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Abstract—Task assignment and subsequent schedule synthesis
in distributed real time systems is a problem that arises in many
fields of industry, such as factory automation or the automotive
or avionic sector. Monolithic and bus-based approaches, while
easy to schedule in the aforementioned context, are giving way
to more flexible hardware environments, either because of in-
creased pressure for flexibility (factory automation) or hardware
consolidation (automotive and avionics). This paper presents
an approach for synthesizing schedules of a distributed hard
real time workflow based on existing heuristics. This approach
can find a solution for over 85% of all feasible tested system
configurations while being orders of magnitude faster than an
approach based on a satisfiability solver. We obtained these
results by simulating over 1 million different workflows and
system configurations.

I. INTRODUCTION

Embedded systems in application domains like factory
automation or the automotive and avionic industry have shifted
towards complex hardware architectures of multiple networked
processing units. When developing software for such a system,
decomposing the application into a set of communicating tasks
is a widespread practice [1], [2]. Synthesizing schedules for
each processor in such a system is a problem that is hard in
multiple respects: First, it is hard in terms of the real-time
requirements, meaning that its timing constraints are derived
from the physical world and any violations thereof may result
in catastrophic outcomes for the system or its users. Second,
it is a hard problem regarding its computational complexity.
Even the simpler problem of scheduling tasks with release
times and deadlines on a single processor is already a NP-hard
problem [3]. Third, these systems are hard to develop from
an engineering standpoint. Developers often have to integrate
legacy systems, deal with shared communication media and
lack tools that can be used to explore the implications of
task placements or timing behavior early in the development
process or that can be used for automated CPU and commu-
nication schedule synthesis in large problem instances.

A “distributed network of tasks” model for development of
embedded real-time systems can be realized through a service-
oriented architecture (SOA) [1] or model driven approaches
[2]. The problem of schedule synthesis arises when the appli-
cation is deployed, at the latest. Scheduling of tasks in real-
time embedded systems is a well studied problem in literature
[4] [5]. However, combined CPU and message scheduling is a

computationally hard problem with ongoing research efforts.
Finding a solution with exhaustive search through satisfiability
(SAT) solvers [2] or branch-and-bound techniques [6] is an
option to tackle NP-hard problems like this.

Our key argument in this paper is that the process of
synthesizing both CPU and communication schedules can
be achieved through a combination of deadline assignment
heuristics [7] [8] and scheduling heuristics [9] in the large
majority of cases. Since the heuristics can be completed in
mere milliseconds, as opposed to the long computing times
required by SAT solvers, they enable engineers to interactively
explore the implications of placing tasks on different machines
in a distributed real-time environment. Section II gives a brief
overview of the related work before we outline our architecture
and the chain of heuristics in Section III. At this point we
rely on heuristics from the literature, which we explain in
Section IV. The feasibility of our approach hinges on whether
or not a combination of heuristics is able to generate valid
schedules for a given hard real-time workflow on a given dis-
tributed hardware environment. This is extensively evaluated
in Section V before we conclude the paper in Section VI.

The contributions of this paper are a detailed comparison
of popular deadline assignment heuristics against satisfiability
solvers over a wide range of task graph layouts. Furthermore,
we demonstrate the feasibility of deriving local schedules from
a global task-graph based on a combination heuristics.

II. RELATED WORK

Voss and Schätz [2] use SMT-solvers to find both a suit-
able task placement and schedules for each device. We also
formulated our scheduling problem for SMT-solvers to obtain
a definitive answer for the solvability of our test cases. The
SMT-Formulations are given in Section IV-C. In Section V,
we evaluate a heuristics based approach that is several orders
of magnitude faster. Voss and Schätz target systems with a
bus-based communication channel that has a fixed bound on
latency, whereas our model adopts a fine-grained communica-
tion model on the level of the individual TDMA-slots.

Our approach applies heuristics for local deadline assign-
ment before using scheduling heuristics on the output of the
former. Kao and Garcia-Molina [7] propose several heuristics
for deadline assignment in soft real-time systems that are in
widespread use. Our approach includes these heuristics as



well. Their heuristics are presented for linear parallel task
graphs, meaning tasks that follow a multi-step pipeline where
each step can consist of several tasks than are executed in
parallel. This differs from the general directed acyclic graphs
(DAGs) used in our work and we present the modifications in
Section IV-A.

Di Natale and Stankovic [10] introduced a technique for
assignment of intermediate deadlines in hard real-time systems
based on analysis of the critical path the task graph with
several metrics. Jonson and Shin [8] extended the slicing
technique [10] with additional adaptive metrics. We imple-
mented all of their heuristics in our prototype and evaluate
them against each other.

Marinca et al. [11] proposes two new algorithms for
deadline assignment and online admission control of real-
time flows. In contrast to the works previously mentioned,
it focuses on unicast flows from a sender to a destination
instead of general DAGs, making it not directly applicable to
our application model. Theoretically, a partitioning approach
[12] could be used to separate the task graphs into parallel
flows, incurring additional processing overhead and misspent
slack during deadline assignment.

A different approach would be to synthesize a suitable
network topology for a given set of schedules [13]. We view
the network topology and slot-assignment as constant. This
allows for integration with legacy applications running on the
same network by marking the TDMA slots used by the legacy
application as unavailable during planning. Existing processor
schedules can be integrated by introducing dummy tasks with
fixed deadlines and release times that block the CPU when it
is assigned to the legacy schedule.

III. FROM REAL-TIME WORKFLOWS TO CPU AND
COMMUNICATION SCHEDULES

The use cases for our approach comprise distributed, em-
bedded, hard real-time systems such as factory automation
systems or applications in the automotive domain. We chose
an adaptive cruise control system as a running example:
In our example a 3D-vision system is used together with
a radar system to measure the distance to leading vehicles
and regulate acceleration and deceleration accordingly. The
resulting workflow is shown in Figure 1a. This only covers
the functional dependencies and modular decomposition of
the system so far. The overall period and global deadline of
the workflow are derived from physical requirements and / or
control theory. Once the automation task has been modeled
according to the modular decomposition from Figure 1a, these
global deadlines are attached to the workflow, as shown in
Figure 1b. Because the target area of embedded systems often
requires platform specific implementations for each functional
module and the modules themselves make use of sensors and
actuators the assignment of jobs to machines can be viewed
as a design-time decision performed by a skilled engineer. For
a given assignment, the worst case execution time (WCET)
of each task in the workflow can be measured or estimated.
This leads to the situation shown in Figure 1c where the
global period and deadline of the workflow are known and
the machine placement and WCET of each workflow task
have been determined. Afterwards, the heuristics take over:
First, local timing constraints are derived from the global
end-to-end deadline, taking into account the task placement
on different machines and the TDMA-slot assignment in the
network connecting the devices. The individual workflow tasks
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Fig. 1: A complex workflow in an adaptive cruise control scenario
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Fig. 2:
Example graph

Node ED ED* EQS EQF PD Slice Pure Slice Norm Slice Adapt-G Slice Adapt-L

A 7.00 ms 7.50 ms 3.67 ms 4.00 ms 3.33 ms 3.50 ms 3.75 ms 3.67 ms 3.77 ms
B 7.00 ms 7.00 ms 3.67 ms 4.00 ms 3.33 ms 3.50 ms 3.75 ms 3.67 ms 3.77 ms
C 9.50 ms 9.50 ms 7.83 ms 9.00 ms 6.67 ms 7.50 ms 8.75 ms 8.08 ms 7.83 ms
D 9.50 ms 10.00 ms 7.83 ms 9.00 ms 6.67 ms 10.00 ms 10.00 ms 10.00 ms 10.00 ms
E 10.00 ms 10.00 ms 10.00 ms 10.00 ms 10.00 ms 10.00 ms 10.00 ms 10.00 ms 10.00 ms

TABLE I: Deadlines assigned to the tasks of the example graph shown to the left. Overall workflow
deadline was 10ms, individual task deadlines are shown below the task name in the graph.

are automatically annotated with these constraints resulting in
the deadlines shown in Figure 1d. What remains is essentially
a distributed scheduling problem in which suitable start times
for the jobs on each machine have to be determined to satisfy
the global timing requirements. In the final step, the system is
verified through discrete event simulation, the output of this
simulation step for our example is shown in Figure 1e.

It is apparent that in communicating systems with tight tim-
ing requirements the network configuration plays an essential
role in finding valid schedules. We cannot simply place an
upper limit on the communication delay and add it to the
WCET of each task as that would prevent us from finding
a feasible schedule in Figure 1e and many other situations.
Instead, timing information about each individual TDMA slot
has to be considered during the schedule synthesis. As shown
in our example, the slots may be distributed irregularly, for
example when an application is sharing the same communica-
tion medium with a legacy application and was only granted
the time slots that were previously unused. Another exam-
ple would be communication protocols like Flexray which
set aside a portion of each cycle for lower priority traffic,
rendering the corresponding time slots unsuitable for hard real-
time use. We therefore consider the available TDMA slots as
an input to our schedule synthesis instead of trying to find a
suitable slot assignment for a given schedule.

The problem is NP-hard, leaving two divergent approaches:
exhaustive search through satisfiability solvers or employing
heuristics in the hope that they will lead to a feasible result.
Both approaches view the automation task as a network of
communicating tasks which are annotated with global con-
straints. We show that a combination of deadline assignment
and scheduling heuristics delivers feasible schedules with a
high chance.

IV. HEURISTICS AND SMT FORMULATION

This section provides an intuitive, high level overview of
the employed deadline assignment heuristics and formulation
of the satisfiability problem. For readability reasons, detailed
formal definitions for are postponed to Appendix A. Our
previous work [14] has identified Pott’s heuristic [9] as the best
choice for subsequent scheduling. Non-preemptive Earliest
Deadline First (EDF) is a good alternative.

In general the problem is modeled as a directed, acyclic
graph of tasks which we call a workflow. The edges in the
graph represent data flow between individual tasks. Each task
is annotated with a worst case execution time (WCET). The
range of possible start and completion times of the task can be

constrained by setting a task release time and deadline. Each
workflow is annotated with a global deadline and a period
after which the workflow is repeated.

The overall goal is to find a suitable task ordering for a given
assignment of tasks to machines. Tasks on a single machine
cannot overlap or be preempted. Both local deadlines (on the
task level) and release times as well as global deadlines (on
the workflow level) have to be fulfilled by this task ordering.
A task cannot be started before all transitively preceding tasks
have been completed.

A. Simple Heuristics

The heuristic approach solves the task ordering problem in
two steps. The workflow, with its global deadline and period,
and a mapping of tasks to machines are the input for the
heuristic approach. In the first step a deadline assignment
heuristic attaches local deadline and release-time constraints
to each task. Afterwards, Potts’ heuristic generates a task
ordering which is validated through simulation. This section
describes the employed deadline assignment heuristics. The
first set of heuristics we implemented was described by Kao
and Garcia-Molina [7] for soft real-time tasks with serial-
parallel dependencies. We adapt these heuristics to general
DAGs by grouping tasks together by their levels, meaning the
distance of a task from a root or leaf of the workflow graph.
See Appendix A for more details. Figure 2 shows an example
workflow with a deadline of 10ms and a total execution time
of 5ms. The deadlines generated by the heuristics described
in this section are shown in Table I.

The simplest heuristic is called Effective Deadline (ED),
which assigns a deadline to each task that is equal to the global
deadline minus the execution time of all succeeding levels. It
is greedy in the sense that it assigns all available slack to
the root tasks of the DAG. Slack is defined as the time span
between task release time and deadline minus the task’s or
level’s WCET. This can be seen in the example table where
all of the available slack (5ms) is assigned to tasks in the
first level from the top (A and B) which means the following
levels, comprising of tasks C and D in level 2 and task E
in level 3, are assigned no slack at all. Equal Slack (EQS)
tries to avoid ED’s bias by assigning equal amounts of slack
to the individual levels of a workflow. In the running example
there are 5ms of total slack available which are distributed
over 3 levels, leaving 1.66ms per level. These are added
to the WCET of all tasks in the level plus the deadline of
the previous level. Equal Flexibility (EQF) follows a similar
strategy, but it scales the amount of slack assigned to a job



proportionally to its length. Larger levels receive more slack
in EQF. In the example, level 1 receives 40% of the slack
because it makes up 40% of the total WCET in the workflow.
The Proportional Deadline (PD) heuristic follows a different
strategy. After dividing the graph into n levels it divides the
global deadline into n parts of equal length which are assigned
to each level. In the example graph with 3 levels, the second
level from the top is assigned a deadline that corresponds to
2
3 of the global deadline.

B. The Slicing Technique

Jonsson and Shin [8] presented a set of deadline assignment
heuristics based on the slicing technique, which works by
identifying the critical path through a DAG based on one of
several path metrics. The global deadline is then distributed by
assigning non-overlapping execution windows (slices) to the
jobs on the critical path. Algorithm 1 in the Appendix shows
the deadline distribution algorithm as defined in the original
paper. In the following we will outline the different metrics
used for finding the critical path in a DAG.

The Pure (Slice-Pure) metric is similar to the EQS heuristic
in so far as it distributes the available slack equally between all
jobs on the critical path, analogously, the Normalized (Slice-
Norm) metric is similar to the EQF heuristic and scales the
assigned slack with the task length. Table I demonstrates
the outcome: The slicing technique will identify the path
A ≺ C ≺ E as the critical path in the workflow. The total
slack available on this path is 6ms, which results in 2ms
of slack being allotted to tasks A,C,E. The next critical
path in the graph is B ≺ D where 9ms of slack would be
available. However, B must still finish before C, resulting in
the same deadline (3.5ms) being assigned to B and all of
the leftover slack being added to D. Slice-Norm works after
the same principle but the assigned slack is scaled by the
task length. The Globally Adaptive (Slice Adapt-G) metric
only scales the task execution time if the length of a job is
over a certain threshold. As in the original paper, we use the
mean task execution time [8]. In the globally adaptive metric,
the length of a task is then scaled by a constant factor that
depends on the number of machines, on which the workflow
is executed, and a global metric that measures the degree
of parallelism in the workflow. In the example case, tasks
A and C would be scaled by the factor 1.5 (for details see
Appendix A or the original paper [8]), because they meet or
exceed the mean execution time of 1ms. Working with these
virtual execution times, the total remaining slack to distribute
along the path is 10ms − (1.5ms ∗ 1.5) − (2ms ∗ 1.5) −
0.5ms = 4.25ms. Thus, the resulting deadline for task A
is (1.5ms ∗ 1.5) + 4.25ms

3 ≈ 3.67ms. In contrast,
the Locally Adaptive (Slice Adapt-L) metric scales the job
execution length based on the local level of task parallelism
instead of globally. For example, the degree of parallelism
for A is 2 because there are no data dependencies with tasks
B and D. As with the Adapt-G metric, jobs A and C are
assigned a longer virtual execution time and the remaining
slack is distributed along the critical path.

C. Formulations for SMT and MIP solvers

In addition to the heuristics, we also formulated the problem
for a Satisfiability Modulo Theory (SMT) solver and a Mixed
Integer Programming (MIP) solver. So far, we have neglected
to model the network configuration and have ignored it as
an input parameter. In tight control loops that are comparable
in size to a TDMA-cycle, ignoring the network delay leads
to overly pessimistic results. Since the solver should always
find a solution, if one exists, it needs detailed network infor-
mation for its scheduling decisions. Our model of a TDMA-
configuration consists of a number of TDMA-Slots with a
fixed slot start and end time. Each slot is assigned to exactly
one machine and is repeated after one TDMA cycle period. A
TDMA slot may carry messages from multiple tasks on one
machine to receivers on all other machines, i.e. we assume a
broadcast semantic. Tasks on the same machine communicate
without time delay. The solver receives a workflow and a
TDMA configuration as input. It then tries to find start times
for each job in the workflow so that the global deadline is
adhered to. Notice that this skips the deadline assignment step
and directly tackles the problem of task ordering. Deadlines
and release times for execution on real hardware are derived
from this task ordering. Appendix A-C gives more detail on
the TDMA model and our SMT and MIP constraints.

V. EVALUATION

Since industrial use cases span a wide range of potential
layouts of the resulting task graphs, we rely on synthetic
benchmarks, based on several well-known graph generation
methods [15]. The Erdős-Rènyi G(n, p) method generates an
unbiased DAG out of all possibilities, therefore our bench-
marks contain this form of task graph weighted with 50%.
The Layer-by-Layer method allows specifying the maximum
depth of the graph and was developed specifically for val-
idation of scheduling algorithms. It is contributing 20% to
the overall number of test cases. Similarly, Task Graphs for
Free (TGFF) is another method of generating task graphs for
the validation of scheduling methods. It is also weighted with
20%. The Random Orders method generates a partial order
(i.e. a DAG) by intersecting several total orders, which are
constructed by shuffling the nodes of the graph. This method
generates graphs with all transitive edges and is used for
generating the last 10% of the test cases. Figure 3 shows
examples of the graphs generated by these methods.
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We generated a total of 1 160 000 feasible workflows, in the
aforementioned ratio, with either 16, 32, 48 or 64 tasks which
were randomly assigned to either 2, 4 or 8 machines, which
were connected via TDMA. The feasibility of the workflows
was verified through the SAT solvers. To avoid bias in the
evaluation, the amount of feasible workflows is largely the
same for each combination of machine count and task count,
i.e. there are roughly 100 000 workflows for each combination.
The only exception is the combination of 8 machines with
64 workflows where we could only generate 60 000 feasible
workflows1 due to time constraints. The workflows all have a
common deadline and period of 10 ms, which is also the length
of a TDMA round. TDMA slots of 120µs length (the time
needed to transmit 1500 bytes, which is the largest allowed
UDP packet size, over 100 Mbit Ethernet) were assigned in
round-robin style to the machines. The workflows were then
run through the heuristics pipeline, described in Section III,
to determine which percentage of feasible solutions a heuristic
can find. We call this measure the efficiency of the heuristic.
A value of 100% means that a heuristic was able to solve
all of the same problems that the SAT-solvers2 determined
as feasible, a value of 50% means is solved halve of the
problems. The efficiency of the SAT-approach naturally is
100%, therefore it is not shown in the performance plots below.

Figure Figure 4 a shows the performance of the heuristics
plotted against the size of the workflow. In addition to the
individual heuristics, we are also displaying the combined
metric, meaning the percentage of workflows that was solved
by at least one of the heuristics. The figures show that the

1There are only 10 000 instead of 50 000 feasible workflows of the Erdős-
Rènyi G(n, p) variant.

2Microsoft Z3, version 4.3 (http://z3.codeplex.com/) as SMT solver and
Gurobi, version 6.0 (http://www.gurobi.com/) as MIP solver

slicing technique [8], does not exhibit a high efficiency for
generalized workflows in our context. Its performance can
only be considered competitive for workflows generated with
the Layer-by-Layer or Random-Orders methods, as shown in
Figure 4 b. Figure 4 c shows the performance of the heuristics
for graphs with varying edge density. The x-axis in shows the
percentage of the theoretically possible edges being present in
a given workflow. 100% would mean a fully connected DAG.
We see that the connectedness of a graph is no deciding factor
in the overall performance of the heuristics. We attribute the
slight increase in performance to biases stemming from the
fact that the average number of machines and the average
number of tasks is decreasing for feasible workflows with a
high edge chance. A similar argument can be made for the
height of a workflow, expressed as the number of levels in
Figure 4 d. Here we see the slicing heuristics performing worse
with increasing workflow length while the simple heuristics [7]
are showing stable performance. This graph is again slightly
biased through a decreasing average number of machines but
this should be counterbalanced through the increased average
number of tasks in deeper workflows. Figure 4 e shows that
the number of machines on which a workflow is allocated
has an impact on the efficiency of the heuristic approach.
This stems from the fact that more network communication
is required while the average wait time for the next TDMA-
slot is increasing. This can be mitigated by playing tasks in
such a manner that the network communication is minimized,
but we assigned tasks to machines in a random manner in this
experiment. Figure 4 e also demonstrates that a combination
of different cheap heuristics is beneficial. For the two machine
case, it could be argued that a single efficient heuristic should
be enough. But it is apparent, in the eight machine case,
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Workflow Type EQS EQF PD Slice Pure Slice Norm Slice Adapt-G Slice Adapt-L Gurobi Z3

16 feasible 0.06 ms 0.06 ms 0.06 ms 0.19 ms 0.19 ms 0.20 ms 0.21 ms 20.34 ms 0.27 s
16 infeasible 0.07 ms 0.07 ms 0.07 ms 0.20 ms 0.17 ms 0.21 ms 0.22 ms 17.74 ms 0.07 s
32 feasible 0.14 ms 0.14 ms 0.14 ms 0.60 ms 0.54 ms 0.64 ms 0.75 ms 154.56 ms 18.99 s

32 infeasible 0.16 ms 0.16 ms 0.16 ms 0.70 ms 0.62 ms 0.74 ms 0.84 ms 68.96 ms 24.99 s
64 feasible 0.39 ms 0.38 ms 0.39 ms 3.95 ms 3.70 ms 4.19 ms 5.06 ms 2,086.95 ms – s

64 infeasible 0.47 ms 0.45 ms 0.48 ms 26.40 ms 24.85 ms 27.48 ms 30.52 ms 572.97 ms – s

TABLE II: Geometric means of the heuristics’ run time. The figures for the SMT-solver (Z3) are from a comparable, but not
identical, set of workflows.

that the overall efficiency of the heuristics is not dropping
as steeply as the efficiency of the individual heuristics. The
overall schedule utilization, defined as the sum over all task
processing times divided by the global workflow deadline
and the number of machines, is also a influencing factor in
the heuristics’ efficiency. This is shown in Figure 4 f. The
actual decrease should be a bit steeper as the figure is biased
towards a smaller number of machines with a larger schedule
utilization while the workflow size is stable.

In general, the EQF heuristic performs best. The simple
approach of the PD heuristic, which results in a topological
sorting of the tasks in the workflow after scheduling, performs
second best with EQS following by a small margin. ED
follows by a more visible margin before the slicing techniques
follow by a wider gap. Out of these, the locally and globally
adaptive methods as well as the pure metric perform best, with
a little gap to the normalized slicing method. The combined
approach naturally performs best, but in which order should
the heuristics be applied? Figure 5 shows the percentage of
unique solutions which were not found by any other heuristic.
Only 15% of the solutions could only be found via SAT-
solver. It is our opinion that the heuristics should be applied
in sequence of their uniqueness, meaning that the second best
heuristic (PD) should be tried before the best heuristic (EQF),
because it offers comparable performance but has a higher
chance to find an unique solution. Similarly, the globally
adaptive slicing technique is almost completely subsumed by
the locally adaptive technique.

If the goal is an interactive system to support developers in
their decision making, as stated in the introduction, the run
time of an approach based on a SMT-solver is prohibitive.
Table II shows the geometric mean of the run time of all
presented approaches measured over a separate data set with
3 000 workflows with the same mix as described before. There
are two orders of magnitude between the approaches based
on heuristics and the SMT-solver (Z3). We cannot present
average run time figures for workflows with more then 32
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jobs because we had to cap the execution time of the SMT-
solver after 30 minutes to find a sufficiently large base of
feasible test cases for the heuristics. The MIP-solver (Gurobi)
is considerably faster. However, Figure 6 shows that there is
a large spread in the run time distribution the MIP-solver.
The PD heuristic has relatively stable runtime characteristics
because it is not influenced by the number of edges in the
workflow. The slicing heuristic, on the other hand, is largely
influenced by the workflow structure. This cannot yet be seen
for small workflows, but larger ones lead to a large spread in
runtime, to the point that the MIP-solver can even be faster,
in the best case, than the heuristic, in the worst case.
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Fig. 6: Cumulative run time distribution of selected heuristics
and the MIP solver over 3 000 separate workflows. Vertical
lines denote geometric means.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a heuristics based approach for
automated schedule synthesis for distributed hard real-time
systems. Through extensive evaluation, we have shown that an
approach based on a combination of several heuristics has a
very high efficiency – defined as the capacity to find a feasible
system wide schedule if one exists – and was able to solve
over 85% of all feasible test cases. The heuristics proved to
be, on average, orders of magnitude faster than an approach
based on an MIP satisfiability solver. We have ruled out SMT-
solvers as suitable tools, because they are much slower than
a state of the art MIP solver. Heuristics finish in milliseconds
where the solver may need several minutes. For larger problem
instances the run time of a MIP solver becomes prohibitive,
but the success chances of the heuristics are reduced. However,
we have only evaluated general heuristics from the soft real-
time domain so far. In future work we plan to make use of
the explicit network timing information by developing our own
network aware heuristics.



APPENDIX A
FORMAL DEFINITIONS

The appendix formally defines our implementation of well
known deadline assignment heuristics [7], [8]. Section IV
provides a high-level overview of the heuristics explained here.
The basis is a workflow W = 〈J ,G, DW, PW〉 with a job
set J , the graph G formed by the jobs, a global deadline
DW, and a period PW ≥ DW after which the execution of
the job set is repeated. The job set J = {j0, j1, . . . , jn},
contains the individual jobs ji. Each job has a (worst case)
execution time written as |ji|, a start time ji.S and completion
time ji.C = ji.S + |ji|. The release time ji.R and deadline
ji.D constitute constraints on the earliest start time and
latest completion time, respectively. The graph G = 〈J ,≺〉
places constraints on the task ordering. A precedence relation
between two jobs ji and jj is written as ji ≺ jj if ji is a
direct predecessor of jj and as ji ≺≺ jj if ji is a transitive
predecessor of jj , e.g. ji ≺ . . . ≺ jj . G forms a directed,
acyclic graph. Each job is assigned to a machine mi ∈ M
by the function µj(ji) : J → M. µj is defined prior to the
deadline assignment problem.

Let in(jj) be the in-degree of a job, i.e. the number of direct
predecessors ji ≺ jj it has and out(ji) the out-degree counting
the number of direct successors. R = {ji ∈ J |in(ji) = 0}
is then the set of jobs with in-degree 0, i.e. the roots of the
DAG. L = {ji ∈ J |out(ji) = 0} constitutes the leafs of the
DAG. Additionally, let dji ≺≺ jje be the length of the longest
path from ji to jj . The length of ji ⊀≺ jj is∞, the length of a
job ji to itself is 0. We then define the top-level ji.L̂ of job ji
as min(djr ≺≺ jie) for jr ∈ R. Analogously the bottom-level
ji.L

b of job ji is min(djr ≺≺ jie) for jl ∈ L. The expression
Ĵ� = {jj |ji, jj ∈ J ∧ jj .L̂ � ji.L̂} describes a set of jobs
which fulfill a condition on their level L̂ where � can be any
binary operator, e.g. Ĵ> = {jj |ji, jj ∈ J ∧ jj .L̂ > ji.L̂}.

A. Simple Heuristics

Effective Deadline (ED) heuristic:

ji.D = DW −
∑
j∈Ĵ>

|j| (1)

Equal Slack (EQS) heuristic:

ji.D = ji.R+
∑
j∈Ĵ=

|j|+
DW − ji.R−

∑
j∈Ĵ≥

|j|

max(L̂)− L̂i + 1
(2)

ji.R = max(0, jp.D) for jp ∈ Ĵ< (3)

Equal Flexibility (EQF) heuristic:

ji.D = ji.R+
∑
j∈Ĵ=

|j|+

(
DW − ji.R−

∑
j∈Ĵ≥

|j|
)
∗
∑
j∈Ĵ=

|j|∑
j∈Ĵ≥

|j|
(4)

ji.R = max(0, jp.D) for jp ∈ Ĵ< (5)

Proportional Deadline (PD) heuristic:

ji.D =
1 + Lbi

1 +max(Lb)
∗DW (6)

B. Slicing technique

Algorithm 1 Slicing algorithm by Jonsson and Shin [8]

1: function SLICING
2: Jworking ← J
3: while Jworking 6= ∅ do
4: Find critical path φ in G that minimizes metric R
5: Distribute deadline Dφ of φ to all jobs in φ
6: for all ji ∈ φ do
7: for all jp : jp ≺ ji do
8: jp.D = ji.R

9: for all js : ji ≺ js do
10: js.R = ji.D

11: Jworking ← Jworking without φ

In the following we will outline different metrics R used
for finding φ in Algorithm 1. |φ| is the number of jobs in the
path φ.

Slice-Pure metric:

RPure =

Dφ −∑
j∈φ

|j|

 /|φ| (7)

ji.D = jp.D + |ji|+RPure for jp ∈ φ : jp ≺ ji (8)

Slice-Norm metric:

RNorm =
Dφ −

∑
j∈φ |j|∑

j∈φ |j|
(9)

ji.D = jp.D + |ji| ∗ (1 +RNorm) for jp ∈ φ : jp ≺ ji (10)

Globally adaptive slicing (Slice Adapt-G) metric:

|jvirti | =

{
|ji| if|ji| < thres

|ji| ∗ (1 + kG ∗ ξ/|M|) if|ji| ≥ thres
(11)

ji.D = jp.D + |jvirti | for jp ∈ φ : jp ≺ ji (12)

Locally adaptive slicing (Slice Adapt-L) metric:

|jvirti | =

{
|ji| if|ji| < thres

|ji| ∗ (1 + kL ∗ |Ψi|/|M|) if|ji| ≥ thres
(13)

ji.D = jp.D + |jvirti | for jp ∈ φ : jp ≺ ji (14)

C. SMT Formulation

The TDMA configuration is represented as T =
〈T , µt, PT〉, where T = {t0, . . . , tn} is a set of TDMA
slots with length |ti|, start time ti.S and completion time
ti.C = ti.S+|ti|. Each slot is assigned to a single machine by
the function µt(ti) : T → M. The TDMA cycle is repeated
after period PT. Jobs in W either communicate locally if they
are on the same machine, or they send a message in a TDMA-
slot that is assigned to the same machine.

The SMT solver receives workflow W and TDMA con-
figuration T as input and finds start times ji.S for each job
j ∈ W.J so that the global deadline DW is adhered to.
The constraints for the SMT-solver are: Equation 15, which



requires that all task start times have to be non negative,
completion times have to be smaller than the global deadline
and the completion time must be the start time plus the job
execution time.

∀ji ∈ J : ji.S ≥ 0 ∧ ji.C ≤ DW ∧ ji.C = Si.j + |ji| (15)

Equation 16, which requires that all tasks on the same
machine do not overlap.

∀ji, jj ∈ J : ji.C ≥ jj .S ∨ jj .C ≥ ji.S
∨ ji = jj ∨ µj(ji) 6= µj(jj)

(16)

And the final set of equations expresses the precedence
constraints. Equation 17 expresses that two subsequent jobs on
the same machine do communicate locally and not via TDMA
while Equation 18 states that subsequent jobs on different
machines have to communicate via a TDMA slot assigned
to the first job’s machine. Equation 19 requires that either the
local or global precedence constraints are fulfilled.

prec-local(ji, jj) : µj(ji) = µj(jj)

∧ τ(ji) = ∅ ∧ jj .S ≥ ji.C
(17)

prec-global(ji, jj) : µj(ji) 6= µj(jj)

∧ µt(τ(ji)) = µj(ji)

∧ ji.C ≤ τ(ji).S

∧ jj .S ≥ τ(ji).C

(18)

prec : ∀ji, jj ∈ J : ji ≺ jj =⇒ prec-local(ji, jj)
∨ prec-global(ji, jj)

(19)

D. LP Formulation

The Linear Program formulation is similar to the SMT
approach and follows a formulation based on completion
time variables by Queyranne [16] for scheduling task graphs
with release times and deadlines. The LP variables are thus
Ci = ji.C for all jobs j ∈ J and binary variables yij = 1
that denote that job ji is scheduled before job jj . Note that
ji ≺≺ jj =⇒ yij = 1 but yij = 1 6=⇒ ji ≺≺ jj , i.e yij only
denotes precedence in the schedule produced by the solver.
Additionally we introduce the binary variables uik = 1 that
indicates that job ji is sending its data via TDMA-slot tk.
Additionally the formulation makes use of the upper bound
M = Σ|j|, meaning the sum of all processing times.

Equation 20 and 21 define the value ranges for the comple-
tion time variables and the precedence variables.

∀ji ∈ J : Ci ≥ |ji| ∧ Ci ≤ DW (20)

∀ji, jj ∈ J : yij ∈ {0, 1} (21)

The objective of the LP solver is to minimize the sum of the
completion times: min(ΣCj). The constraints in Equation 22
prohibit two tasks from overlapping. This means that for every
two tasks on a machine, one of them needs to finish before
the start of the other. Two tasks on different machines may
overlap at will and thus there are no restrictions placed on
their corresponding y-variables.

∀ji, jj ∈ J : µj(ji) = µj(jj) =⇒
Ci + |jj | ≤ Cj +M ∗ yji

∧ Cj + |ji| ≤ Ci +M ∗ (1− yji)
(22)

The last set of constraints expresses communication over
the TDMA-network. If two tasks are in a direct predecessor
relation, but not running on the same machine, they need to
communicate over the network. This means firstly that the
preceding job ji has to finish before an TDMA slot assigned
to its machine. This is implied in the first two (in-)equalities
in Equation 23. Lastly, the receiving job jj can only start after
the slot, which transports the message from ji, has ended.

∀ji, jj ∈ J : ji ≺ jj ∧ µj(ji) 6= µj(jj) =⇒∑
tk∈T

uik = 1

∧ Ci ≤
∑
tk∈T

uik ∗ tk.S

∧ Cj − |ji| ≥
∑
tk∈T

ujk ∗ tk.C

(23)
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