operation name="AuthorSearchRequest">

<operation soapAction="BookStoreLight" />

<!-- ...mappings of input and output message... -->

<OperationCacheControl>

<fragmentationXPath>

/Envelope/Body/AuthorSearchRequestResponse/return/DetailsArray/Details

</fragmentationXPath>

<reassemblingXQuery> <!CDATA[

let $details := ##RESULT_FRAGMENTS##

return

<Envelope encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<Body>

<AuthorSearchRequestResponse>

<return type="ProductInfo">

<TotalResults type="int">##COUNT_RESULT_FRAGMENTS##</TotalResults>

<DetailsArray arrayType="Details[##COUNT_RESULT_FRAGMENTS##]" type="Array">

{$details}

</DetailsArray>

</return>

</AuthorSearchRequestResponse>

</Body>

</Envelope>]]>

</reassemblingXQuery>

</OperationCacheControl>

</operation>

</binding>

Fig. 6. Annotation of the AuthorSearchRequest Operation

CPU overhead, but this algorithm is designed to handle objects of uniform size.
As semantic regions can be of different size, we had to modify the standard 2Q
strategy by introducing a simple but efficient cost-to-size ratio. More details on
our modifications of 2Q can be found in the extended version of this paper [10].

3.2 Distribution Control/Cache Consistency

SSPLC gives providers exclusive control over distribution and cache consistency
using a SOAP header extension. Since cache consistency mechanisms are not the
focus of this work, we assume service-specific TTL in the following discussion.
If a provider allows caching, it must explicitly state some cache consistency
information. For example, the CacheControlHeader element shown in Figure 5
allows caching and states that the response is fresh for at least the given
duration (12 hours). After this duration, the cached version of the response
must be removed from the cache.

3.3 Physical Storage of Semantic Regions

Using a cache requires a large amount of memory to be able to serve lots of
clients based on a reasonably large number of semantic regions. Since disks are
considerably larger and cheaper than main memory, it is obviously a good idea
to use them for the storage of semantic regions. Since it is orthogonal to the
issues discussed in this paper whether the cache is based on main memory, disk,
or both, we assume for the rest of the paper that the cache is only based on
main memory. Our prototype system is main memory-based as well.

4 Semantic Caching in SSPLC

Basically, semantic caching in SSPLC is done by annotating WSDL documents
with information about the caching-relevant semantics of services using the lan-
guage presented in the next section. This information is used for mapping SOAP
requests to predicates, for fragmenting responses, and for reassembling responses.
Thus, adapted semantic caching algorithms can be applied.

4.1 WSDL Annotations

Our language is designed both to cover common capabilities of existing Web
service interfaces and to preserve efficient solvability of the query containment
problem, which is intrinsic to semantic caching. The annotation of WSDL docu-
ments is done using XML Schema annotation elements and WSDL extensibility
elements. Thus, compatibility to the original WSDL document is preserved, be-
cause applications which cannot handle the annotations ignore them.

Fragmentation and Reassembling Since Web services deliver monolithic
XML documents rather than tuple-oriented responses, SSPLC needs some infor-
mation about how to fragment such documents to obtain fine-granular response
units comparable to tuples in database caching. These units are called fragments.

We use an XPath-expression to specify the fragmentation. Additionally, SSPLC
needs further instructions regarding the generation of a complete response doc-
ument based on fragments of prior requests. This information is specified using
the XQuery language. Both the XPath-expression and the XQuery, are provided
using an additional element (OperationCacheControl) inside the binding el-
ement of the WSDL document of a service because it depends on the actual
coding of the messages.

Figure 6 gives an example for our Book Store Light. The marked region de-
picts the annotated information for the SSPLC while the rest of the document
constitutes a standard SOAP binding. Referring to our book store example,
we are interested in the individual books, i.e., Details elements, contained in
a response document of our example service. The XPath-expression inside the
fragmentationXPath element in Figure 6 fragments a response document ac-
cordingly. The XQuery to reassemble a response is shown in the figure inside
the reassemblingXQuery element. The macros ##COUNT RESULT FRAGMENTS##
and ##RESULT FRAGMENTS## are expanded by the SSPLC before evaluating the
XQuery and represent exactly the fragments (respectively their number) which
should be reassembled to a complete response document. Since an introduction
to XQuery lies outside the scope of this paper, we will not explain the XQuery
shown in the figure. It should be obvious that the result of the XQuery is a
SOAP response like the one shown in Figure 3.

Predicate Mapping We need predicates to describe the fragments stored in a
region. Thus, we need some information about the semantics of requests. More-
over, we want to be able to filter semantic regions, e.g., if we are looking for
all books written by “Joanne Rowling” in a region storing all books written
by “Rowling”. Therefore, we need to know how to access the individual “at-
tributes” (elements) of a tuple (fragment). This information is annotated to the
type definitions of requests in WSDL documents.

We will explain the annotations using our Book Store Light example. The
original type definition of AuthorRequest, which is the request type of our ser-
vice, is shown in Figure 2. Currently, we assume that if there are several param-
eters defined in a request, i.e., levelOfDetail and author, they are combined
by an AND operator. Thus, the request shown in Figure 1 means that we are
looking for all books written by “Joanne Rowling” and we are only interested
in the most important facts of the books. Additionally, we assume that if there
are several elements inside an array, the elements are logically ANDed together,
too. This is also true for responses (see the Author elements inside the Authors
element shown in Figure 3). The annotated version of the AuthorRequest type
is shown in Figure 7.

We annotate every parameter of the request using one or more CacheControl
elements. It is necessary to specify some context information because a parame-
ter can be used for several operations having different semantics. Also, if another
binding is used, the coding of the parameter might be different, requiring some
modifications inside the CacheControl element. Thus, the context information
given by the attributes of CacheControl defines when to use the information

<complexType name="AuthorRequest"><all>

<element name="author" type="string">

<annotation><appinfo>

<CacheControl context="AuthorSearchRequest"

bindingContext="BSLBinding">

<StringParameter>

<required>true</required>

<fragmentXPath>

Authors/Author/text()

</fragmentXPath>

<implicitOperator>contains_wwo</implicitOperator>

<caseSensitive>false</caseSensitive>

<operators>

<and> </and><and>,</and>

</operators>

</StringParameter>

</CacheControl>

</appinfo></annotation></element>

<element name="levelOfDetail" type="string">

<annotation><appinfo>

<CacheControl context="AuthorSearchRequest"

bindingContext="BSLBinding">

<StringParameter>

<required>true</required>

<implicitOperator>equals</implicitOperator>

<caseSensitive>true</caseSensitive>

</StringParameter>

</CacheControl>

</appinfo></annotation></element>

</all></complexType>

Fig. 7. Annotated WSDL Type Definition

Disjoint Match

Contained Match Overlapping Match

Containing MatchExact Match

No Matching
Result is requested from remote server

Exact and Extended Matching
Result can be generated autonomously

Semantic Region S
(available in the cache)

Result of new Request
based on one CP

Fig. 8. Match Types

inside the CacheControl element. A StringParameter element defines that the
parameter is of type string. The content of this element gives more detailed infor-
mation about how to handle this string parameter. We also defined elements for
other parameter types, e.g., an IntegerParameter element. Each of these ele-
ments contains further information (e.g., operators) depending on the parameter
type.

Looking at the example in Figure 7, we observe that the author parameter
is mandatory (required element). If a parameter is optional, a default value of
the parameter that is used in case of absence of the parameter in a request must
be specified using a default element (not available in the example document).
The fragmentXPath element specifies how to extract the information from result
fragments that correspond to this parameter (compare Figure 3). For example,
if we ask for books written by an author, the fragmentXPath can be used to find
the authors in the result fragments. If, as in our example, an XPath is specified,
the cache can inspect the fragments to look up the actual author(s) of a book.
This information can be used to filter all fragments contained in a semantic
region. If there is no XPath specified, the cache is not able to do such filtering
because it is constrained to the information obtained from the request.

The element implicitOperator defines the operator of the parameter. Cur-
rently, we support the following operators (for appropriate parameter types):
>, ≥, <, ≤, = (or equals), contains, contains wwo, starts with, and ends with.
In our example, the operator is contains wwo which is a contains operator that
looks for “whole word only” occurrences of the given pattern in a string, i.e.,
“Joanne Rowling” does not contain wwo “Rowl”, but contains wwo “Rowling”.

The comparison of strings is case insensitive as defined by the caseSensitive
element.

Additionally, we support the logical operators AND and OR to support com-
plex predicates. We also support parentheses for precedence control. Currently,
we are not supporting the ¬ operator (logical NOT operator) because there are
virtually no Web services offering this operator and we are interested in keeping
the query containment problem efficiently solvable. The operators element in
Figure 7 defines two AND operators for the author parameter: a space character
and a comma.

The second parameter is levelOfDetail. This is also a mandatory string
parameter. The implicit operator is a case sensitive “equals”. There is no
fragmentXPath defined because in the response document of our Web service no
explicit information about whether it is a “heavy” or a “lite” result is contained.
As this information is stored as part of the region predicate, this information is
not lost.

Using these annotations SSPLC can figure out the semantics of a request and
is able to extract relevant elements from fragments. Also, it is able to generate
a predicate from a request. The request shown in Figure 1 is mapped to the
following predicate:

author contains wwo case insensitive “Joanne” ∧
author contains wwo case insensitive “Rowling” ∧

levelOfDetail equals case sensitive “lite”

4.2 Matching and Control Flow

Using our annotations we are now able to understand the caching-relevant se-
mantics of requests and responses. We will now describe how this information is
used for caching. First of all, a SOAP request R is mapped to a predicate P as
described above. Although the Book Store Light does not offer a logical OR op-
erator for the author parameter, we will use the following predicate P (operator
names are shortened) for demonstration purposes throughout this section:

(author contains “Rowling” ∨ author contains “GrandPré”) ∧
levelOfDetail = “lite”

After the mapping, P is transformed into disjunctive normal form (DNF)
and split into conjunctive predicates (CPs), i.e., predicates only containing
simple predicates connected by logical AND operators. If there is no logical OR
in a request, P is processed as is. The transformation of our example predicate
P results in:
CP1 : author contains “Rowling” ∧ levelOfDetail = “lite”
CP2 : author contains “GrandPré” ∧ levelOfDetail = “lite”

All CPs are processed in parallel. First, match types of a CP with all seman-
tic regions are determined, i.e., the correlation between every semantic region S
and the result of CP is determined. There are five different match types as shown
in Figure 8. The best match type for a CP and a semantic region S is, of course,
the exact match. The next best match type is a containing match because we

only have to filter S by eliminating all fragments fulfilling the region predicate
but not CP to get the fragments for the response. The other three match types
require server interaction because we do not have all fragments cached to an-
swer the request. Since most Web services do not have adequate interfaces to
be able to process complicated remainder requests, we handle all three match
types as disjoint match. Thus, we are sending a request generated from the CP
to the Web service even though there already might be some relevant fragments
available in the cache. Even if a Web service can process complicated remain-
der requests, processing of such complex requests is likely to be costly. As one
of the goals of SSPLC is to reduce processing demands of the central servers,
usage of complex remainder requests could be counterproductive. The response
of the Web service is fragmented and afterwards stored in the cache. If there
are already regions in the cache that are a subset of the response (i.e., in the
case of a contained match), these semantic regions are replaced with the new
(larger) semantic region. In all other cases, the fragmented response is inserted
as a new semantic region using CP as the region predicate. After all CPs have
been processed, SSPLC calculates the result of P as the union of the results
of all CPs. By default, duplicates are eliminated, i.e., SSPLC implements the
very common set semantics. Alternatively, SSPLC calculates the result without
duplicate elimination. This behavior is controlled by an optional distinct el-
ement inside the OperationCacheControl element (not shown in the example
document). Fragments are considered equal if their contents are equal or if keys
are defined, their keys are equal. Keys can be defined via a key element inside
the OperationCacheControl element using the standard XML Schema syntax
for keys. Usage of keys considerably speeds up duplicate elimination. We do not
further investigate keys in the scope of this paper. The result of P is (concep-
tually) written to an XML document D. After that, the reassemblingXQuery
is evaluated with the macro ##RESULT FRAGMENTS## expanded to D and the
macro ##COUNT RESULT FRAGMENTS## expanded to |D|. Finally, the response is
sent back to the client.

4.3 Sorting and Generalization

Since the order of elements can be important in XML documents, SSPLC is aware
of it. XML documents are inherently ordered by the sequence of the elements
(document order). As long as the document order generated by a Web service
offers no real added value (e.g., lexicographical order by title), it does not matter
in which order the fragments emerge in the response. Also, as long as we are
using fragments of only one semantic region (filtered or not), order is abided and
we can generate correctly ordered results as in the Book Store Light example.

If a Web service orders fragments using some information available in the
response, there are two possibilities to establish the same order even if we are
merging fragments of several semantic regions to generate the response. First,
if the order is fixed, i.e., always the same, the reassemblingXQuery can be
modified to do the sorting using the order by clause of XQuery. Second, if the
order depends on a request parameter, we can annotate this parameter using

a SortParameter element. This element contains a mapping from the service’s
sorting facilities to order by clauses of XQuery. For example, if a Web service has
a parameter sort and the value “+title” means “sort by title”, a mapping to
XQuery could look like “order by $fragment/Title”. The appropriate order
by clause is inserted into reassemblingXQuery before evaluation. The value of
a sorting parameter is stored in the region descriptor because it is relevant for
determining the match types.

Another enhancement of our semantic caching scheme is the usage of gener-
alization for better decisions on the query containment/predicate subsumption
problem. Our SSPLC supports two different types of generalization. First, tree-
structured containment relations for values of parameters can be defined. For
example, if there is a parameter defining whether we are interested in paper-
back, hardcover, or both, we are able to annotate this parameter to point out
that “hardcover ⊆ both” and “paperback ⊆ both”. This information is used
during match type computation and for filtering of semantic regions. The sec-
ond type of generalization can be seen in our example. There is a parameter
levelOfDetail that influences the level of detail of the response. Since “heavy”
fragments simply contain some extra elements, it is possible to define an XQuery
filter to transform “heavy fragments” to “lite fragments” by removing the sur-
plus elements like the Asin elements in our example. This information is also
used during match type computation and region filtering.

5 Performance Evaluation

We implemented a prototype of SSPLC for the service platform ServiceGlobe [11]
using Java and conducted several performance experiments based on the scenar-
ios of TPC-W [3] and TPC-W Version 2 [4].

5.1 Benchmark Scenario 1 (TPC-W)

The first scenario is related to the online bookstore scenario of the TPC Web
commerce benchmark (TPC-W). Because TPC-W does not aim at SOAP Web
services and semantic caching, but instead at traditional Web servers and back-
end servers, major modifications to TPC-W (system architecture as well as data
generation) are necessary to adjust the benchmark to the context of our SSPLC
in a reasonable way. Thus, we decided to model our benchmark scenario on the
SOAP interface of Amazon, just as the scenario of TPC-W is modeled on the
HTTP interface of Amazon. We chose to use Amazon’s author search request for
our benchmarks because this search functionality is also addressed in TPC-W.

Experimental Setup Due to space restrictions, we only present a survey of
the experimental setup of benchmark scenario 1. A detailed description can be
found in the extended version of this paper [10].

To show the effectiveness of our semantic cache, we implemented a simulation
service rather than using Amazon directly because Amazon delivers its results
page-wise (i.e., 10 books per SOAP response), which is an unusual behavior for

Web services. The requests and responses of our simulation service are identical
to those of the Amazon service despite the fact that our service delivers all
results to a request in one response. For that purpose, we materialized some of
the data of Amazon to be able to work with real data. Since our simulation
service delivers these materialized results extremely fast, we are delaying results
to simulate processing time of a Web service. We conducted some experiments to
assure that SSPLC is able to deliver its results as fast or faster on average than
the origin Web service. Since these results depend heavily on the performance
of the origin server and of the machine running SSPLC, we do not present
quantitative results.

Our benchmark scenario is based on several top-300 bestseller lists (top sell-
ing science books, top selling sports books, ...) of Amazon. We used these differ-
ent bestseller lists to generate different traces as described below and we always
present the average of all performance experiments conducted using these dif-
ferent traces. If an author’s book is present on the bestseller list, people will be
interested in other books published by the same author, too. Thus, an author
search request is more likely for authors whose books are ranked high on the best-
seller list. Since studies [12] have found that the request characteristics of many
Internet applications are adequately modeled through a Zipf-like distribution,
we use such a distribution (with parameter theta (θ) set to 0.75) on the top-300
bestseller lists to select books. Using the names of the authors of a book, we
generate a request for our simulation service. We randomly choose which names
(surnames, first names) are used for the request. Every request contains at least
one surname of an author. This is done to challenge semantic caching. We gener-
ated traces of 2000 requests each for the performance experiments. Additionally,
we conducted some experiments using traces of 10000 requests showing similar
results.

Some of the requests produce very large response documents containing up
to 32000 fragments. Since the size of such documents is about 40 MB, it is
very likely that Web services do not generate such large responses. Rather, they
generate a fault response informing the caller that there are too many results
and that the request has to be refined. Thus, our simulation service sends fault
messages for results containing more than 2000 fragments. SSPLC caches these
fault messages because they are marked cachable in the SOAP header.

We conducted several performance experiments varying different parameters
and we present the results in this section. For the experiments in this section, the
TTL of responses was set to 30 minutes, if not explicitly stated differently. The
maximum size for responses to be cached was set to about 1000 fragments (1.2
MB). Larger responses were fetched from the remote Web service and forwarded
to the client without caching. We conducted the experiments using three different
cache sizes: small (10% of the data volume of the unique-trace3), standard (20%),
and large (30%). The cache was warmed up by running every trace twice and
measuring the second one, although there are only minor differences between
the two runs.
3 The term unique-trace refers to a trace where all duplicates are removed.

27.1% 28.8% 34.0% 37.8% 37.0%
43.4%

16.4%

56.5%
71.3%

43.1%

62.2%

36.9%

56.6%

26.2%
22.9%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SSPLC NSC SSPLC NSC SSPLC NSC

Small Standard Large

Cache Size

P
er

ce
nt

ag
e

of
 R

eq
ue

st
s

Exact Match Containing Match Other

23
4

M
B

20
2

M
B

18
2

M
B

21
5

M
B

17
7

M
B

15
9

M
B

29
8

M
B

29
8

M
B

0

50

100

150

200

250

300

No Cache Small Standard Large

Cache Size

T
ra

ns
fe

r
V

ol
um

e
(M

B
)

NSC

SSPLC

Fig. 9. Match Distribution (Left) and Transfer Volume (Right) Varying Cache Size

22.8% 24.5%
34.0% 37.8% 40.5%

46.8%
13.4%

22.9%

26.7%

63.9%
75.6%

43.1%

62.2%

32.8%

53.2%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SSPLC NSC SSPLC NSC SSPLC NSC

5 min 30 min (Standard) infinite

Time-To-Live

P
er

ce
nt

ag
e

of
 R

eq
ue

st
s

Exact Match Containing Match Other

Fig. 10. Match Distribution Varying TTL

0.
0%

0.
0%

0.
1%

0.
1%

0.
4%

0.
6%

1.
0%

7.
7% 13

.8
% 23

.3
%

37
.1

% 44
.5

% 52
.6

%

4.
4%

0%

10%

20%

30%

40%

50%

60%

0.5 0.6 0.7 0.8 0.9 0.95 0.99999

Theta

P
er

ce
nt

ag
e

of
 C

ac
he

 H
it

s

NSC

SSPLC

Fig. 11. Cache Hits Varying Theta

Experimental Results Due to space restrictions, we only present the core
results of benchmark scenario 1. Detailed experimental results are presented in
the extended version of this paper [10].

The main goal of the SSPLC is to improve scalability of Web services. Figure 9
shows4 that already the smallest semantic cache is able to answer 43.5% (exact
matches + containing matches) of all requests using data stored in the cache,
reducing processing demands on the central servers significantly. A traditional
(non-semantic) cache (NSC) achieves much smaller hit rates (28.8%). The bigger
the caches are, the better the hit rates become even though the increase rate
is not linear with the cache size increment. This is due to the fact that already
the standard cache size is large enough to cache most of the hot spot responses.
The only advantage of a larger cache is that it is able to additionally store some
of the less frequently requested responses. SSPLC benefits more from a larger
cache than NSC because SSPLC can exploit the semantics of the requests.

4 Please note that the sum of exact matches, containing matches, and other matches
is not always exactly 100% due to rounding errors.

Figure 9 demonstrates the reduction of bandwidth consumption. Running
the trace without cache results in the transfer of 298 MB across the network.
The smallest semantic cache reduces the transfer volume by approximately 28%,
the standard semantic cache by approximately 41%. The large semantic cache
reduces the transfer volume even more, but the difference is not linear with
the cache size increment due again to the reasons above. The increased hit rate
of SSPLC does not 1:1 translate into equally large bandwidth savings in this
scenario. For example, the hit rate of SSPLC is about 19% higher compared
to NSC using the standard cache size. This hit rate increment translates into
about 14% bandwidth savings. The correlation between hit rate increment and
bandwidth savings depends on the size of the cached semantic regions and the
traces. Nevertheless, the transfer volume of NSC is on average more than 12%
larger than that of SSPLC.

Figure 10 shows results for varying time-to-live periods. Of course, the longer
the TTL period is, the more effective the caches are. Depending on the TTL,
SSPLC performs about 43% to 50% better than NSC.

5.2 Benchmark Scenario 2 (TPC-W 2)

The Transaction Processing Performance Council published a first draft of
TPC-W Version 2 (TPC-W 2) for public review. This new version of TPC-W
is aiming at Web services. Thus, we decided to conduct some additional perfor-
mance experiments based on TPC-W 2. Due to incomplete specifications and
time constraints, we did not implement the full benchmark. Rather, we chose
the “product detail Web service interaction” of TPC-W 2 to conduct our exper-
iments. The data was generated conforming to the rules of TPC-W Version 2,
i.e., 100000 books were generated and stored in the DBMS. We configured our
remote business emulator (RBE) to run 8 emulated businesses (EB) concur-
rently. The TTL was set to 5 minutes5 and a total of 3000 requests were sent to
the SSPLC. The cache was able to store about 2500 books. Every request asked
for detailed information about a randomly chosen number (1 to 10) of books.
According to the TPC-W 2 specifications, the books should be selected using
a given non-uniform random distribution, but this distribution generates values
which are distributed too uniformly for any cache. Therefore, we used a Zipf-like
distribution to select the books.

If a client requests product details for, e.g., book 2 and book 8, SSPLC
translates the request to the predicate “book = 2 ∨ book = 8”. Thus, SSPLC
splits up the request into two CPs, as described above, and generates a request
for every single book if not available in the cache. For this reason, there are
only exact matches and disjoint matches in this scenario. If not all books of a
request are available in the cache, the SSPLC rates the request as exact match
and disjoint match according to the ratio of books available in the cache to books
not available in the cache. For example, if a client requests details about eight
books and six books are available in the cache, the request is rated as 0.75 exact
match and 0.25 disjoint match.
5 Every benchmark run lasted for about 20 minutes.

Figure 11 shows the exact matches for the benchmark varying theta of the
Zipf-like distribution. A non-semantic cache (NSC) is virtually useless in this
scenario because the cache hits are less than 1%, even if θ = 0.99999. This is
because NSC can only answer requests from the cache if two requests are exactly
the same, i.e., the number of product details requested must be the same, the
books must be the same, and the order of the books must be the same. SSPLC
works very well for sufficient large θ, even though the cache size is small (about
5% of the data volume available at the origin server) and the TTL is short. For
a realistic θ, i.e., greater or equal to 0.8, the SSPLC is able to answer more than
23% of the requests.

6 Related Work

Caching in the context of Web services has been addressed, e.g., by the usage
scenarios S032 and S037 of the World Wide Web Consortium [13]. The proposed
approaches are either described very abstractly, or are limited to a more or
less straightforward store-and-resend of SOAP responses. Our approach differs
in that it takes advantage of the fact that query-style requests can be cached
more efficiently using semantic caching. Thus, this paper proposes an alternative
solution which is more flexible and powerful.

A solution for a similar but simpler problem in the area of Web sources
and respectively Web databases, was presented by [8]. They focus on wrap-
per6 level caching. Therefore, they are able to take advantage of the semantics
of the declarative query language SQL, i.e., they automatically deduce region
predicates from SQL queries. In the area of Web services, no such standardized
declarative language exists. Due to our declarative language for the annotation
of WSDL documents with information about caching-relevant semantics, we are
able to apply semantic caching to Web services in, e.g., B2B and B2C scenarios.
Additionally, we investigate sorting and generalization issues. Thus, our solution
is more comprehensive and more flexible. The basic techniques of both SSPLC
and [8] are based on prior work on semantic caching, e.g., [7].

A different usage of caching for Web services is presented in [14]. They use
caching techniques for reliable access to Web services from, e.g., PDAs or similar
unreliably connected mobile devices. The authors use one representative service
to demonstrate the benefits of a Web service cache and expose a number of
issues in caching Web services. They do not present a generic solution, but they
do conclude that extensions to WSDL are needed to support cache managers.
We think that the language presented in this paper constitutes a good base for
such extensions.

7 Conclusions and Future Work

We presented the semantic cache SSPLC that is suitable for caching responses
from Web services on the SOAP protocol level. We introduced an XML-based

6 Wrappers are used to extract data from Web sources.

declarative language to annotate WSDL documents with information about the
semantics of services. We demonstrated the validity of our proposed caching
scheme by performing a set of experiments.

We plan to investigate some ideas on how SSPLC can be further improved.
The declarative language can be extended to integrate additional semantic
knowledge like fragment inclusion dependencies [8] to transform as many over-
lapping or contained matches as possible into exact or containing matches. Fur-
thermore, we intend to improve our caching scheme by taking advantage of richer
interfaces of services.

References

1. Yagoub, K., Florescu, D., Issarny, V., Valduriez, P.: Caching Strategies for Data-
Intensive Web Sites. In: Proceedings of the International Conference on Very Large
Data Bases (VLDB), Cairo, Egypt (2000) 188–199

2. Larson, P., Goldstein, J., Zhou, J.: MTCache: Transparent Mid-Tier Database
Caching in SQL Server. In: Proceedings of ICDE, Boston, MA, USA (2004) 177–
189

3. Transaction Processing Performance Council: TPC Benchmark W Version 1.8
(2002) http://www.tpc.org/tpcw/spec/tpcw_V1.8.pdf.

4. Transaction Processing Performance Council: TPC Benchmark W Version 2.0r
(2003) http://www.tpc.org/tpcw/spec/TPCWV2.pdf.

5. Box, D., et al.: Simple Object Access Protocol (SOAP) 1.1. http://www.w3.org/
TR/SOAP11 (2000)

6. Christensen, E., et al.: Web Services Description Language (WSDL) 1.1. http:

//www.w3.org/TR/2001/NOTE-wsdl-20010315 (2001)
7. Dar, S., Franklin, M.J., Jónsson, B.T., Srivastava, D., Tan, M.: Semantic Data

Caching and Replacement. In: Proceedings of VLDB, Mumbai (Bombay), India
(1996) 330–341

8. Lee, D., Chu, W.W.: Towards Intelligent Semantic Caching for Web Sources.
Journal of Intelligent Information Systems (JIIS) 17 (2001) 23–45

9. Johnson, T., Shasha, D.: 2Q: A Low Overhead High Performance Buffer Manage-
ment Replacement Algorithm. In: Proceedings of VLDB, Santiago de Chile, Chile
(1994) 439–450

10. Seltzsam, S., Holzhauser, R., Kemper, A.: Semantic Caching for Web Ser-
vices – Extended Version. http://www-db.in.tum.de/research/publications/

techreports/SemCachingExtended.pdf (2005)
11. Keidl, M., Seltzsam, S., Kemper, A.: Reliable Web Service Execution and Deploy-

ment in Dynamic Environments. In: Proceedings of the International Workshop
on Technologies for E-Services (TES). Volume 2819 of Lecture Notes in Computer
Science (LNCS)., Berlin, Germany (2003) 104–118

12. Adamic, L., Huberman, B.: Zipf’s Law and the Internet. Glottometrics 3 (2002)
143–150

13. He, H., Haas, H., Orchard, D.: Web Services Architecture Usage Scenarios. http:
//www.w3.org/TR/ws-arch-scenarios (2004)

14. Terry, D.B., Ramasubramanian, V.: Caching XML Web Services for Mobility.
ACM Queue 1 (2003) 70–78

seltzsam
Hervorheben

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

