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Abstract

The consolidation of multiple servers and their workloads

aims to minimize the number of servers needed thereby en-

abling the efficient use of server and power resources. At the

same time, applications participating in consolidation scenar-

ios often have specific quality of service requirements that need

to be supported. To evaluate which workloads can be consoli-

dated to which servers we employ a trace-based approach that

determines a near optimal workload placement that provides

specific qualities of service. However, the chosen workload

placement is based on past demands that may not perfectly

predict future demands. To further improve efficiency and ap-

plication quality of service we apply the trace-based technique

repeatedly, as a workload placement controller. We integrate

the workload placement controller with a reactive controller

that observes current behavior to i) migrate workloads off of

overloaded servers and ii) free and shut down lightly-loaded

servers.

To evaluate the effectiveness of the approach, we developed

a new host load emulation environment that simulates differ-

ent management policies in a time effective manner. A case

study involving three months of data for 138 SAP applications

compares our integrated controller approach with the use of

each controller separately. The study considers trade-offs be-

tween i) required capacity and power usage, ii) resource ac-

cess quality of service for CPU and memory resources, and iii)

the number of migrations. We consider two typical enterprise

environments: blade and server based resource pool infras-

tructures. The results show that the integrated controller ap-

proach outperforms the use of either controller separately for

the enterprise application workloads in our study. We show

the influence of the blade and server pool infrastructures on

the effectiveness of the management policies.

1 Introduction

Virtualization is gaining popularity in enterprise environ-
ments as a software-based solution for building shared hard-
ware infrastructures. Forrester Research estimates that busi-
nesses generally end up using somewhere between 8 and 20
percent of the server capacity they have purchased. Virtual-
ization technology helps to achieve greater system utilization
while lowering total cost of ownership and responding more
effectively to changing business conditions. For large enter-
prises, virtualization offers an ideal solution for server and ap-
plication consolidation in an on-demand utility.

The consolidation of multiple servers and their workloads

has an objective of minimizing the number of resources, e. g.,
computer servers, needed to support the workloads. In addition
to reducing costs, this can also lead to lower peak and average
power requirements. Lowering peak power usage may be im-
portant in some data centers if peak power cannot easily be
increased.

Applications participating in consolidation scenarios can
make complex demands on servers. For example, many en-
terprise applications operate continuously, have unique time-
varying demands, and have performance-oriented Quality of
Service (QoS) objectives. To evaluate which workloads can be
consolidated to which servers, some preliminary performance
and workload analysis should be done. In the simple naive
case, a data center operator may estimate the peak resource re-
quirements of each workload and then evaluate the combined
resource requirements of a group of workloads by using the
sum of their peak demands. However, such an approach can
lead to significant resource over-provisioning since it does not
take into account the benefits of resource sharing for comple-
mentary workload patterns. In this work, to evaluate which
workloads can be consolidated to which servers we employ a
trace-based approach [21] that assesses permutations and com-
binations of workloads in order to determine a near optimal
workload placement that provides specific qualities of service.

The general idea behind trace-based methods is that historic
traces that capture past application demands are representative
of the future application behavior. In our past work, we as-
sumed that the placement of workloads would be adjusted in-
frequently, e. g., weekly or monthly [21]. However, by repeat-
edly applying the method at shorter timescales we can achieve
further reductions in required capacity. In this scenario, we
treat the trace-based approach as a workload placement con-
troller that periodically causes workloads to migrate among
servers to consolidate them while satisfying quality require-
ments. Such migrations [6] are possible without interrupting
the execution of the corresponding applications. We enhance
our optimization algorithm to better support this scenario by
minimizing migrations during successive control intervals.

Though enterprise application workloads often have time
varying loads that behave according to patterns [23][8], ac-
tual demands are statistical in nature and are likely to differ
from predictions. Therefore, to further improve the efficiency
and application quality of service of our approach, we manage
workloads by integrating the workload placement controller
with a reactive workload migration controller that observes
current behavior to i) migrate workloads off of overloaded
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servers and ii) free and shut down lightly-loaded servers.

There are many management policies that can be used to
guide workload management. Each has its own parameters.
However, predicting and comparing the long term impact of
different management policies for realistic workloads is a chal-
lenging task. Typically, this process is very time consuming as
it is mainly done following a risky “trial and error” process ei-
ther with live workloads and real hardware or with synthetic
workloads and real hardware. Furthermore, the effectiveness
of policies may interact with the architecture for the resource
pool of servers so it must be repeated for different alternatives.

To better assess the long term impact of management poli-
cies we introduce a new host load emulation environment. The
emulation environment: models the placement of workloads
on servers; simulates the competition for resources on servers;
causes the controllers to execute according to a management
policy; and dynamically adjusts the placement of workloads
on servers. During this simulation process the emulator col-
lets metrics that are used to compare the effectiveness of the
policies.

A case study involving three months of data for 138 SAP
applications is used to evaluate the effectiveness of several
management policies. These include the use of the workload
placement and workload migration controllers separately and
in an integrated manner. The study considers trade-offs be-
tween i) required capacity and power usage, ii) resource access
quality of service for CPU and memory resources, and iii) the
number of migrations. We consider two typical enterprise en-
vironments: blade and server based resource pool infrastruc-
tures. The results show that our integrated workload manage-
ment method outperforms each approach separately. Our re-
sults show that the integration of controllers outperforms the
use of either controller separately.

For the blade pool, the integrated controllers offered CPU
quality that was 20% better than for either controller sepa-
rately, while using only 11% percent more capacity than the
corresponding ideal case where future workloads were known
in advance. For the server resource pool, the hourly CPU qual-
ity penalty was nearly 7 times better than either controller sep-
arately, while using 18% percent more capacity than the corre-
sponding ideal case. Because the blades were memory bound
for the workloads in our study, they had lower CPU quality
penalties per hour. For the workloads under study, the blade
based resource pool uses only 2/3 the peak power of the server
based resource pool and about 30% less power in total with
only a slightly higher cost. Finally, for the blade and server
pool infrastructures and workloads of our case study, the man-
agement policies we proposed achieved average CPU utiliza-
tions of approximately 42% and 66%, respectively.

The rest of this paper is organized as follows. Section 2
describes the workload placement and migration controllers,
management policies, and metrics. The host load emulation
environment is introduced in Section 3. Section 4 presents case
study results. Section 5 describes related work. Finally, con-
clusions are offered in Section 6.

2 Management Services, Policies, and Quality
Metrics

Our management policies rely on two controllers. This sec-
tion describes the workload placement controller and the re-
active workload migration controller. The management poli-

cies exploit these controllers in several different ways. Qual-
ity metrics are used to assess the effectiveness of management
policies.

2.1 Workload Placement Controller

The workload placement controller has two components.

• A simulator component emulates the assignment of sev-
eral application workloads on a single server. It traverses
the per-workload time varying traces of historical demand
to determine the peak of the aggregate demand for the
combined workloads. If for each capacity attribute, e. g.,
CPU and memory, the peak demand is less than the ca-
pacity of the attribute for the server then the workloads fit
on the server.

• An optimizing search component examines many alterna-
tive placements of workloads on servers and reports the
best solution found. The optimizing search is based on a
genetic algorithm [11].

The workload placement controller is based on the Capman
tool that is described further in [21]. It supports both con-
solidation and load leveling exercises. Load leveling balances
workloads across a set of resources to reduce the likelihood
of service level violations. Capman supports the controlled
overbooking of capacity that computes a required capacity for
workloads on a server that may be less than the peak of ag-
gregate demand. It is capable of supporting a different quality
of service for each workload [5]. Without loss of generality,
this paper considers the highest quality of service which corre-
sponds to a required capacity for workloads on a server that is
the peak of their aggregate demand.

For this paper, we enhance Capman to better support the
workload placement controller paradigm. The enhancement
exploits multi-objective functionality offered by the genetic al-
gorithm approach [1]. Instead of simply finding the small-
est number of servers needed to support a set of workloads,
Capman now also evaluates solutions according to a second si-
multaneous objective. The second objective aims to minimize
the number of changes to workload placement. When invok-
ing Capman an additional parameter specifies a target t for the
number of workloads that it is desirable to migrate. Limiting
the number of migrations limits migration overheads and re-
duces the risk of incurring a migration failure. If it is possible
to find a solution with fewer than t migrations, then Capman re-
ports the workload placement that needs the smallest number
of servers and has t or fewer migrations. If more changes are
needed to find a solution, then Capman reports a solution that
has the smallest number of changes to find a feasible solution.

2.2 Workload Migration Controller

The migration controller is a fuzzy-logic based feedback
control loop. An advisor module of the controller continuously
monitors the servers’ resource utilization and triggers a fuzzy-
logic based controller whenever resource utilization values are
too low or too high. When the advisor detects a lightly utilized,
i. e., underload situation, or overload situation the fuzzy con-
troller module identifies appropriate actions to remedy the situ-
ation. For this purpose, it is initialized with information on the
current load situation of all affected servers and workloads and
determines an appropriate action. For example, as a first step,
if a server is overloaded it determines a workload on the server
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Figure 1. Architecture of the Workload Migration
Controller

that should be migrated and as a second step it searches for a
new server to receive the workload. Furthermore, these rules
initiate the shutdown and startup of nodes. The architecture of
the workload migration controller is illustrated in Figure 1.

The implementation of the workload migration controller
uses the following rules. A server is defined as overloaded if its
CPU or memory consumption exceed a given threshold. Fur-
thermore, an underload situation occurs whenever the average
CPU and memory usage of all servers in the system drop be-
low a specified threshold. A fuzzy controller module identifies
overload and underload situations. It implements two separate
fuzzy controllers for each of these situations.

In an overload situation, the first fuzzy controller deter-
mines a workload to migrate away and the second controller
chooses an appropriate target server. The target server is the
least loaded server that has sufficient resources to host the
workload. If such a server doesn’t exist we start up a new
server and migrate the workload to the new one.

In an underload situation, the first fuzzy controller chooses
the least loaded server and tries to shut it down. For every
workload on this server, the second fuzzy controller determines
a target server. If a target cannot be found for a workload then
the shutdown process is stopped. In contrast to overload situa-
tions, this controller does not ignite additional servers.

Section 4.3 shows the impact of various combinations of
threshold values for overload and underload management. A
more complete description of the fuzzy controller and its rules
are presented in [23].

2.3 Policies

Our study considers the following management policies:

• MC – migration controller alone;
• React – placement controller with a reactive policy;
• React%20HR, React+2S – placement controller with a re-

active policy and headroom;
• Hist – placement controller with a historical policy;
• Hist+MC – integrated workload placement controller

with a historical policy and the workload migration con-
troller.

The MC policy corresponds to using the workload migration
controller alone for on-going management. The workload
placement controller causes an initial workload placement that
consolidates workloads to a small number of servers. The
workload migration controller is then used to periodically mi-
grate workloads to alleviate overload and underload situations.
The workload migration controller operates at the time scale
that measurement data is made available. In this paper, we as-
sume the migration controller is invoked every 5 minutes.

The React policy employs the workload placement con-
troller alone. The controller is invoked once per control in-
terval. However, we assume the control interval is larger than
for the migration controller, e. g., 4 hours instead of 5 minutes.
The controller uses recent workload demand trace information
from the current control interval to compute a more effective
workload placement for the next control interval.

React%20HR and React+2S are similar to the React policy.
However, React%20HR leaves 20% of the CPU capacity un-
used on each server to improve quality. We refer to the 20%
as headroom. The React+2S policy is similar to React but af-
ter consolidation two servers are added and the workloads bal-
anced across all the servers.

With the Hist policy, the workload placement controller
uses historical workload demand trace information from the
previous week that corresponds to the next control interval to
compute a more effective workload placement for the next con-
trol interval. The historical mode is more likely appropriate for
workloads that have repetitive patterns for workload demands.

Finally, we consider an integration of the placement and mi-
gration controllers. We refer to this as the Hist+MC policy.

2.4 Efficiency and Quality Metrics

To compare the long term impact of management policies
we consider several metrics. These include:

• total server CPU hours used and server CPU idle hours
used;

• normalized server CPU hours used and normalized server
idle CPU hours;

• minimum and maximum number of servers;

• the distribution of power usage in Watts;

• CPU and memory resource access quality per hour; and,

• the number of migrations per 4 hours1.

The total server CPU hours used corresponds to the sum
of the per workload demands. Total server idle CPU hours is
the sum of idle CPU hours for servers that have workloads as-
signed to them. The server idle CPU hours shows how much
CPU capacity is not used on the active servers. Normalized
values are defined with respect to the total demand of the work-
loads as specified in the workload demand traces. Note that if
normalized server CPU hours used is equal to 1 and normalized
server CPU hours idle are equal to 1.5 then this corresponds to
an average CPU utilization of 40%.

The minimum and maximum numbers of servers for a pol-
icy are used to compare the overall impact of a management
policy on capacity needed for server infrastructure. This deter-
mines the cost of the infrastructure.

Each server has a minimum power usage pidle, in Watts, that
corresponds to the server having idle CPUs, and a maximum
power usage pbusy that corresponds to 100% CPU utilization.
The power used by a server is estimated as

pidle +u · (pbusy − pidle)

where u is the CPU utilization of the server [7].

We introduce a new quality metric that is based on the num-
ber of successive intervals where a workload’s demands are
not satisfied. Longer epochs of unsatisfied requirements incur
greater penalty values as they are more likely to be perceived

1We explain the choice of the 4 hours later in this subsection.
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by those using applications. We define a penalty value for i

successive overloaded measurement intervals as i2. The sum
of these penalty values over all workloads is the quality value
for the metric. We use this approach for both CPU and mem-
ory. We divide the total quality value for an experiment by the
number of simulated hours to facilitate interpretation.

Finally, the number of migrations is the sum of migrations
caused by the workload placement and workload migration
controllers. A smaller number of migrations is preferable as
it offers lower migration overheads and a lower risk of migra-
tion failures. We divide the total number of migrations for an
experiment by the number of 4 hour intervals in the experi-
ment to facilitate interpretation. Four hours is used because
that is the chosen control interval for the workload placement
controller in our case study.

3 Host Load Emulator

Predicting the long term impact of integrated management
policies for realistic workloads is a challenging task. We em-
ploy a flexible host load emulation environment to evaluate
many management policies for resource pools in a time effec-
tive manner.

The architecture of the host load emulation environment is
illustrated in Figure 2. The emulator takes as input historical
workload demand traces, an initial workload placement, server
resource capacity descriptions, and a management policy. The
server descriptions include numbers of processors, processor
speeds, real memory size, and network bandwidth. A routing
table directs each workload’s historical time varying resource
requirement data to the appropriate simulated server. Each
simulated server uses a fair-share scheduling strategy to deter-
mine how much of the workload demand is and is not satisfied.
The central pool sensor makes time varying information about
satisfied demands available to management controllers via an
open interface. The interface also is used to integrate different
controllers with the emulator without recompiling its code.

Controllers periodically gather accumulated metrics and
make decisions about whether to cause workloads to migrate
from one server to another. Migration is initiated by a call
from a controller to the central pool actuator. In our emula-
tion environment this causes a change to the routing table that
reflects the impact of the migration in the next simulated time
interval. During the emulation process the metrics defined in
Section 2.4 are gathered. Different controller policies cause
different behaviors that we observe through these metrics.

4 Case Study

This section evaluates the effectiveness of the proposed
management policies. Section 4.1 describes the workloads we
consider for the study and specifies the configuration of blade
and server resource pool infrastructures. Section 4.2 evalu-
ates the sensitivity of results to the choice of migration over-
head and justifies the choice used in our study. The impact of
various threshold values for the workload migration controller
are explored in Section 4.3. This guides our choice of thresh-
olds for the remainder of the study. Next, Section 4.4 decides
upon an appropriate control interval for the workload place-
ment controller. This section assumes perfect knowledge of
future workloads to decide upon ideal workload placements.
This gives us a baseline for capacity and quality that we strive
for using the management policies. The impact of the man-
agement policies on performance, quality, and power are dis-
cussed in Section 4.5. Finally, Section 4.6 shows the impact
of limiting the workload placement controller’s migrations on
performance, quality, and the number of migrations.

4.1 Workloads and Emulated Resource
Pools

We use the host load emulation environment to evaluate the
integration of workload placement and migration controllers
for managing resource pools. The evaluation uses real-world
workload demand traces for 138 SAP enterprise applications.
Traces captures average CPU and memory usage as recorded
every 5 minutes for a three month interval. The host load em-
ulator operates on this data walking forward in successive 5
minute intervals. The workloads typically required between
two and eight virtual CPUs and had memory sizes between
6GB and 32GB. One workload had a memory requirement of
57GB. In our simulations, we scale the CPU demands in the
traces by a factor of 1.5 to reflect a target CPU allocation that
corresponds to a utilization of 0.66 which is typically desirable
to ensure interactive responsiveness for enterprise workloads.
Quality metrics are reported with respect to these allocations.

We consider two different resource pool configurations:

• Blades pool consists of blades having 8 x 2.4-GHz pro-
cessor cores, 64 GB of memory, and two dual 1 Gb/s Eth-
ernet network interface cards for network traffic and vir-
tualization management traffic, respectively. Each blade
consumes 378 Watts when idle and 560 Watts when it’s
fully utilized.

• Server pool consists of servers having 8 x 2.93-GHz pro-
cessor cores, 128 GB of memory, and two dual 10 Gb/s
Ethernet network interface cards for network traffic and
virtualization management traffic, respectively. A server
consumes 695 Watts when idle and 1013 Watts when it’s
fully utilized.

We note that the power values for the blades include enclosure
switching and fan power. Neither of these estimates includes
the power of external switching.

4.2 Impact of the Migration Overhead Using
a Workload Placement Controller

This section considers the impact of CPU overhead caused
by migrations. Many virtualization platforms incur virtualiza-
tion overhead. Virtualization overhead depends on the type of
the virtualization and its implementation specifics. Typically,
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Figure 3. Migration Overhead with Blades

the “amount” of CPU overhead is directly proportional to the
“amount” of I/O processing [4][10]. A migration requires the
memory of a virtual machine to be copied from the source
server to a target server. Supporting the migration causes CPU
load on both the source and target servers. The emulator re-
flects this migration overhead in the following way. For each
workload that migrates, a CPU overhead is added to the source
and destination servers. The overhead is proportional to the es-
timated transfer time based on the memory size of the virtual
machine and the network interface card bandwidth. It is added
to the source and destination servers over a number of intervals
that corresponds to the transfer time. We assume that we use
no more than half of the bandwidth available for management
purposes, i. e., one of the two management network interface
cards. For example, if a workload has 12 GB memory size and
the networking interface is 1Gb/s then additional CPU time is
used for migrating the workload is (Cmigr ·12 GB)/1 Gb, where
Cmigr is the coefficient of migration overhead.

To evaluate an impact of the additional CPU overhead
caused by I/O processing during the workload migrations, we
employ the workload placement controller with a 4 hour con-
trol interval. All workloads migrate at the end of each con-
trol interval. Figure 3 shows the results for the blade environ-
ment using migration overhead coefficient Cmigr varied from
0.25 to 2. The figure shows several different metrics. These
include the normalized CPU hours used, the normalized idle
CPU hours, and the CPU quality penalty per hour.

A higher migration overhead requires more CPU resources.
The impact on CPU hours used is only noticeable in Figure 3
when Cmigr ≥ 1. The CPU quality value, with logarithmic scale
on the right of the chart, clearly degrades for Cmigr ≥ 1. In gen-
eral, we find our results to be insensitive to values of Cmigr in
the range between 0.25 to 1.0. We choose Cmigr = 0.5 used dur-
ing a workload migration for the remainder of the study. This
value is not unreasonable because the network interface cards
we consider support TCP/IP protocol offloading capabilities.

We omit a similar figure for the server pool. The migration
overhead has even less impact because of the 10 Gb/s network
cards that have correspondingly lower estimated transfer times.

4.3 Workload Migration Controller Thresh-
olds

In this section, we evaluate threshold values for the work-
load migration manager’s overload and underload controllers.
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using Blades

We perform a sensitivity analysis to consider the following
questions. What are the suitable thresholds for migrating work-
loads from the overloaded servers? When should the controller
start consolidating workloads from the lightly-loaded servers
in order to shut them down? For all simulations we use the
workload placement controller to determine an initial workload
placement but subsequently we only use the workload migra-
tion controller. The workload migration controller works with
5 minute data to initiate workload migrations, shutdown and
startup servers as required.

First we aim to evaluate an impact of varying overload

thresholds. Figure 4 shows the impact of these pairs on the
average number of migrations per 4 hour interval. The value
is illustrated using a logarithmic scale on the right of the chart.
The lower the overload thresholds the more aggressive the mi-
gration controller is when deciding whether to migrate work-
loads. We consider CPU/Memory threshold pairs that range
from (75%,85%) through to (95%,97%). The CPU thresh-
old has the most impact because CPU demands change more
rapidly than memory demands. As we move to the right of the
chart the controller identifies fewer overloads and as a result
the number of migrations per 4 hours decreases from a high
of 122 to a low of 8.3. Interestingly, we also see the CPU
quality penalty decrease as we move to the right. On the left,
CPU quality is poor due to a hysteresis between the overload
and underload controllers. As the overload controller migrates
workloads, sometimes adding servers, the underload controller
identifies underload conditions forcing the removal of servers.
This thrashing behavior introduces additional migration over-
heads thereby lowering quality. Furthermore, by increasing the
thresholds the peak number of servers needed varies from 34
on the left to 32 on the right. Finally, we note that the memory
demand changes very slowly for the workloads. As a result we
are able to set the memory threshold to be high without any
memory quality penalty.

In the experiments above, there are two controllers: over-
load and underload controllers. While we vary thresholds for
the overload controller as discussed above, the underload con-
troller operates as follows: it considers a server as a candidate
for being freed and shut down when its average CPU load drops
below 50% CPU and the average memory load is below 80%.

From results not illustrated, the impact of the overload
thresholds in the server based environment is very similar. We
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Figure 5. Aggressiveness of MC for Underload
using Blades

conclude that once high enough the exact level of the thresh-
olds does not have much impact on the quality and resource
utilization because in most cases when bursts in demands are
too high they exceed all the chosen thresholds. The migra-
tion controller can’t prevent all situations where some resource
demands are not satisfied. To summarize, for both blade and
server scenarios, we choose overload values of (85%,95%) to
avoid hysteresis.

We now consider impact of varying underload thresholds.
For this sensitivity analysis we use the chosen overload thresh-
olds of (85%,95%) for the overload controller. Figure 5 con-
siders underload thresholds that range from (20%,80%) up to
(60%,80%). If the CPU and memory load drop below the spec-
ified thresholds, the migration controller tries to migrate the
workloads off the least loaded server and shuts it down. In con-
trast to the overload controller, the underload controller does
not ignite additional servers. As expected the figure shows that
low CPU thresholds of 20% or 30% cause high idle CPU hours.
Increasing the CPU threshold above 50% doesn’t reduce CPU
usage because the blades become memory bound.

From results that are not shown, the server environment also
benefits most from a CPU threshold of 50%. Beyond that there
are fewer idle CPU hours but the CPU quality penalty begins
to increase. The server environment is not memory bound so
the memory threshold has no impact.

To summarize, for the remaining experiments we choose
the following thresholds for CPU and memory utilization. The
overload thresholds are (85%,95%). The underload thresholds
are (50%,80%). These are used for both blade and server in-
frastructure scenarios.

4.4 Performance, Quality, and Power As-
suming Perfect Knowledge

In this section, we consider an ideal workload placement
strategy. Figure 6 shows the results of an emulation where we
use the workload placement controller to periodically consoli-
date the 138 workloads to a small number of blades in the re-
source pool. For this scenario, we assume the workload place-
ment controller has perfect knowledge of the future, for a given
time period, and chooses a workload placement such that each
blade is able to satisfy the peak of its workload CPU and mem-
ory demands. The figure shows the impact on capacity require-
ments of using the workload placement controller once at the
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start of the three months, and for cases with a control interval of
3 weeks, 1 week, 1 day, 4 hours, 1 hour, and 15 minutes. The
figure shows that re-allocating workloads every 4 hours cap-
tures most of the capacity savings that can be achieved, i. e.,
with respect to reallocation every 15 minutes. The 4 hour and
15 minute scenarios required a peak of 30 servers and the other
scenarios had peaks between 30 and 34 servers. For the 4 hour
scenario, we note that the normalized server CPU used and idle
are approximately equal giving an average utilization close to
50% over the three month period.

The CPU penalty in Figure 6 illustrate the hourly quality
metric for CPU. Recall, that the values are shown using a log-
arithmic scale. For the 4 hour control interval, the hourly CPU
quality value was 2.2. The penalties are due the migration over-
heads, which, even in this ideal scenario, were not considered
by the workload placement controller when deciding workload
placements. The total CPU quality value over the three months
was 2250. Table 1 gives a detailed breakdown of the violations.

The distribution of the Watts used is shown in Figure 7. We
note that the power consumption of the 15 minutes, 1 hour,

Interval Duration Total Number Average Number

5 Minute 658 7.8 per Day

10 Minute 206 2.4 per Day

15 Minute 49 4 per Week

20 Minute 9 3 per Month

25 Minute 3 1 per Month

30 Minute 3 1 per Month

Table 1. CPU Quality Violations for Blades As-
suming Perfect Knowledge
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Figure 9. Power Consumption for Servers As-
suming Perfect Knowledge

and 4 hour scenarios are pretty close to each other. The 15
minute case consumes more power than the 1 hour simulation
even though the workloads are packed more densely and fewer
servers are used on average. Re-shuffling the workloads every
15 minutes significantly increases the number of migrations
and hence migration CPU overhead and power consumption.
For workload placement control intervals longer than 1 day,
more servers are used resulting in higher power consumption.

Figure 8 shows the results of an emulation for the server
resource pool assuming perfect knowledge. Again the 4 hour
workload placement control interval provides a good trade-off
between capacity and quality. It provides for an average CPU
utilization of 66% with a nearly perfect hourly CPU quality
pentalty value of 0.4. The outcome for the server configura-
tion is interesting: it is able to utilize the CPU more efficiently
than the blade configuration. This outcome is due to the server
configuration having twice the memory, i. e., 128GB instead of
64GB. SAP applications are very memory-intensive. Servers
with larger memory sizes enable the consolidation of more ap-
plications to a smaller number of servers. The blade configura-
tion is memory limited and as a result is less able to make full
use of its CPU capacity, i. e., nearly 47% on average. While
CPU quality and CPU utilization are higher for the server pool
than for the blade pool, Figure 9 shows that more power is
needed for the server pool. From the perspectives of efficiency
and quality, the server based pool has an advantage. However,
blades appear to have a power advantage. We consider these
trade-offs in more detail in the next subsection along with how
much of these ideal advantages we are able to achieve in prac-
tice without assuming perfect knowledge.
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Figure 10. Management Policies for Blade Pool
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Figure 11. Management Policies for Server Pool

4.5 Performance, Quality, and Power
Achieved by Management Policies

We now consider the impact of several different workload
management and workload migration controller policies for
managing the resource pool. Figure 10 shows results for em-
ulations of the blade infrastructure. The ideal scenario corre-
sponds to the 4 hour results from Figure 6 that shows ideal ca-
pacity and quality behavior. We always consider 4 hour inter-
vals for the workload placement controller. The management
policies are described in Section 2.3.

The use of a workload migration controller alone (MC) is
most typical of the literature [19][30]. The MC policy does
very well as a starting point. Figure 10 shows that the use of
a workload placement controller in a reactive mode does not
provide any advantage with respect to the workload migration
controller. This is because it fails to anticipate the large vari-
ance in workload demands, for details see [8], even if we add a
20% CPU headroom or two extra servers. The historical work-
load placement controller does better as it anticipates changes
typical of historical demand patterns, but it still uses more ca-
pacity and offers lower quality. However, by integrating the
historical workload placement and the migration controllers,
the hourly CPU quality is improved from a penalty of 3.3 and
2.0 for the workload placement and migration controllers sep-
arately, respectively, to 1.6 for the integrated controllers. This
is an improvement of 20% over the migration controller alone.
The corresponding ideal case, i. e., assuming perfect knowl-
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Figure 13. Power Consumption for Servers

edge and a 4 hour control interval, had an hourly CPU qual-
ity of 1.1. The integrated controllers also use slightly less re-
sources than either controller separately and they use only 11%
more CPU used and idle capacity than the corresponding ideal
case. The minimum and maximum numbers of servers used
during the emulated period was 25 and 33. The ideal case used
between 16 and 30 servers.

Figure 11 shows the same policies for the server pool. The
integrated approach provides even better results. It improves
hourly CPU quality penalty from 21.9 and 8.3 for the workload
placement and migration controllers separately, respectively, to
1.2 for the integrated case. The hourly CPU quality penalty for
the 4 hour control interval for the ideal server pool case was
0.4. CPU quality is a bigger issue for the server pool as com-
pared to the blade pool because the servers are not as memory
bound. For this case, the integrated controllers use slightly
more resources than either controller alone. During the emu-
lated period they used between 14 and 22 servers while in the
ideal case between 9 and 19 servers were used. They used a
total of only 18% more CPU used and idle capacity than the
corresponding ideal case.

Finally, we note that when assuming perfect knowledge, the
Hist+MC policy offered an average CPU utilization of 47%
and 66% for the blade and server pool scenarios, repectively.
Without perfect knowledge we are able to achieve similar qual-
ity values with CPU utilizations of approximately 42% and
56%, respectively. Figures 12 and 13 show the distribution
of aggregate power usage for the blades and servers in the
pools, respectively. The React case has power usage closest
to the ideal scenario, but has very poor CPU quality. The peak

Scenario Peak Average

Blade ideal(4 hour) 13740 10560

Blade Hist+MC 14616 11592

Server ideal(4 hour) 17016 11760

Server Hist+MC 18960 13536

Table 2. Power Usage in Watts per 5 Minute In-
terval
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Placement for Blade Pool

and average power usage for the ideal and integrated controller
cases are summarized in Table 2.

We note that additional infrastructure is still needed for
these environments. An additional two Ethernet switches are
needed to connect the blade enclosures with 10Gb/s links.
An additional 5 Ethernet switches are needed to connect the
servers with 10Gb/s links. In total we estimate the peak power
requirements for the blade and server alternatives, using the
Hist+MC management policy, to be 16800W and 24500W, re-
spectively, and the average power requirements to be 13800W
and 19000W, respectively. The approximate hardware street
prices for such hypothetical alternatives, at the time of writ-
ing, was 100 thousand US dollars more for the blade case, not
including factors such as software, support and management
costs. The blade infrastructure costs a little more but uses only
two thirds the peak power and 70% of the average power. The
server infrastructure, while using more power, may be more
flexible as it is less memory bound.

4.6 Limiting Migrations For Workload
Placement

In the previous simulations we didn’t aim to reduce the
number of migrations for the workload placement controller.
We now apply the new multi-objective approach for Capman,
as described in Section 2.1, to limit migrations and observe the
impact on capacity, quality, and migration metrics. For this
study we use the Hist+MC management policy as it appears to
be the best policy. Figure 14 shows the results for the blade
resource pool. In the figure we vary the percentage of work-
loads that it is desirable to migrate from 5% to 100%. The re-
sults show that introducing any desired limit at all causes much
fewer migrations. Without a limit, the average number of mi-
grations every 4 hours was 153.8. When limiting the number
of migrations this drops to 45.3, including both the placement
and migration controllers, which is much more comparable to
the migration controller alone which had 20.8 migrations. We
note that by limiting migrations the capacity used increases
only slightly, due to less efficient workload placements, but
the CPU quality improves further to 0.95, where the ideal was
1.1. Note that emulation in the ideal scenario were permitting
far more migrations per 4 hour control interval. The increase
in CPU quality is due to the lower impact of migration CPU
overheads.
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5 Related Work

Server consolidation is becoming an increasingly popular
approach in enterprise environments to better utilize and man-
age systems. Manufacturers of high-end commercial servers
have long provided hardware support for server consolidation
such as a logical partitioning and dynamic domains [14][16].
Although virtualization has been around for more than three
decades, it has found its way into the mainstream only recently
with a variety of solutions – both commercial and open source
– that are now available for commodity systems. Many enter-
prises are beginning to exploit shared resource pool environ-
ments to lower their infrastructure and management costs. The
problem of efficient workload placement and workload man-
agement in such environments is in a center of attention for
many research and product groups.

In our work, we chose to represent application behav-
ior via workload demand traces. Many research groups
have used a similar approach to characterize application be-
havior and applied trace-based methods to support what-
if analysis in the assignment of workloads to consolidated
servers [2][26][20][21][23][5]. A consolidation analysis pre-
sented in [2] packs existing server workloads onto a smaller
number of servers using an Integer Linear Programming based
bin-packing method. Unfortunately the bin-packing method is
NP-complete for this problem, resulting in a computation in-
tensive task. This makes the method impractical for larger con-
solidation exercises and on-going capacity management. There
are now commercial tools [12][15][3][25] that employ trace-
based methods to support server consolidation exercises, load
balancing, ongoing capacity planning, and simulating place-
ment of application workloads to help IT administrators im-
prove server utilization.

We believe the workload placement service we employ has
advantages over other workload placement services described
above. It is supported by a genetic algorithm that improves
upon greedy workload placement solutions. Furthermore, our
workload placement methods go further than the other methods
by addressing issues including classes of service and place-
ment constraints. For this paper, we extended the approach to
minimize migrations over successive control intervals. Some
researchers propose to limit the capacity requirement of an ap-
plication workload to a percentile of its demand [26]. This
does not take into account the impact of sustained performance
degradation over time on user experience as our required ca-
pacity definition does. Others look only at objectives for re-
sources as a whole [23] rather than making it possible for each
workload to have an independently specified objective.

Recently, virtualization platforms such as VMware and
Xen [6][28] provide the ability to dynamically migrate VMs
from one physical machine to another without interrupting ap-
plication execution. They have implemented “live” migra-
tion of VMs that results in extremely short downtimes rang-
ing from tens of milliseconds to a second. VM migration has
been used for dynamic resource allocation in Grid environ-
ments [22][24][9]. In contrast, we focus on data center en-
vironments with stringent quality of service requirements that
necessitate design of highly responsive migration algorithms.

Wood et al. [30] present Sandpiper, a system that automates
the task of monitoring virtual machine performance, detect-
ing hotspots, and initiating any necessary migrations. Sand-

piper implements heuristic algorithms to determine which vir-
tual machine to migrate from an overloaded server, where to
migrate it, and a resource allocation for the virtual machine on
the target server. Sandpiper implements a black-box approach
that is fully OS- and application-agnostic and a gray-box ap-
proach that exploits OS- and application-level statistics. Sand-
piper is closest to the migration controller presented in our pa-
per though they implement different migration heuristics.

VMware’s Distributed Resource Scheduler [27] also uses
migration to perform automated load balancing in response to
CPU and memory pressure. DRS uses a user space applica-
tion to monitor memory usage similar to Sandpiper, but un-
like Sandpiper, it does not utilize application logs to respond
directly to potential application service level violations or to
improve placement decisions.

Raghavendra et. al. [19] integrate sophisticated aspects of
power and performance management for resource pools. They
present a simulation study that optimizes with respect to power
while minimizing the impact on performance. The results from
simulations suggest that for integrated controllers between 3%
and 5% of workload CPU demand units are not satisfied with
their approach. Unsatisfied demands are not carried forward in
their simulation. With our host emulation approach, we carry
forward demands and focus more on per-workload quality met-
rics that characterize epochs of sustained overload. With our
experiments, more than 99.9% of workload demands were sat-
isfied for all cases except React, which was 99.8%. In [19],
the authors conclude that the 3% to 5% performance degrada-
tion is acceptable to save power. We concur, but suggest this is
only true in exceptional circumstances when access to power
is degraded. Otherwise workload quality of service must be
maintained to satisfy business objectives.

In our work, to further improve efficiency and application
quality of service, we manage workloads by integrating the
workload placement approach with a workload migration con-
troller. Our simulation results show that such integrated ap-
proach provides unique performance and quality benefits.

There is a new research direction that has emerged from
studying server consolidation workloads using a multicore
server design [17][18]. The authors show, across a variety
of shared cache configurations, that a commercial workload’s
memory behavior can be affected in unexpected ways by other
workloads. In our work, we do not consider impact of cache
sharing, while it is an interesting direction for future research.

6 Conclusions and Future Work

In this paper we considered the integration of workload
placement and workload migration controllers to support re-
source pool management. We enhanced the Capman workload
placement tool to better act as a controller. A new host em-
ulation environment was developed to help evaluate the long
term impact of management policies and combinations of con-
trollers on various quality metrics using historical workload
demand traces from real enterprise workloads. A new quality
metric based on the duration of sustained overloads has been
introduced to better evaluate the impact of resource sharing on
workloads. The approach was applied to both emulated blade
and server resource pool infrastructures.

Our results show that the integration of controllers outper-
forms the use of either controller separately. For the blade
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pool, the integrated controllers offered CPU quality that was
20% better than for either controller separately, while using
only 11% percent more capacity than the corresponding ideal
case. For the server resource pool, the hourly CPU quality
penalty was nearly 7 times better than either controller sepa-
rately, while using 18% percent more capacity than the corre-
sponding ideal case. Because the blades were memory bound
for the workloads in our study, they had lower CPU quality
penalties per hour. In fact, the migration controller did a very
good job on its own for the blade pool, reacting mostly to mem-
ory quality violations. The impact of the integrated controllers
was most clear for the server pool where load was more equally
balanced between CPU and memory and where rapidly chang-
ing CPU contention was responsible for more migrations.

We showed that for the workloads under study, the blade
based resource pool would use only 2/3 the peak power of the
server based resource pool and about 30% less power in total.
Based on street prices at the time of writing, the blade pool
would cost approximately one hundred thousand US dollars
more but would have lower power costs than the server pool.
However, the server based resource pool is less memory bound
and is more flexible in terms of resource sharing and support-
ing workloads with larger memory requirements.

The multi-objective enhancements to Capman helped to re-
duce workload placement controller initiated migrations by a
factor of 3.4. The resulting workload placement controller ini-
tiated only 33% more migrations than the migration controller.

Our future work includes evaluating other instances of con-
trollers and management policies, and to develop management
policies that react well to more kinds of workloads and differ-
ent kinds of simulated failures. Finally, we also plan to con-
sider a greater variety of workloads.
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